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Abstract. Statistical shape analysis techniques commonly employed in
the medical imaging community rely on Factor Analysis (FA) techniques
to decompose shape variability into a reduced set of interpretable compo-
nents. In this paper we present a quantitative study of the interpretability
capabilities of two of these FA techniques, namely Principal Component
Analysis (PCA) and Principal Factor Analysis (PFA). The study builds
on a clusterization method based on the minimization of an energy term
computed on the vector field describing each mode of deformation along
a surface. The method was tested on a dataset composed by left hu-
man femur Computerized Tomography (CT) 3-D images. Statistics were
drawn to measure quantitatively the interpretability of PCA and PFA
shape variability decomposition.

1 Introduction

The analysis of shape variability of anatomical structures is of key importance
in a number of clinical disciplines, as abnormality in shape can be related to
certain diseases. Examples in neurology include the study of brain asymmetry
to verify its relation to schizophrenia [1], or the detection and quantification of
atrophy as a correlate to multiple sclerosis. These techniques have also proven to
be useful to decrease the invasiveness of surgical procedures and increase their
accuracy and safety (e.g., [2]).

Statistical shape analysis techniques enjoy a remarkable popularity within
the medical image analysis community. Its flagship, the Active Shape Model
(ASM), proposed by Cootes et al. [3], provides a method to study the structure
of point data sets or meshes [1]. This technique was later extended to intensity
information, and thus image data, as the Active Appearance Model (AAM) [4].
Nearly all existing statistical shape analysis methods rely on Principal Compo-
nent Analysis (PCA) to build a compact model of principal ‘modes of variation’
from a training set. PCA belongs to a family of methods for multivariate analysis
commonly known as Factor Analysis (FA). Reviews and comparative studies of
FA techniques can be found in [5–7]. Such techniques can be classified into lin-
ear and non-linear, reflecting whether the shape variation can be expressed as a
linear combination of basic deformation primitives. We contend that a factorial
decomposition of shape variability, if it is to be easily interpretable, must follow



a linear model, where each mode of variation has a scalar weight. PCA is a linear
technique.

In a previous work we performed a qualitative study between PCA and an-
other linear factor analysis technique known as Principal Factor Analysis (PFA).
The study was performed on datasets of different nature (i.e., data dimension-
ality, image modality, studied anatomical structure, etc.)[8]. On the results ob-
tained, one aspect that prevents full evaluation of these techniques is the lack of
methods to quantify interpretability. With current analyses being based in more
or less intuitive aspects (e.g., visual inspection of a single image or a sequence
of images), the outcome is dependent to the observer. Furthermore, the 3-D
characteristic of the data makes difficult a qualitative analysis of results, which
is important when one wants to compare results from different FA-based tech-
niques [8]. In this work we present a comparative study between PCA and PFA
aiming to measure quantitatively their interpretability capabilities. For this, our
main hypothesis is that the degree of interpretability of a certain shape variabil-
ity decomposition is directly related to the homogeneity of the deformation field
across the surface for each mode of deformation. Based on this, this study relies
on a technique aimed to cluster a vector field describing a mode of deformation
across a surface. The clusterization technique is based on the minimization of
an energy composed by two terms: a first term based on the co-linearity among
vector directions and a second term that considers the area gain when adding a
candidate point to a cluster. Furthermore, the magnitude of deformation at each
point is considered as well in order to give more importance to points having
larger displacements.

Sections two and three present PCA and PFA respectively, then in sec-
tion four, the clusterization algorithm of a non-uniform deformation vector field
across a surface is described. Section five provides results on real data of human
femur Computerized Tomography (CT) images. Finally, section six ends with
discussions and conclusions.

2 Principal Component Analysis

PCA is a projection model for FA, aiming at finding a low-dimensional mani-
fold in the space of the data, such that the distance between the data and its
projection on the manifold is small [6]. PCA is the best, in the mean-square er-
ror sense, linear dimension reduction technique [5]. Given a set of training data
t1, t2, . . . , tN in a given orthonormal basis of RD, PCA finds a new orthonormal
basis u1, . . . , uD with its axes ordered. This new basis is rotated such that the
first axis is oriented along the direction in which the data has its highest vari-
ance. The second axis is oriented along the direction of maximal variance in the
data, orthogonal to the first axis. Similarly, subsequent axes are oriented so as
to account for as much as possible of the variance in the data, subject to the
constraint that they must be orthogonal to the preceding axes. Consequently,
these axes have associated decreasing values λd, d = 1, . . . , D, corresponding to
the variance of the data set when projected on the axes. The principal compo-



nents are the set of new ordered basis vectors. The way to compute the principal
components is to compute the sample covariance matrix of the data set, S, and
then find its eigen-structure S = UΛ. Where U is a D×D matrix which has the
unit length eigenvectors u1, . . . , uD as its columns, and Λ is a diagonal matrix
with the corresponding eigenvalues λ1, . . . , λD. The eigenvectors are the prin-
cipal components and the eigenvalues their corresponding projected variances
[6].

3 Principal Factor Analysis

In opposition to PCA, which is a projection model, PFA can be considered as a
generative model for FA. Generative models try to model the density function
that is assumed to have generated the data, under a set of constraints that
restricts the set of possible models to those with a low intrinsic dimensionality
[6, 7]. PFA represents an observed D-dimensional continuous variable, t, as a
linear function f of an L-dimensional (L ≤ D) continuous latent variable x and
an independent Gaussian noise process:

t = Λx + µ + e (1)

Here Λ is the D×L factor loading matrix defining the linear function f , µ is
a D-dimensional vector representing the mean of the distribution of t, and e is a
D-dimensional vector representing the noise or individual variability associated
with each of the D observed variables. PFA assumes a Gaussian distributed prior
and noise model, and a linear mapping from data space to latent space.

The columns of the D × L matrix Λ are referred to as factor loadings.
The data space noise model e is normal centered in f(x) with diagonal co-

variance matrix Ψ :

p(t|x) ∼ N(f(x), Ψ) (2)

The D diagonal elements of Ψ are referred to as the uniqueness. Following
Bayes rule, the posterior in latent space is also normal:

p(x|t) ∼ N(A(t− u), (I + ΛtΨ−1Λ)−1), (3)

with
A = Λt(ΛΛt + Ψ)−1 = (I + ΛtΨ−1ΛtΨ−1) (4)

The parameters of the PFA model may be estimated using the EM (Expectation-
Maximization) algorithm [9]:

– E-step: This requires computing the moments. For each data point tn given
the current parameter values at iteration τ Λ(τ) and Ψ (τ ):

E{x|tn} = A(τ)(tn − µ) (5)

E{xxt|tn} = I −A(τ)Λ(τ) + A(τ)(tn − µ)(tn − µ)t(A(τ))t (6)



– M-step: This results in the following update equations for the factor loadings
Λ and uniqueness Ψ :

Λ =

(
N∑

n=1

tnE{x|tn}t

) (
N∑

n=1

E{xxt|tn}t

)−1

(7)

Ψ (τ+1) =
1
N

diag

(
N∑

n=1

tnttn − Λ(τ+1)E{x|tn}ttn
)

(8)

Where the updated moments are used and the ‘diag’ operator sets all off-
diagonal elements of a matrix to zero. The location parameter µ is estimated by
the sample mean, and does not take part in the EM algorithm.

Note that as opposed to PCA, the factor decomposition is not unique, since
an orthogonal rotation of the factors (Λ

′
= ΛR where R is an orthogonal matrix)

does not alter the distribution in data space, p(t). Thus, from all the factor load-
ing matrices Λ, we are free to choose that which is easiest to interpret according
to some criterion. We employ Varimax rotation [10], which finds an orthogonal
rotation of the factors and maximizes the sparseness of the retained modes such
that, for each new factor, the loadings are either very large or very small (in
absolute value). The resulting rotated matrix Λ

′
has many values clamped to

(almost) 0, that is, each factor involves only a few orthogonal variables. This has
been found to simplify interpretation [11].

4 Clusterization of a vector field across a surface

The output result from the generation of the statistical models using PCA and
PFA is a point distribution model (PDM) able to describe, provided a triangu-
lation of these points, the shape variability of the structure under study as a
surface embedded in the 3-D space. Let P = {p1, . . . , pM}, M ∈ N ∗, be the set
of points of our PDM, and T = {τ1, . . . τN}, N ∈ N ∗, the triangulation connect-
ing points in P that generate a mesh surface embedded in a domain D ∈ R3.
For each point pi ∈ P , i = 1, . . . , M , a vector Vi can be computed as

Vi = v+
i − v−i , (9)

with
v+
i = m + αjΦj (10)

v−i = m− αjΦj (11)

Right sides in equations (10) and (11) denote the generic PDM model gener-
ated from either PCA or PFA, where m corresponds to the mean shape and αj is
a scaling value for the jth principal mode or principal factor of the eigen-matrix
or factor loadings matrix Φj. The scalar value αj is chosen accordingly to the
plausible range of values that generate valid shapes within the PDM training
dataset (e.g. ±3

√
λj for PCA).



What follows concerning the clusterization across the surface given its trian-
gulation, was initially inspired in the work presented in [12], which was conducted
for vector field segmentation of moving objects in 2-D image sequences. Here we
extend this work to unstructured 3-D displacement vector field across a surface
following some key ideas presented in our previous work [13], where methods
were presented to perform clusterization of triangulated surfaces based on some
surface properties like normal direction at each triangle, size of triangles, etc.

Let us define the mapping function M as

M : T → R+∗ × S4

τi 7→ (ai,V(1),V(2),V(3)); i = 1, . . . , N
(12)

Where ai is the area covered by triangle τi, and Vk, k = {1, 2, 3}, vectors at
each vertex of triangle τi, computed as in eq. (9).

The clusterization process can be seen as a minimization problem where we
minimize the following functional over a region or domain Ω ⊆ D:

C = argminΩJ(M(Ω)), (13)

where J(·) is an energy term composed by two components: a first energy
component takes into account the co-linearity between vectors within the domain
Ω and the predominant vector direction VΩ in Ω, weighted by the vector length
in order to give more importance to regions having a stronger deformation. The
second term acts as a maximal area constraint. The energy J(·) has then the
following form:

J(M(Ω)) =
∫

Ω

( |VΩ ×V(m)|
|V(m)|

)2
Lmax

|V(m)|dm + γ

∫

D\Ω
dm, (14)

where γ is a real value and Lmax = maxD{|V(m)|}.
The dominant vector direction VΩ is found as the highest eigenvalue of the

following matrix [12]:

M(Ω) =
∫

Ω

V(m)Vt(m)dm (15)

Minimization of (13) is performed by means of a hierarchical scheme, where
each pattern is first considered as a cluster and then they are iteratively visited
and agglomerated according to the energy measure J until all triangles τi, i =
{1, . . . , N} in T have been analyzed [13, 14].

5 Results

We present results obtained from a training set of 30 surface models extracted
from CT data. These models represent complete left human femurs, and are
used in on-going research at our institute for computer-assisted surgery, such as
total hip replacement (THR), total knee arthroplasty (TKA), and anterior cruci-
ate ligament surgery (ACL). Correspondences across data sets were established



Fig. 1. Shape variability decomposition of left femurs using PCA and PFA. Lines
correspond to vector directions describing the second mode of deformation, whereas
the magnitude of deformation has been mapped as colors on the surface. Only proximal
and distal sections of femur are shown in order to enhance visualization.

with a spherical harmonic (SPHARM) based shape representation method [15].
These correspondences are further optimized via a Minimum Description Length
(MDL) optimization [16].

For both, PCA and PFA, the first mode describes the change in length of
femurs. More interesting are the second to fourth modes. Figure 1 shows the
second mode using PCA and PFA. From Fig. 1 it can be shown that PFA yields
a more homogeneous deformation than PCA. While this can be easily seen in
the femoral head and around the condyles in the distal femur, a qualitative eval-
uation on the whole femur is not an easy task due to the local variations, vector
magnitudes, and the fact of visualizing 3-D information in a 2-D space. This
turns to be more difficult for the third and fourth modes, where deformations
are more subtle and complex, requiring more experience from the observer.

The clusterization algorithm was applied to the shape variability decompo-
sitions using PCA and PFA. The obtained clustered triangulated surfaces are
colored for their differentiation. Fig. 5 shows the results obtained for mode num-
ber two. It can be seen that the clusterization on the PFA shape variability
decomposition has larger clusters than for PCA, indicating the increased homo-
geneity of the shape decomposition of PFA over PCA. Figure 5 plots for both,
PCA and PFA, the number of clusters produced at different levels of γ (Eq. (14)),
which regulates the desired degree of homogeneity of each cluster. As expected,
at different values of γ the number of clusters required by PFA is smaller than
for PCA, indicating the higher homogeneity of the deformation pattern obtained
with PFA. This same behavior occurs as well for mode three and four.

In another experiment, for each mode of decomposition, the parameter γ (Eq.
(14)) was adjusted in order to generate the same number of clusters for PCA
and PFA. Ten sets were generated ranging from 20 to 40 clusters. Then, the
mean standard deviation of vector directions across clusters was computed. The
results indicate that for the second mode of PCA and PFA, the mean standard
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Fig. 2. Number of clusters obtained for PCA and PFA with different values of param-
eter γ (Eq. (14)). It can be seen that at different ‘degrees of homogeneity’ the number
of clusters required by PFA to describe the deformations is always smaller than for
PCA.

PCA-proximal femur PFA-proximal femur PCA-distal femur PFA-distal femur

Fig. 3. Clusterization results for second mode of PCA and PFA. On each figure, each
cluster has a particular color (chosen randomly). Gray regions correspond to triangle
cells having low deformations and so not considered as part of a cluster (see red regions
in Fig. 1).

deviation was 0.40 and 0.24, respectively. Similarly, for third mode of PCA and
PFA, the standard deviation was 0.43 and 0.36, respectively, and of 0.52 and 0.32
for mode number four. These figures show once again the increased homogeneity
across clusters for PFA over PCA.

6 Conclusions

A clusterization technique aimed to quantitatively study the interpretability
characteristics of PCA and PFA was presented. We contend that a shape vari-
ability decomposition is easier to interpret when the shape deformation presents
more regular or homogeneous patterns across the surface. The results on femur
data allowed us to conclude in quantitative terms that PFA decomposition is
easier to interpret, results that agree with the qualitative results obtained in a
previous study [8]. We do not claim that PFA should replace PCA, but it should
be considered as a complementary tool when studying shape variability. Clinical
applications of the proposed technique include, for instance, its utilization on
bone implant design. In this scenario, being able to characterize a shape defor-



mation in terms of its preferred direction and the region of interest where this
deformation is predominant could greatly improve the implant design process.
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