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Abstract— Extensive recent work has taken place on the 
construction of probabilistic atlases of anatomical organs, 
especially the brain, and their application in medical image 
analysis. These techniques are leading the way into similar 
studies of other organs and more comprehensively of groups of 
organs. In this paper we report results on the analysis of 
anatomical variability obtained from probabilistic atlases of 
abdominal organs. Two factor analysis techniques, namely 
principal component analysis (PCA) and principal factor 
analysis (PFA), were used to decompose and study shape 
variability within the abdomen. To assess and ease the 
interpretability of the resulting deformation modes, a 
clustering technique of the deformation vectors is proposed. 
The analysis of deformation fields obtained using these two 
factor analysis techniques showed strong correlation with 
anatomical landmarks and known mechanical deformations in 
the abdomen, allowing us to conclude that PFA is a 
complementary decomposition technique that offers easy-to-
interpret additional information to PCA in a clinical setting. 
The analysis of organ anatomical variability will represent a 
potentially important research tool for abdominal diagnosis 
and modeling. 

I. INTRODUCTION 
HE analysis of shape variability of anatomical 

structures is of key importance in a number of clinical 
disciplines, as abnormality in shape is often related to 
disorders. Statistical shape analysis techniques have enjoyed 
a remarkable popularity within the medical image analysis 
community. Most existing statistical shape analysis methods 
rely on Principal Component Analysis (PCA) to build a 
compact model of principal modes of variation from a 
training set [1,2]. Examples in neurology include the study 
of brain asymmetry to verify its relation to schizophrenia 
[3], or the detection and quantification of atrophy as a 
correlate to multiple sclerosis. In cardiac applications, shape 
variability of the heart has also been integrated into a space 
and time-varying probabilistic atlas aimed to improve the 
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segmentation of 4D cardiac MR images [4]. In bone 
morphometry, shape variability information has been used, 
for example, to decrease the invasiveness of surgical 
procedures and increase their accuracy and safety [5], or in 
vertebral fracture quantification [6]. The deformations 
modes described by this type of model can be sometimes 
difficult to interpret or correlate with intuitive shape 
descriptions employed by clinical partners, and are normally 
combinations of several localized shears, twists, rotations, 
etc. In a previous work, another decomposition technique 
called Principal Factor Analysis (PFA) was used for 
morphological analysis of femur, corpus callosum, and 
vector-valued 3D deformations fields resulting from non-
rigid registration of ventricles in MRI [7]. The obtained 
results showed the added value of PFA, offering a simpler 
analysis of shape variability by intuitively distinguishable 
factors.  In this paper, the technique is further applied for the 
structural analysis of abdominal organs obtained under the 
development of an abdominal probabilistic atlas, which will 
serve as a tool for the scientific and medical community.  

The homogeneity of the deformation field across the 
surface, for each mode of deformation, offers a degree of 
interpretability of shape variability decomposition. Thus, 
this study additionally introduces a technique to cluster a 
vector field describing a mode of deformation across a 
surface. The technique is based on the minimization of two-
term energy: a first term based on the co-linearity among 
vector directions and a second term that considers the area 
gain when adding a candidate point to a cluster. The 
magnitude of the deformation at each point gives more 
weight to points having larger displacements. 

II. METHODS 
The methods can be subdivided into two major steps: 

models construction and analysis of anatomical variability. 
For the construction of the models, non-linear registrations 
from 30 manually segmented abdominal organs were used in 
conjunction with PCA and PFA for shape modeling. The 
analysis of variability is performed with a clustering 
technique applied on the deformation modes.  

The models were constructed from a set of 10 abdominal 
CT scans of patients with no abnormalities: 5 male and 5 
female with a mean age of 59.9 years. Data were collected 
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using GE LightSpeed Ultra (GE Healthcare) and image 
resolution ranged from 0.54 x 0.54 x 1.0 mm3 to 0.77 x 0.77 
x 1.00 mm3. The spleen, right kidney and pancreas were 
manually segmented. The implementation uses Visual C++ 
8.0 (Microsoft), ITK 2.4 and Matlab 7.3 (Mathworks Inc.). 

 

A. Model Construction 
For the construction of the models, a random image from 

the database is set as reference J, and all other subject data, 
addressed as images I, are registered to the reference. For all 
subjects, the manual segmentation of ten abdominal organs 
was performed and masks of the organs were generated. 
Then each organ was registered individually to its 
corresponding mask in the reference set. Organ coordinates 
in each subject were normalized relative to the position of 
the xiphoid. Hence, we employed the non-linear registration 
algorithm based on B-splines [9] and normalized mutual 
information M [10], where p(I,J) is the joint probability 
distribution of images I and J, and p(I) and p(J) their 
marginal distributions, as in Equation (1).  
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The deformation of objects is governed by an underlying 

mesh of control points in a coarse to fine multiresolution 
approach. B-splines allow to locally controlling the 
deformation and a compromise between the similarities 
provided by the mutual information M and smoothing is 
searched. The resulting deformation fields between the 
reference image and the subject data are input in the analysis 
of anatomical variation. For more detail on the B-spline 
definition of the transformation, please refer to [10]. 

The physical coordinates of organs (image independent) 
were used, normalized by the xiphoid. Finally, organs were 
translated in the atlas to the location of the average 
normalized centroid. 

Once point correspondences are established for every 
organ and for every sample dataset, anatomical variability is 
modeled through PCA and PFA. PCA is a projection model 
for factor analysis aiming to find a low-dimensional 
manifold in the space of the data, such that the distance 
between the data and its projection on the manifold is small 
[11]. PCA is the best, in the mean-square error sense, linear 
dimension reduction technique [2].  

Unlike PCA, which is a projection model, PFA can be 
considered as a generative model in factor analysis. 
Generative models estimate the density function that is 
assumed to have generated the data, under constraints that 
restricts the set of possible models to those with a low 
intrinsic dimensionality. Whereas PFA models covariance 
between variables, PCA models the total variance in the data 
and as such it determines the factors that account for the 
total (unique and common) variance in the set of variables. 
Contrarily, PFA determines the least number of factors that 
can account for the common variance (correlation).  For 

more details and illustrative examples on PCA and PFA, 
please refer to [7, 11, 12]. 

B. Analysis of Anatomical Variability 
The result from the generation of the statistical models 

using PCA and PFA is a point distribution model (PDM). 
The PDM is able to describe the shape variability of the 
structure as a surface or point cloud embedded in the 3D 
space. Let P = {p1,p2, … ,pM}, M ∈ N*, be a set of points 
that generate a surface in a domain D ∈ R3. For each pi ∈P, i 
= 1, … ,M, a vector Vi is computed as  
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vi

+ and  vi
- denote the generic PDM model generated from 

PCA, where m corresponds to the mean shape and αj is a 
scaling value for the jth principal mode of the eigen-matrix 
фj. αj is chosen according to the plausible range of values 
that generate valid shapes within the PDM training dataset 

(e.g. jλ3±  for PCA). 
The clusterization across the surface was initially inspired 

by the work presented in [8], which was conducted for 
vector field segmentation of moving objects in 2D image 
sequences. We extend this work to unstructured 3D 
displacement vector fields. The clusterization process can be 
seen as a minimization problem of the following functional 
over a region or domain Ω⊆ D  
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where J is an energy with two components: a first 
component takes into account the colinearity between 
vectors within the domain Ω and the predominant vector 
direction VΩ in Ω, weighted by the vector length in order to 
give more importance to regions having a stronger 
deformation; the second term acts as a maximal area 
constraint.  
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where γ is a real value and Lmax = maxD{|V(m)|}. The 

dominant vector direction VΩ is found as the highest 
eigenvalue of the following matrix [7]. 
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The minimization of Equation (3) is done by a 
hierarchical scheme, where each pattern is first considered 
as a cluster and then iteratively visited and agglomerated 
according to the energy measure J, until all points on the 



  

surface have been analyzed. 

III. RESULTS 
Figures 1 to 3 show the shape models obtained for PCA 

(upper row) and PFA (lower row) for the spleen, right 
kidney and the pancreas. From the PDM, shapes are 
represented as blue and red colored cloud of points 
representing positive and negative values, respectively, of 
the model parameters spanning plausible shapes (e.g. 

jλ3±  for PCA). As it can be observed from Figure 1, the 
interpretation of the deformations is not evident. Hence, the 
clustering method permits further evaluation of results. 

Figures 4 shows clustering results for the first three 
modes of variation obtained from PCA and PFA for the 
spleen. Similarly, figure 5 illustrates the results obtained for 
the predominant mode of anatomical variability of the right 
kidney and pancreas. Each clustering image is a set of points 
in space with random colors representing each cluster. The 
number of clusters reflects the degree of homogeneity of the 
deformations fields per principal mode.  

 
 
 
 
 
 
 

 
 
 
 

Fig. 1: First three main modes of deformation of the spleen using 
PCA (upper row), and PFA (lower row). Blue and red shapes 
represent positive and negative values, respectively, of the model 
parameters. Holes in the image are caused by the anisotropy of 
image resolution and are created from the deformation of the point 
space.

 

 
Fig. 2: First three main modes of deformation of the right kidney using PCA 
(upper row), and PFA (lower row). Blue and red shapes represent positive 
and negative values, respectively, of the model parameters.  
 

 

Fig. 3: First three main modes of deformation of the pancreas using PCA 
(upper row), and PFA (lower row). Blue and red shapes represent positive 
and negative values, respectively, of the model parameters. 

 

Fig. 4: Clusterization results for the first three modes of anatomical 
variability of the spleen using PCA (upper row) and PFA (lower row). 
Clusters colors are random.  

 

 
As expected, the clusters of deformations are related to the 

anatomical and mechanical constraints in the abdomen. The 
clusters of modes of deformation might be explained by 
abdominal ligaments that join the spleen, liver and, stomach, 
or the presence of large blood vessels and contact with 
neighboring organs. For example, in Figure 4, the clusters of 
the PFA first mode of the spleen separate at the entry of the 
splenic vein, and the second mode clusters of both PCA and 
PFA reflect the positions of the gastric, colic and kidney 
impressions and the biomechanical deformation associated 
with them. Similarly, the analysis of the kidney modes of 
variation in Figure 5(a) emphasizes the superior pole located 
against the liver, and the inferior pole with the abdominal 
muscles impression, with an anterior-posterior separation at 
the location of the renal pelvis and blood vessels. In Figure 
5(b) there is a clear correlation between the clusters of the 
first mode and the anatomical boundaries between the head, 
body and tail of the pancreas; the head is the best-anchored 
part of the organ and the tail the most mobile.  
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The anatomical variability analysis is correlated with key 

anatomical landmarks of the studied organs, which can be 
input as physical and biomechanical constraints in the 
analysis of the abdomen. Table 1 presents the relative size of 
the clusters in the first three modes of variation. PFA 
generally shows fewer clusters of the deformation modes 
than PCA, which may potentially make the interpretation of 
complex results easier in clinical applications of this 
method.  

 
TABLE 1: NUMBER OF CLUSTERS FOR PCA AND PFA DECOMPOSITIONS OF 

THE PANCREAS, SPLEEN, AND THE RIGHT KIDNEY. BOLD NUMBERS INDICATE 
WHERE PFA YIELDS FEWER CLUSTERS THAN PCA. 

 
 Mode 1 Mode 2 Mode 3 
 PCA PFA PCA PFA PCA PFA 
Spleen  3 2 4 4 3 3 
Kidney 4 3 3 3 4 3 
Pancreas 4 3 3 3 3 3 

IV. DISCUSSION 
The paper introduces an anatomical variability study of 

abdominal organs to assist with the statistical and structural 
analysis of the abdomen. Previous results on an alternative 
shape analysis technique called principal factor analysis 
(PFA) [7] were further investigated for abdominal organs, 
and a comparison in terms of interpretability of the 
decompositions with PCA was established through a 
quantitative method based on clustering of deformation 
modes. We contend that shape variability decomposition is 
easier to interpret using clusters of more regular or 
homogeneous patterns of the shape deformation across the 
surface. The analysis of deformation fields showed a strong 
correlation with anatomical landmarks and known 
mechanical deformations in the abdomen, which are better 
explained by PFA. In this sense, further work includes the 
evaluation of the correspondences establishing [13]. Clinical 
applications of the proposed technique include, for instance, 
the development of registration techniques based on 
uncertainty and sensitive to the organ shape and rigidity. 
The ability to characterize shape deformation in terms of its 
preferred direction and the region of interest where this 
deformation is predominant could greatly aid in the 

segmentation of soft tissue from incomplete data. The 
examples shown in this paper include a more rigid 
abdominal organ, the kidney, a soft organ, the spleen, and 
the pancreas, an organ with a fixed head and a movable tail. 
The analysis of other abdominal organs will be presented in 
future work. 

The results of the anatomical variability analysis are 
preliminary and focus on the identification and interpretation 
of deformation modes to better understand the modeling and 
biomechanical characteristics of abdominal organs and soft 
tissue in general. They will be expanded to the analysis of 
the abdomen deformation, beyond organ-based analysis. 
Nevertheless, the results in this paper give an overview of 
the wide range of potential analyses that can be extracted 
from the analysis of probabilistic data using statistical shape 
modeling. Finally, it can be concluded that using a reduced 
number of clusters of deformation fields allows for an easier 
to interpret analysis of anatomical variability, traditionally 
very difficult on a vector or scalar space. 

Fig. 5: Clusterization results for the first mode of anatomical variability of 
(a) the right kidney and (b) the pancreas, using PCA (upper row) and PFA 
(lower row). Clusters colors are random.  
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