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Introduction: A key in the development of better bone implant design is to consider the 
natural shape variability found in a certain population. Being able to characterize such 
shape variability, and how this variability can be injected in the process of implant design 
has become an important issue within implant manufacturers. Ultimately, the aim is to 
design an implant that can be used across a population ensuring a good fit. While it is 
clear that no unique implant will fit as well in every bone, it is possible however to tailor 
the implant design to be as generic a possible. Thus, an important aspect of the design is 
to evaluate how well the current bone implant fitting is performing before any further 
analysis. To asses the quality of the fitting one can search for the distances errors 
produced when placing the implant on the bone surface. However, current rigid 
registration strategies as the classical Iterative Closest Point (ICP) do not consider aspects 
like collision detection between objects nor include more specific constraints which can 
come from anatomical or manufacturer specific criteria. In this paper, a modified Iterative 
Closest Point (ICP) technique, tailored to the specific task of bone implant fitting was 
developed. Collision constraint was incorporated to ensure that no points in the implant 
mesh model fall inside the bone model. In addition, fitting guidelines provided by the 
implant manufacturer were included as fitting constraints, this in order to find plausible 
implant fitting. These specific constraints favors fittings of the implant that are collinear 
as much as possible with the bone main axis, and do not go above the bone plateau. 
 
The constrained ICP algorithm is based on the optimization of the following functional: 
\argmin \sum_i W_i *|e_i|, where W_i and e_i are the corresponding weight and distance 
error for point i in the implant mesh model, respectively. 
 
The weights W_i are computed as a linear combination of constraint-specific weights for 
collision, implant-bone co-linearity and tibia plateau. Furthermore, in order to avoid 
biases due to the number of points inside the volume, an analytical expression was found 
to counter this. 
To favour bone-implant fittings that are collinear as possible with the bone main axis, the 
angle between these two axis was computed and used as constraint weight. For this, the 
main axis of the implant model and the bone are required. This is performed through a 
Oriented-Bounding-Box (OBB) decomposition of both shapes. Furthermore, for the 
implant model, only the lower region was used in order to improve the alignment 
between the bone shaft and the implant. A 4-level OBB decomposition of the implant 
was then used. A final constraint comes from the fact that the implant cannot be 



positioned further up the bone plateau; this constraint was then implemented as penalties 
to points going up this plane. 
 
The method was tested on two statistical models of tibia bones, generated from 
segmented CT scans of left human tibia. For the construction of the statistical models, 
dense-field correspondences for every bone and a reference one was found using a non-
rigid registration algorithm, which was applied to the masked CT images in order to 
recover only the tibia structure. The Active Shape Model (ASM) method was then used 
to statistically model the shape variability of bones. A first model describes a Caucasian 
population of 43 bones and a second one, describes Asiatic population of 47 bones. The 
statistical shape models were used to generate new valid instances, yielding two new 
datasets of 67 bones for each population and using the first five modes of variation, 
corresponding to 94% of the total shape variability.  For each new dataset 30 instances 
were generated using 6 different values or weights for each of the first 5 modes of 
variation alone, and 37 were generated as combination of the first 3 modes between four 
different values. These combinations were generated assuring that the generated instances 
are within the 94% of the Gaussian distribution of the model. 
 
For each instance the constrained bone fitting procedure was performed and the distance 
error at each point on the implant shape was computed. An overall mean distance and 
standard deviation was then computed to measure quantitatively the quality of the fitting.  
 
Results: For the Asian population a mean distance error of 1.77mm and standard 
deviation of 0.836mm was found. For the Caucasian population the mean distance error 
and standard deviation was found of 1.57mm, and 0.625mm, respectively.  
 
Conclusions: A tailored fitting algorithm for bone implant fitting was developed and 
tested on a statistical model of left human tibia for two different populations. Although 
the method was presented for tibia bones, the method can be easily adapted to consider 
other anatomical constraints. The use of statistical models provides a valuable tool to 
evaluate the impact of shape variability on a given implant design. 


