STATISTICAL BONE SHAPE ANALYSIS FOR IMAGE FREE SURG ERY
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Abstract: Statistical shape analysis techniques emplopethé medical imaging community, such as Active @ghModels or
Active Appearance Models, rely on Principal Compun&nalysis (PCA) to decompose shape variability ia reduced set of
interpretable components. Our model uses pointilolision models (PDM) for the representation offg® The point association
is initialized using shape-based surface correspacel and optimized with the Minimum Description §gn(MDL) criterion. The
model fitting algorithm is formulated as a leastia@g error minimization regularized by the Mahalziaalistance of the predicted
model. We present quantitative and qualitative Itesabtained for the case of statistical shapeyaisabf bones, with applications
to image free surgery.
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invasive fashion. These clinical utensils relax theed of
1. Introduction having dedicated systems to create the shape mddels
computed tomography (CT) or magnetic resonance iffgag
(MRI), which are expensive and/or induce radiattonthe
patient. Additionally, a number of orthopaedic mtmtions,
such as total hip arthroplasty (THA) and total knee
arthroplasty (TKA), do not warrant a pre- or intperative
scan. The alternative is to build a statisticabdefble model
and adapt it to the patient anatomy.

In CAQS, this type of approach was initially exgdrby
Fleute and Lavallée [6] and then clinically evahdatby
Stindel and colleagues [7]. Both approaches fit the
deformable model surface to intra-operatively digil point
data via jointly optimizing deformation and pose. [8],
optimization of both deformation and pose are penéad
separately using an iterative closest point (ICB)hod. In [9]
shape information coded by digitized points frome th
Principal Component Analysis (PCA) model is iteraly
removed by fixing certain locations. The extrapatbsurface
is then computed as the most probable surfaceersiiape
space given the data. Unlike earlier methods, dpigsroach

The analysis of shape variability of anatomicalistures is of
key importance in a number of clinical disciplineas
abnormality in shape can be related to certain adise
Examples in neurology include the study of braipnasetry
to verify its relation to schizophrenia [1], or tHetection and
quantification of atrophy as a correlate to muétigiclerosis
[2].

Statistical shape analysis techniques enjoy a tahber
popularity within the medical image analysis comitwrits
flagship, the Active Shape Model (ASM), proposeddmptes
et al. [3], provides a method to study the struetaf point
data sets or meshes [4]. This technique was latended to
intensity information, and thus image data, as Awtive
Appearance Model (AAM) [5].

In Computer Assisted Orthopaedic Surgery (CAOSg, th
use of statistical shape models for shape recdveny points
digitized using a tracked pointer provides the sarga tool
to improve the accuracy of surgical procedures nmramally



can also able include non-spatial data, such asrpdteight
and weight.

Section 2 presents the methodology used to constiac
statistical shape model. First, a brief discussabout how
point correspondences are found before a multikaria
statistical analysis is performed is given. Thehe tkey
concepts of principal component analysis and ifgiegtion
to medical image data are presented. Section @megesults
obtained on shape analysis of proximal and full fer@T
data, then results of reconstructing femur shapengsparse
surface information from dry cadaver femur data.

2. Methodology

Several geometrical models have been proposedotesent
and study shape variability. Bookstein [10] usesltaarks to
capture the important geometric features. The acsiape
model (ASM) of Cootes and Taylor [3] represents the
geometry of an object as a dense collection of daogn
points, which was extended to include intensityinfation
[5]. Kelemen et al. [11] use a spherical harmoSEKIARM)
decomposition of the object geometry. Others hagsoeed
the possibility of constructing a Statistical Shapedel Using
Non-rigid Deformation of a Template Mesh [12].

To build our model, we employed the representatibn
shapes using point distribution models (PDM). Oag issue
is to establish correspondences between homologoums,
i.e. find which points correspond to the same anatal
location among shapes.

2.1 Finding Point Correspondences

In 2D, correspondence is often established usinguadly
determined landmarks, but this is a time-consumargor-
prone and subjective process. In principle, thenowextends
to 3D, but in practice, due to very small sets eliably
identifiable landmarks, manual
impractical. Most automated or semi-automated aggves
posed the correspondence problem as that of dgfiain
parameterization for each of the objects in théimg set,
assuming correspondence between equivalently péeeines
points.

Current semi- and fully automated methodologies lman
classified into two branches: Pairwise and Groupwis
methods. In Pairwise methods, an initial shapesiscted as
reference and the rest of input shapes are thechetato this
reference shape. Alternatively, the reference shage be
generated from the first match of shapes. Theseoappes
can then be seen as a registration problem. Sealg@ithms
have been proposed to solve this problem in thermetric
image space (i.e. image data) or as a surface imgttdsk.
Which method should be used will depend on thereatd
the input data (e.g., laser-scanning, CT data)Glaupwise

landmarking becomes

methods all the shapes of the training datasetnatched
simultaneously through optimization of a groupwidgective
function.

We compared the methods introduced by Brechbigtler
al. (SPHARM) [13], Kotcheff and Taylor (DetCov) [[14
Davies et al. (MDL) [15], and a fourth method basmd
manually initialized subdivision surfaces similar Wang et
al. (MSS) [16]. We analyzed both the direct cormegfence
via manually selected landmarks as well as the gotgs of
the model implied by the correspondences, in redard
compactness, generalization and specificity. Inravipus
comparative study of these popular methods [17]wals
revealed that for modelling purposes the best amibeg
correspondence methods was Minimum Description tteng
(MDL) [15]. Based on the study, for our model birigl,
correspondence was initialized using MSS and thptimized
based on the MDL criterion.

2.2 Principal Component Analysis

PCA is a projection model for multivariate factomadysis
aiming to find a low-dimensional manifold in thease of the
data, such that the distance between the data laid t
projection on the manifold is small [18]. PCA isthest, in
the mean-square error sense, linear dimension tieduc
technique [19].

Given a set of training data .{t..,t;} in a given
orthonormal basis of°, PCA finds a new orthonormal basis
{ug,...,ug} with its axes ordered. This new basis is rotated
such that the first axis is oriented along thedio® in which
the data has its highest variance. The secondisxisented
along the direction of maximal variance in the d¢ata
orthogonal to the first axis. Similarly, subsequents are
oriented so as to account for as much as possibléneo
variance in the data, subject to the constrairttttiey must be
orthogonal to the preceding axes. Consequenthsetlaxes
have associated decreasing indice&, d=1,...,D,
corresponding to the variance of the data set vwgnejected
on the axes. The principal components are the kelew
ordered basis vectors.

To find the principal components is to compute the
sample covariance matrix S of the data set and finenits
eigenstructure SU=N. U is a DxD matrix which has the unit
length eigenvectors ju..,Uy as its columns, and\ is a
diagonal matrix with the corresponding eigenvaligs. Aq.
The eigenvectors are the principal components dral t
eigenvalues their corresponding projected variaficgls

In most applications of statistical shape analysishe
medical imaging domain, the size of the trainingydationN
is very small relative to the dimensionality of tii&taD. It is
possible to reduce the computational load of PGjorithm
by considering the covariance matrix induced bytthaing
set.



The covariance matrix of the data can be written as
1
S:ﬁ(tn _u)(tn _l‘«)l
Let T be theNxN matrix:
1
T==A(t, —n)'(t. -
N t,—n)(t,-n

Let g be theN eigenvectors ofl with corresponding
eigenvaluesl;, sorted in descending order. It can be showed

that theN vectors (t "RE are all eigenvectors d with
corresponding eigenvalueg;, and that all remaining
eigenvectors o6 have zero eigenvalues [5].

To evaluating the quality of a shape model, three
measures are normally performed:

* Compactness:
parameters are needed to describe the instancte in
training set. A good model should only need a few
parameters, and thus the variance of the modeldizu
as little as possible. This is computed by sumnitme
eigenvalues of the shape covariance matrix.

* Generalization: This measures the ability of thedeido

this measure describes how many digitized points Y

e Initially a small point-set of anatomical landmankith
known correspondence to the model is digitized sTi$i
used to register the patient anatomy to the motiak
also provides an initial estimation of the 3D shath
only a few digitized points.

e To improve the prediction, additional points can be
interactively  incorporated via closest distance
correspondence. The objective function that we mmize
is defined as follows:
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The first term in the function is the Euclideantdige
between then digitized pointsY and the estimated shape
comprising the mean shap¢ plus a weighted sum of the
eigenvectorsu;. The corresponding point for each of the
is computed using closest point
correspondence from the current estimated shapes i§h

denoted as’i, wherej = Index(k)is the index of the closest
point corresponding to thkth digitized point. The second
term is the Mahalanobis distance of the predictexps from
the mean and controls the probability of the predicshape.
This term ensures that the predicted shapes aid il

represent unknown instances. This measure can be favouring those that are closer to the mean.

obtained with a leave-one-out analysis, which iagin
representing a left-out instance from the set ofl N-
training shapes.

« Specificity: When synthesising artificial shapes by
sampling in the learned distribution, the resuttsudd be
similar to the shapes found in the training seisTan be
validated by generating a range of instances and
comparing them to the training set.

2.3 Reconstructing Shape from Sparse Surface
Point Information

Once the shape model has been constructed, theigytal
obtain from sparse surface point information thenplete
patient-specific 3D shape. In other words, one setw
extrapolate from sparse point information to a desisrface
describing the complete 3D shape. Our model fitting
algorithm is formulated as a least squares erroimization
with additional regularization terms that computése
Mahalanobis distance of the predicted model [2lhe T
Mahalanobis distance term enables stable predictigh
minimal number of known surface points. A more deth
explanation of the algorithm can be found in [2Hlere, a
summary of the algorithm is presented:

The parametep in the objective function enables the
deformation scheme to have better convergence hmhav
This is enabled by relaxing the effect of the Mahabis
distance term as additional points are digitizedis Tnakes
the surface less constrained to remain close torgen and
allows it to more freely deform.

3. Experimental Results

3.1 Morphological Analysis of Proximal and Left
Human Femurs

We present results obtained from a training seturface
models extracted from CT data. These models represe
complete left human femurs and proximal femurs,
respectively, and are used in on-going researchirainstitute
for computer-assisted surgery, such as total hijpacement
(THR), total knee arthroplasty (TKA), and anterimuciate
ligament surgery (ACL).

Correspondences across data sets were established
semiautomatic process in which a set of analogoatoaical
landmarks (points, lines or surfaces) are idertifieall data,
and the remaining points are evenly spread to cdler
surface of the object. These correspondences athefu
optimised via a Minimum Description Length (MDL)



optimisation [5]. For further processing, each objés
represented by a dense 3D point cloud. Figure Wshbe
first and second modes of variation found for pnoedi
femurs.

larger populations. The average mean surface eitbr 10
digitized points lies between 2.1-2.6mm and withdigftized
points the error is 1.7-1.9mm.

From Figure 1 it can be seen that the first PCA enod Table 1. Mean surface errors for nine dry cadavends with

mainly describes the deformation of the femoral dhea
whereas the second mode of variation describesobab!
scaling of the structure. Figure 2 shows the reqlitained in
terms of compactness, generalization and spegifidib
addition, error measurements for different methadsd to
find point correspondences are reported for femiogald. As
mentioned in the introductory section, MDL outpenfied
other methods.

Statistical shape analysis of left human femurs alas
performed. The training dataset consisted of 32faear
models extracted from CT data. For illustrative goges,
Figure 3 shows for one case the original CT dale, t
segmented femur, and the surface rendering ofagmented
image. As for the case of human proximal femursintpo
correspondences were computed in the same wayhandat
principal component analysis was carried out.

Figures 4 to 6 present the first three modes oftian.
In each image, blue lines correspond to vectorscatitg
direction of the deformation at each point on theage. In
addition, the magnitude of the deformation was neapm
colours for better visualization.

3.2 Dry Cadaver Femur Data

Nine different dry cadaver femur bones were chdserthis
validation study. High-resolution CT scans of thdsmes
were segmented (image resolution: 0.652 x 0.6520xmim)
and fine 3D surface models were generated. Theriexpet
trials were carried out in the CT coordinate systéhe three
anatomical landmarks and additional 51 bone surfasets
were digitized on the surface model of each of dadaver
bones. The deformation procedure was then empldged
estimate the 3D model that best approximates #igzdid set
of points. We carried out the experiments on twodets,
built from different initial training populationsThe first
model was constructed from the entire training aet30
proximal femurs and the second model was constiucten

a subset of 14 proximal femurs, with correspondence

optimized across the respective training sets. fidliged us to
evaluate the effect of training size on the defdioma
algorithm. Table 1 shows the error results for ea€tthe
cadaver bones with different number of digitizedface
points using the larger and smaller population. Tiean
surface errors with 3, 27 and 54 selected surfagetp are
tabulated.

Figure 7 shows the statistics cumulated for thadager
bones. The average of the mean and median errarssaihe
entire set of 9 cadaver bones is plotted agaimshtimber of
digitized points for both models generated from lgnand

3, 27 and 54 selected surface points in the CTbaser
scheme. The errors are tabulated for both experimeith
larger smaller populations.

Mean error [mm] w.r.t # of points

Bone # Large population Small population
3 27 54 3 27 54
1 208 190 172 257 202 185
2 096 091 085 203 149 1.23
3 244 228 200 302 269 25
4 255 245 203 292 263 212
5 218 199 185 198 187 1.72
6 349 310 254 444 379 265
7 1.73 159 139 315 261 2.23
8 201 187 167 191 175 158
9 206 204 183 222 214 164
Average 2.17 204 183 222 214 164

4. Conclusion

Statistical shape analysis has shown to be an tantatool to
improve shape prediction when only sparse dataadable.

Furthermore, it has been shown how multivariateéissizal

analyses can assist at focusing on the relevapesyeriation
among a population, thus bringing more efficacy aocuracy
to surgery planning.

We presented a model that employs point distriloutio
models (PDM) for the representation of shapes. Weed
the point correspondence starting from a shapedbsisgace
correspondence (MSS), which we further optimizethgis
Minimum Description Length (MDL) criterion. For thmodel
fitting algorithm we employed the Mahalanobis dista of
the predicted model to regularize a least squamer er
minimization. We highlighted the relevance of chogsan
appropriate point-correspondence method, as wehatsof a
suitably-sized the training set.

We showed quantitatively and qualitatively how
statistical shape models of human femurs are hnit how
these models are used in computer assisted surgergier to
minimize the invasiveness on patients.
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Figure 1. Shape analysis of human proximal femTing first two rows correspond to the first and setprincipal components,
PCA-1 and PCA-2 respectively. The two figures éorihpht have a decreasing weighting on each priacgmmponent, and the
figures to the left an increasing negative weight( a,).
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Figure 2: Top row and bottom left: Graphs with error platscompactness (C(M)), generalization (G(M)) anddficity (S(M))
for the femoral head study. Bottom row, right: Teablith average, maximal and minimal mean absoligedces (MAD) between
the manual landmarks and the studied methods &feimoral head study.



Figure 3. Example of input data in the training datasetdusebuild the statistical shape model of left hanfamur. Leftmost
image corresponds to transversal and longitudidahps of the original CT data. The segmented barface (central image)
and a surface rendering of the segmentation (rigistnimage) are shown for illustrative purposes.

Figure 4: First mode of variation for left femur. Clearlge predominant mode of variation is the changemgth of femurs.



Figure5: Second mode of variation for left femur. Two déffeé views of the zoomed region-of-interest (ivere deformations
are more important) show the range of deformatiothiat area. It can be seen that this mode ruledrblination of the femoral
head.

Figure 6: Third mode of variation for left femur. Comparedhe first two modes, the third mode is hardenterpret. This mode
describes a deformation of the posterior part @ tmoral head and a slight torsion and curvaturéhe central region (this is
better observed in an image sequence)
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