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Abstract: Statistical shape analysis techniques employed in the medical imaging community, such as Active Shape Models or 

Active Appearance Models, rely on Principal Component Analysis (PCA) to decompose shape variability into a reduced set of 

interpretable components. Our model uses point distribution models (PDM) for the representation of shapes. The point association 

is initialized using shape-based surface correspondence and optimized with the Minimum Description Length (MDL) criterion. The 

model fitting algorithm is formulated as a least square error minimization regularized by the Mahalanobis distance of the predicted 

model. We present quantitative and qualitative results obtained for the case of statistical shape analysis of bones, with applications 

to image free surgery. 
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1. Introduction  

The analysis of shape variability of anatomical structures is of 
key importance in a number of clinical disciplines, as 
abnormality in shape can be related to certain diseases. 
Examples in neurology include the study of brain asymmetry 
to verify its relation to schizophrenia [1], or the detection and 
quantification of atrophy as a correlate to multiple sclerosis 
[2]. 

Statistical shape analysis techniques enjoy a remarkable 
popularity within the medical image analysis community. Its 
flagship, the Active Shape Model (ASM), proposed by Cootes 
et al. [3], provides a method to study the structure of point 
data sets or meshes [4]. This technique was later extended to 
intensity information, and thus image data, as the Active 
Appearance Model (AAM) [5]. 

In Computer Assisted Orthopaedic Surgery (CAOS), the 
use of statistical shape models for shape recovery from points 
digitized using a tracked pointer provides the surgeon a tool 
to improve the accuracy of surgical procedures in a minimally 

invasive fashion. These clinical utensils relax the need of 
having dedicated systems to create the shape models, like 
computed tomography (CT) or magnetic resonance imaging 
(MRI), which are expensive and/or induce radiation to the 
patient. Additionally, a number of orthopaedic interventions, 
such as total hip arthroplasty (THA) and total knee 
arthroplasty (TKA), do not warrant a pre- or intra-operative 
scan. The alternative is to build a statistical deformable model 
and adapt it to the patient anatomy. 

In CAOS, this type of approach was initially explored by 
Fleute and Lavallée [6] and then clinically evaluated by 
Stindel and colleagues [7]. Both approaches fit the 
deformable model surface to intra-operatively digitized point 
data via jointly optimizing deformation and pose. In [8], 
optimization of both deformation and pose are performed 
separately using an iterative closest point (ICP) method. In [9] 
shape information coded by digitized points from the 
Principal Component Analysis (PCA) model is iteratively 
removed by fixing certain locations. The extrapolated surface 
is then computed as the most probable surface in the shape 
space given the data. Unlike earlier methods, this approach 



can also able include non-spatial data, such as patient height 
and weight. 

Section 2 presents the methodology used to construct the 
statistical shape model. First, a brief discussion about how 
point correspondences are found before a multivariate 
statistical analysis is performed is given. Then, the key 
concepts of principal component analysis and its application 
to medical image data are presented. Section 3 presents results 
obtained on shape analysis of proximal and full femur CT 
data, then results of reconstructing femur shape given sparse 
surface information from dry cadaver femur data.  

 

2. Methodology  

Several geometrical models have been proposed to represent 
and study shape variability. Bookstein [10] uses landmarks to 
capture the important geometric features. The active shape 
model (ASM) of Cootes and Taylor [3] represents the 
geometry of an object as a dense collection of boundary 
points, which was extended to include intensity information 
[5]. Kelemen et al. [11] use a spherical harmonic (SPHARM) 
decomposition of the object geometry. Others have explored 
the possibility of constructing a Statistical Shape Model Using 
Non-rigid Deformation of a Template Mesh [12]. 

To build our model, we employed the representation of 
shapes using point distribution models (PDM). One key issue 
is to establish correspondences between homologous points, 
i.e. find which points correspond to the same anatomical 
location among shapes.  

2.1 Finding Point Correspondences  

In 2D, correspondence is often established using manually 
determined landmarks, but this is a time-consuming, error-
prone and subjective process. In principle, the method extends 
to 3D, but in practice, due to very small sets of reliably 
identifiable landmarks, manual landmarking becomes 
impractical. Most automated or semi-automated approaches 
posed the correspondence problem as that of defining a 
parameterization for each of the objects in the training set, 
assuming correspondence between equivalently parameterized 
points. 

Current semi- and fully automated methodologies can be 
classified into two branches: Pairwise and Groupwise 
methods. In Pairwise methods, an initial shape is selected as 
reference and the rest of input shapes are then matched to this 
reference shape. Alternatively, the reference shape can be 
generated from the first match of shapes. These approaches 
can then be seen as a registration problem. Several algorithms 
have been proposed to solve this problem in the volumetric 
image space (i.e. image data) or as a surface matching task. 
Which method should be used will depend on the nature of 
the input data (e.g., laser-scanning, CT data). In Groupwise 

methods all the shapes of the training dataset are matched 
simultaneously through optimization of a groupwise objective 
function.  

 We compared the methods introduced by Brechbühler et 
al. (SPHARM) [13], Kotcheff and Taylor (DetCov) [14], 
Davies et al. (MDL) [15], and a fourth method based on 
manually initialized subdivision surfaces similar to Wang et 
al. (MSS) [16]. We analyzed both the direct correspondence 
via manually selected landmarks as well as the properties of 
the model implied by the correspondences, in regard to 
compactness, generalization and specificity. In a previous 
comparative study of these popular methods [17], it was 
revealed that for modelling purposes the best among the 
correspondence methods was Minimum Description Length 
(MDL) [15]. Based on the study, for our model building, 
correspondence was initialized using MSS and then optimized 
based on the MDL criterion. 

2.2 Principal Component Analysis 

PCA is a projection model for multivariate factor analysis 
aiming to find a low-dimensional manifold in the space of the 
data, such that the distance between the data and their 
projection on the manifold is small [18]. PCA is the best, in 
the mean-square error sense, linear dimension reduction 
technique [19]. 

Given a set of training data {t1,…,tn} in a given 

orthonormal basis of 
Dℜ , PCA finds a new orthonormal basis 

{u1,…,ud} with its axes ordered. This new basis is rotated 
such that the first axis is oriented along the direction in which 
the data has its highest variance. The second axis is oriented 
along the direction of maximal variance in the data, 
orthogonal to the first axis. Similarly, subsequent axes are 
oriented so as to account for as much as possible of the 
variance in the data, subject to the constraint that they must be 
orthogonal to the preceding axes. Consequently, these axes 
have associated decreasing indices 

λ
d, d=1,…,D, 

corresponding to the variance of the data set when projected 
on the axes. The principal components are the set of new 
ordered basis vectors. 

To find the principal components is to compute the 
sample covariance matrix S of the data set and then find its 
eigenstructure SU=UΛ . U is a DxD matrix which has the unit 
length eigenvectors u1,…,ud as its columns, and Λ  is a 
diagonal matrix with the corresponding eigenvalues 

λ
1,…,

λ
d. 

The eigenvectors are the principal components and the 
eigenvalues their corresponding projected variances [18]. 

In most applications of statistical shape analysis in the 
medical imaging domain, the size of the training population N 
is very small relative to the dimensionality of the data D. It is 
possible to reduce the computational load of PCA algorithm 
by considering the covariance matrix induced by the training 
set. 



 
The covariance matrix of the data can be written as: 
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Let ei be the N eigenvectors of T with corresponding 
eigenvalues 

λ
i, sorted in descending order. It can be showed 

that the N vectors in e�t )( −  are all eigenvectors of S with 
corresponding eigenvalues 

λ
i, and that all remaining 

eigenvectors of S have zero eigenvalues [5]. 
To evaluating the quality of a shape model, three 

measures are normally performed: 

• Compactness: this measure describes how many 
parameters are needed to describe the instances in the 
training set. A good model should only need a few 
parameters, and thus the variance of the model should be 
as little as possible. This is computed by summing the 
eigenvalues of the shape covariance matrix. 

• Generalization: This measures the ability of the model to 
represent unknown instances. This measure can be 
obtained with a leave-one-out analysis, which consists on 
representing a left-out instance from the set of N-1 
training shapes. 

• Specificity: When synthesising artificial shapes by 
sampling in the learned distribution, the results should be 
similar to the shapes found in the training set. This can be 
validated by generating a range of instances and 
comparing them to the training set. 

 

2.3 Reconstructing Shape from Sparse Surface 
Point Information 

Once the shape model has been constructed, the goal is to 
obtain from sparse surface point information the complete 
patient-specific 3D shape. In other words, one needs to 
extrapolate from sparse point information to a dense surface 
describing the complete 3D shape. Our model fitting 
algorithm is formulated as a least squares error minimization 
with additional regularization terms that computes the 
Mahalanobis distance of the predicted model [21]. The 
Mahalanobis distance term enables stable prediction with 
minimal number of known surface points. A more detailed 
explanation of the algorithm can be found in [21]. Here, a 
summary of the algorithm is presented: 

• Initially a small point-set of anatomical landmarks with 
known correspondence to the model is digitized. This is 
used to register the patient anatomy to the model. This 
also provides an initial estimation of the 3D shape with 
only a few digitized points. 

• To improve the prediction, additional points can be 
interactively incorporated via closest distance 
correspondence. The objective function that we minimize 
is defined as follows: 
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The first term in the function is the Euclidean distance 
between the n digitized points Y and the estimated shape 
comprising the mean shape X plus a weighted sum of the 
eigenvectors ui. The corresponding point for each of the 
digitized points Yk is computed using closest point 
correspondence from the current estimated shape. This is 

denoted as jX , where j = Index(k) is the index of the closest 
point corresponding to the kth digitized point. The second 
term is the Mahalanobis distance of the predicted shape from 
the mean and controls the probability of the predicted shape. 
This term ensures that the predicted shapes are valid by 
favouring those that are closer to the mean. 

The parameter ρ  in the objective function enables the 
deformation scheme to have better convergence behaviour. 
This is enabled by relaxing the effect of the Mahalanobis 
distance term as additional points are digitized. This makes 
the surface less constrained to remain close to the mean and 
allows it to more freely deform. 

 

3. Experimental Results 

3.1 Morphological Analysis of Proximal and Left 
Human Femurs 

 
We present results obtained from a training set of 30 surface 
models extracted from CT data. These models represent 
complete left human femurs and proximal femurs, 
respectively, and are used in on-going research at our institute 
for computer-assisted surgery, such as total hip replacement 
(THR), total knee arthroplasty (TKA), and anterior cruciate 
ligament surgery (ACL). 

 Correspondences across data sets were established via a 
semiautomatic process in which a set of analogous anatomical 
landmarks (points, lines or surfaces) are identified in all data, 
and the remaining points are evenly spread to cover the 
surface of the object. These correspondences are further 
optimised via a Minimum Description Length (MDL) 



optimisation [5]. For further processing, each object is 
represented by a dense 3D point cloud. Figure 1 shows the 
first and second modes of variation found for proximal 
femurs. 

From Figure 1 it can be seen that the first PCA mode 
mainly describes the deformation of the femoral head, 
whereas the second mode of variation describes a global 
scaling of the structure. Figure 2 shows the results obtained in 
terms of compactness, generalization and specificity. In 
addition, error measurements for different methods used to 
find point correspondences are reported for femoral head. As 
mentioned in the introductory section, MDL outperformed 
other methods. 

Statistical shape analysis of left human femurs was also 
performed. The training dataset consisted of 32 surface 
models extracted from CT data. For illustrative purposes, 
Figure 3 shows for one case the original CT data, the 
segmented femur, and the surface rendering of the segmented 
image. As for the case of human proximal femurs, point 
correspondences were computed in the same way and then a 
principal component analysis was carried out. 

Figures 4 to 6 present the first three modes of variation. 
In each image, blue lines correspond to vectors indicating 
direction of the deformation at each point on the surface. In 
addition, the magnitude of the deformation was mapped in 
colours for better visualization. 

 

3.2 Dry Cadaver Femur Data 

Nine different dry cadaver femur bones were chosen for this 
validation study. High-resolution CT scans of these bones 
were segmented (image resolution: 0.652 x 0.652 x 1.0 mm) 
and fine 3D surface models were generated. The experiment 
trials were carried out in the CT coordinate system. The three 
anatomical landmarks and additional 51 bone surface points 
were digitized on the surface model of each of the cadaver 
bones. The deformation procedure was then employed to 
estimate the 3D model that best approximates the digitized set 
of points. We carried out the experiments on two models, 
built from different initial training populations. The first 
model was constructed from the entire training set of 30 
proximal femurs and the second model was constructed from 
a subset of 14 proximal femurs, with correspondence 
optimized across the respective training sets. This helped us to 
evaluate the effect of training size on the deformation 
algorithm. Table 1 shows the error results for each of the 
cadaver bones with different number of digitized surface 
points using the larger and smaller population. The mean 
surface errors with 3, 27 and 54 selected surface points are 
tabulated.  

Figure 7 shows the statistics cumulated for the 9 cadaver 
bones. The average of the mean and median errors across the 
entire set of 9 cadaver bones is plotted against the number of 
digitized points for both models generated from smaller and 

larger populations. The average mean surface error with 10 
digitized points lies between 2.1-2.6mm and with 54 digitized 
points the error is 1.7-1.9mm. 

Table 1. Mean surface errors for nine dry cadaver bones with 
3, 27 and 54 selected surface points in the CT-based error 
scheme. The errors are tabulated for both experiments with 

larger smaller populations. 

 

4. Conclusion  

Statistical shape analysis has shown to be an important tool to 
improve shape prediction when only sparse data is available. 
Furthermore, it has been shown how multivariate statistical 
analyses can assist at focusing on the relevant shape variation 
among a population, thus bringing more efficacy and accuracy 
to surgery planning. 

We presented a model that employs point distribution 
models (PDM) for the representation of shapes. We solved 
the point correspondence starting from a shape-based surface 
correspondence (MSS), which we further optimized using a 
Minimum Description Length (MDL) criterion. For the model 
fitting algorithm we employed the Mahalanobis distance of 
the predicted model to regularize a least square error 
minimization. We highlighted the relevance of choosing an 
appropriate point-correspondence method, as well as that of a 
suitably-sized the training set. 

We showed quantitatively and qualitatively how 
statistical shape models of human femurs are built and how 
these models are used in computer assisted surgery in order to 
minimize the invasiveness on patients. 

 

Mean error [mm] w.r.t # of points 
Bone # Large population Small population 

 3 27 54 3 27 54 
1 2.08 1.90 1.72 2.57 2.02 1.85 
2 0.96 0.91 0.85 2.03 1.49 1.23 
3 2.44 2.28 2.00 3.02 2.69 2.5 
4 2.55 2.45 2.03 2.92 2.63 2.12 
5 2.18 1.99 1.85 1.98 1.87 1.72 
6 3.49 3.10 2.54 4.44 3.79 2.65 
7 1.73 1.59 1.39 3.15 2.61 2.23 
8 2.01 1.87 1.67 1.91 1.75 1.58 
9 2.06 2.04 1.83 2.22 2.14 1.64 
       

Average 2.17 2.04 1.83 2.22 2.14 1.64 



 

 

Figure 1. Shape analysis of human proximal femurs. The first two rows correspond to the first and second principal components, 
PCA-1 and PCA-2 respectively. The two figures to the right have a decreasing weighting on each principal component, and the 

figures to the left an increasing negative weight (α 2 > α 1). 

 

 

 

 

 

Figure 2: Top row and bottom left: Graphs with error plots of compactness (C(M)), generalization (G(M)) and specificity (S(M)) 
for the femoral head study. Bottom row, right: Table with average, maximal and minimal mean absolute distances (MAD) between 

the manual landmarks and the studied methods for the femoral head study.  

mean - α 2*PC mean - α 1*PC mean  mean + α 1*PC mean + α 2*PC 



 

 

Figure 3. Example of input data in the training dataset used to build the statistical shape model of left human femur. Leftmost 
image corresponds to transversal and longitudinal planes of the original CT data. The segmented bone surface (central image) 

and a surface rendering of the segmentation (rightmost image) are shown for illustrative purposes.  

 

  

Figure 4: First mode of variation for left femur. Clearly the predominant mode of variation is the change in length of femurs. 



 

Figure 5: Second mode of variation for left femur. Two different views of the zoomed region-of-interest (i.e., where deformations 
are more important) show the range of deformation in that area. It can be seen that this mode rules the inclination of the femoral 

head. 

 

 

Figure 6: Third mode of variation for left femur. Compared to the first two modes, the third mode is harder to interpret. This mode 
describes a deformation of the posterior part of the femoral head and a slight torsion and curvature of the central region (this is 

better observed in an image sequence) 

 



 

Figure 7: Error statistics cumulated across all the cadaver 
bones. The average mean and median errors are plotted 

against the number of digitized points for both the models 
generated from smaller and larger population. 
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