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Abstract. A framework for optimisation of specific criteria across the
shape variability found in a population is proposed. The method is based
on level set segmentation in the parametric space defined by Principal
Component Analysis (PCA). The efficient narrow band evolution of the
level set allows to search for the instances only in the neighborhood of the
zero level set and not in the whole shape space. We are able to optimise
any given criterion not to provide a single best fitting instance in the
shape space, but rather to provide a group of instances that meet the
criterion. This effectively defines a partition in the shape space, which
can have any topology. The method works for data of any dimension,
determined by the number of principal components retained. Results are
shown on the application to shape analysis of human femora.

1 Introduction

Statistical shape analysis techniques enjoy a remarkable popularity in the med-
ical image analysis community. Its flagship, the Active Shape Model (ASM),
proposed by Cootes et al. [1] provides a method to study the structure of a
population of point data sets or meshes, decomposing the variability encoun-
tered across the population in a compact representation. This decomposition is
obtained via PCA [2].

Statistical shape models have been extensively used for image segmentation
[1] and shape estimation from sparse sets of landmarks, e.g. for image-free com-
puter assisted surgery [3]. In all these cases, the aim is to find the instance in
the statistical shape model that best approximates the input data, subject to
some regularisation constraints [3].

Optimisation in shape space of more complex criteria based on clinically
meaningful shape measures related to anatomical locations has not been fully
explored. Sierra et al. [4] formulate a minimisation process based on Lagrange
multipliers to incorporate such additional constraints, and then optimise this cri-
terion based on a gradient descent algorithm starting from the mean of the shape
distribution. This is used in their application to generation of virtual anatomi-
cal models for surgery simulation, instantiated by specifying clinical parameters
that depend non-linearly on the shape coefficients. However, their optimisation
will only converge to a local minimum, which will not necessarily be the instance
of the shape space that best meets the constraints.



Further, existing works aim at finding a single instance from the statistical
shape model as the solution to their problem. In certain cases, it may be inter-
esting to find all instances of the shape model that meet a certain criterion. For
example, one may be interested in estimating which range of the population falls
within a given anatomical criterion, thus establishing a partition of the shape
space into “valid” and “invalid” shapes. To our knowledge, this is the first work
that addresses this problem.

In this paper, we propose a method for global optimisation of shape con-
straints that effectively finds all instances in the PCA shape space that meet a
given criterion. Our method is based on level set segmentation in the parametric
shape space defined by PCA. Using the high dimensionality of level sets will
allow for the segmentation of the space of any dimension, determined by the
number of principal components retained. Moreover, the ability to represent the
space with complex topologies can be used to identify disconnected subsets of
the shape space that meet the criterion.

To avoid confusion, it should be mentioned that the combination of statistical
shape models and level sets has been presented in previous works [5]. However,
these works are of very different nature to ours, as they deal with the construction
of statistical models of shapes represented by level sets (usually derived from
distance maps). This is fundamentally different to the work presented in this
paper.

Section 2 will briefly introduce the basic concepts behind statistical shape
models based on PCA. Section 3 will present the level set formulation employed
in our framework. In section 4 the key idea of this paper is introduced, that
is, the use of level set segmentation in PCA shape space. Section 5 deals with
initialisation and computationally efficient optimisation. In section 6 we illustrate
our method by an application to anatomical studies. Finally, discussion and
conclusions are provided in section 7.

2 Principal component analysis

PCA is a multivariate factor analysis technique aiming at finding a low-dimensional
manifold in the space of the data, such that the distance between the data and
its projection on the manifold is small [2]. PCA is the best, in the mean-square
error sense, linear dimension reduction technique.

Given a set of training data {t1, t2, ..., tN} in a given orthonormal basis of
RD, PCA finds a new orthonormal basis {u1, ...,uD} with its axes ordered.
This new basis is rotated such that the first axis is oriented along the direction
in which the data has its highest variance. The second axis is oriented along the
direction of maximal variance in the data, orthogonal to the first axis. Similarly,
subsequent axes are oriented so as to account for as much as possible of the vari-
ance in the data, subject to the constraint that they must be orthogonal to the
preceding axes. Consequently, these axes have associated decreasing “indices”
λd, d = 1, ..., D, corresponding to the variance of the data set when projected
on the axes. The principal components are the set of new ordered basis vectors.



The way to find the principal components is to compute the sample covari-
ance matrix of the data set, S, and then find its eigenstructure

SU = UΛ

U is a D × D matrix which has the unit length eigenvectors u1, ...,uD as
its columns, and Λ is a diagonal matrix with the corresponding eigenvalues
λ1, ..., λD. The eigenvectors are the principal components and the eigenvalues
their corresponding projected variances.

3 Level set segmentation

Segmentation techniques based on active contours, or deformable models, have
been widely used in image processing for different medical applications [6, 7].
The idea behind active contours is to extract the boundaries of homogeneous
regions within the image, while keeping the model smooth during deformation.
A particular instatiation of this paradigm is that of active contours based on
level sets [8–12].

Let us consider a parameterized closed surface C(s) : S = [0, 1]D−1 → RD

defined in a bounded region Ω ∈ RD. In order to segment the observed image
µ : Ω → R we propose to minimize the following energy functional:

E(C) = a

∫
ω

(µ−M) dx + b

∫
S

|C ′| ds, (1)

where ω ⊂ Ω and C = ∂ω is the region inside the curve. The first term represents
the boundary force that attracts the evolving curve towards a predefined segmen-
tation constraint M = const, while the second term regulates the smoothness of
the curvature. a and b are scalar weights.

The proposed energy functional is not easy to solve because of the unknown
set of complex contours C and unidentified image topologies. The segmentation
algorithm developed in this work is based on the implicit representation of de-
formable models implemented within the framework of level sets. This implicit
representation for evolving curves, introduced by Osher and Sethian [13], allows
automatic change of topologies without re-parametrization. Using the level set
formulation, the boundary contour C = ∂ω can be modelled as a zero level set
of a Lipschitz function φ, defined on the entire image domain Ω as: φ(x) > 0
insideC = ω, φ(x) = 0 on C = ∂ω and φ(x) < 0 outsideC = Ω \ ω.

Having the Heaviside function H(φ) defined on the whole image domain and
its corresponding Dirac function δ(φ) = d

dφH(φ), we can replace the unknown
variable C by the level set function φ(x) as:

E(φ) = a

∫
Ω

(µ−M) H(φ) dx + b

∫
Ω

δ(φ) |∇(φ)| dx, (2)

where the curvature value |C(φ = 0)| =
∫

Ω
δ(φ) |∇(φ)| dx is estimated directly

from the level set function [14]. By minimizing the energy functional with respect



to φ we get a model associated Euler-Lagrange equation for boundary flow:
∂φ

∂t
= a (µ−M) δ(φ) + b div(

∇φ

|∇φ|
) δ(φ). (3)

4 Optimisation in PCA shape space using level sets

Let us consider the shape space defined by the weighted linear combination of
the first L ≤ D eigenvectors u1, ...,uL of the PCA decomposition of a set of
training shapes in RD. Each element m ∈ RD in this shape space is defined by
a set of coefficients α1, ..., αL:

m = m +
L∑

i=1

αi

√
λiui, (4)

where λ1, ..., λL are the eigenvalues corresponding to each principal component,
and m̄ is the arithmetic mean of the training sets (Figure 1).

Fig. 1. Shape space defined by the three first principal components. The center element
(labelled in the figure m) corresponds to the mean of the population. Each element in
this shape space is formed by a linear combination of the principal components, in this
case m = m + α1

√
λ1u1 + α2

√
λ2u2 + α3

√
λ3u3.

Now let us consider a scalar mapping M : A = [αmin, αmax]L → R. This
mapping represents a clinically meaningful anatomical criterion derived from
the shapes in the PCA shape space. We now would like to find all instances in
the shape space that meet a certain criterion dependent on the scalar measure
M . This problem is approached as a segmentation in the space defined by the
mapping M defined above, and solved using the level sets framework described
in section 3. Thus, adopting the nomenclature of the previous section, µ = M
will be the L-dimensional “image” µ to be segmented, defined in the domain
of shape coefficients Ω = A. An illustrative example is shown in section 6; the
following section addresses computational efficiency.



5 Computational issues

In order to decrease the computational complexity of the standard level set
method we apply a narrow band level set approach, which uses only the points
close to the evolving front at every time step [15, 16]. First we initialize a thin
band around the zero-level set, that contains the neighboring points with dis-
tance to the zero-level less than dmax and we update the level set only on these
points, instead of re-calculating it for each grid point. As the zero-level set cor-
responding to the front evolves, we must ensure that it stays within the band.
We re-initialize the band when the front is close to the edge of the domain, using
the current zero-level set as the initial surface.

We initialize our level set function using automatic seed initialization and
then iteratively evolve the curve toward the segmented region by minimizing the
energy functional. The seed initialization consists of partitioning the data image
µ into N L-dimensional windows Wn,n=1..N of predefined size. Then we initialize
the corresponding circular signed distance on each L-dimensional window Wn.

6 Results

We present results obtained from a training set of 30 surface models extracted
from CT data. These models represent complete left human femurs. Correspon-
dences across data sets were established with a spherical harmonic (SPHARM)
based shape representation method [17]. These correspondences are further opti-
mized via a Minimum Description Length (MDL) optimization [18]. The average
shape was computed by simple averaging of corresponding landmarks across the
data sets. The remaining variation was analyzed by PCA (Figure 2).

Fig. 2. First three modes of variation for left femur. The lines represent the positive
direction of of the principal component (PC). The first mode describes the change of
the femur length, second mode is responsible for the inclination of the femoral head
and the third mode describes a deformation of the posterior part of the femoral head
and a slight torsion and curvature of the central region.



We retain the first three principal components u1, u2 and u3, which account
for 89.22% of shape variability in the population. This will allow us to explain
and visualize each step of the method as 3D images, although it can be applicable
to data of any dimension. The shape space is thus built by sampling the space
of shape coefficients, generating the corresponding shape, and then computing
the mapping M to obtain the measure of interest. In this case, we use the range
−3 ≤ αi ≤ 3 for every shape coefficient. This accounts for 99.7% of the shape
variability encompassed in each principal component.

The clinical measure of interest M in our example, defined as:

FIA(α1, α2, α3) =
1
F
|ang(m)− ang(m)|, (5)

represents the difference between the angle of femoral stem implant and the
angle of femoral inclination (FI) of the generated instance mesh, where F is
normalization factor. Femoral inclination is defined as frontal plane alignment
of femoral head and neck relative to shaft, and is commonly employed in clinical
practice as a descriptive parameter (Figure 3). In normal adults, the neck of the
femur forms an angle of from 126o to 128o with the shaft and any big variation
from this value results in hip deformations [19].

We generate our scalar 3D map by computing FIA values, and the obtained
range of femoral inclination angles from 125.5o to 145.6o correlates well with
previous studies [20]. We compute the set of the bones that have 127o neck angles,
as designed for Omnifit EON femoral stem implant by Stryker Orthopaedics. As
discussed in the previous section, we do not need to explicitly compute M for
every point in the shape space, but only in a narrow band around the zero level
set. The segmented area represents the range of parametric values that generate
femur shapes that have a similar range of the femoral inclination 127o ± 2.5o

(Figure 4).

Fig. 3. Femoral inclination angle
is chosen to fit the Omnifit EON
femoral stem implant designed by
Stryker with offset 127o.

Fig. 4. Automatic 3D level set segmenta-
tion gives the spectrum of shapes that have
femoral inclination 127o ± 2.5o.



It can be seen in Figure 5 that the second principle component mostly affects
the value of the femoral inclination and that the spectrum of segmented shapes
moves toward the greater variation of the first and third principle component.
These results can also be of high importance in the field of femoral stem design,
and can lead to choosing the representative parameters that would yield to the
implant shape that best fits the populations.

c

Fig. 5. 2D maps are showing the segmented spectrum of shapes and its high depen-
dance on the second principle component.

In our numerical experiments, we use the Cauchy distribution to approximate
Heaviside Hε(φ) and Dirac δε(φ) = H

′

ε(φ) functions: Hε(φ) = 1
2 (1 + 2

π atan(φ)).
The initialization of a zero level set is done using automatic seed initialization
with 64 windows of radius equal to 4, equidistantly distributed on the shape
space domain. The narrow band contains the neighboring points with distance
to the zero-level less than dmax = 4. Reinitialization of the narrow band is done
after every 10 iterations.

7 Discussion

In this paper we have proposed a framework for optimisation in PCA shape space
based on level sets. The method allows to find a partition of the shape distribu-
tion into regions that meet / do not meet a given criterion. Illustrative results
have been shown for anatomical analysis of femur bone. Although the example
has been elaborated for 3D maps (i.e. taking only 3 principal components), the
method is applicable to maps of any dimension and topology.

To our knowledge, this is the first research into the problem of finding all
instances in a shape distribution meeting a given criterion. The practical use
of such a concept is of extreme importance in the study of the anatomical ev-
idence of a pathology, or the morphologic features in implant design. Ongoing
work includes the application of the proposed method to bone implant fitting as-
sessment taking into account shape and biomechanical properties of a combined
shape and intensity statistical bone model.
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