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ABSTRACT
Currently in orthopedic research, bone shape variability within a
specific population has been seldom investigated and used to opti-
mise implant design, which is commonly performed by evaluating
implant bone fitting on a limited dataset. In this paper, we extend
our method for optimisation in statistical shape space, to global as-
sessment of population-specific implant bone fitting. The method is
based on a level set segmentation approach, used on the parametric
space of the statistical shape model of the target population. The
method highlights which patterns of bone variability are more im-
portant for implant fitting, allowing and easing implant design im-
provements. Results are presented for proximal human tibia.

Index Terms— statistical shape models, image registration,
principal component analysis, level sets, implant fitting

1. INTRODUCTION

Currently, in orthopaedic research, the evaluation of implants for
fracture fixation is done by manual fitting and fixation procedures,
applied on a small set of cadaver bones in a trial-end-error process
to find the optimal implant shape and position. This result can be
greatly disrupted, since limited amount of cadaver specimens does
not necessarily describe the diversity in a population, such as age,
gender or ethnic origin. This diversity can be studied using statis-
tical shape analysis techniques which are shown to be an efficient
tool to build population specific model of anatomical variability. Its
flagship, the Active Shape Model (ASM), proposed by Cootes et al.
[1] provides a method to study the structure of a population of point
data sets or meshes, decomposing the variability encountered across
the population in a compact representation. This decomposition is
obtained via principal components analysis (PCA) [2].

Statistical shape models representing the variation of the shape
and gray-level appearance, namely Active Appearance Models
(AAM) [3], have been extensively used in image segmentation to
locate the structures of interest and to solve many medical image in-
terpretation problems [3, 4, 5]. In all these cases, the aim is to find a
single instance in the statistical shape model that best approximates
the input data, subject to some regularisation constraints. In certain
cases, it may be interesting to find all instances of the shape model
that meet a criterion. For example, one may be interested in estimat-
ing which range of the population falls within a given anatomical
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criterion, thus establishing a partition of the shape space into “valid”
and “invalid” shapes. In [6] we propose a method for global opti-
misation of shape constraints, that effectively finds all instances in
the PCA shape space that meet a given anatomical/morphological
criterion.

In this work we apply the method proposed in [6] to the opti-
misation of implant bone fitting. We are able to find the group of
instances that satisfy given fitting criterion and based on their corre-
lation to the PCA manifold propose modifications to implant shape
design as to fit a maximum of the target population.

The method is based on level sets on the parametric domain of
the shape model. Level set methods define a powerful optimiza-
tion framework that in combination with statistical shape prior can
be used to recover objects of interest by propagating curves or sur-
faces [7, 8, 9]. However, these works are of very different nature
to ours, as they deal with the extraction of structures of interest in
medical images and modelling of shape prior knowledge in the level
set space. In this work, level set approach will help in segmentation
of a shape space of high-dimensionality, determined by the number
of retained principal components. Moreover, the ability to represent
complex topologies can be used to identify disconnected subsets of
the shape space that meet the criterion.

Section 2 will introduce the basic concepts behind statistical
shape models based on PCA. In section 3, we briefly overview the
key idea, that is the use of level set segmentation for PCA shape
space optimisation. In section 4 we apply our method to implant
fitting of the human tibia. Finally, conclusions and future work are
provided in section 5.

2. STATISTICAL SHAPE MODEL

2.1. Image registration

The first step in generating statistical model comprises the selec-
tion of an image from the training data set, as the reference/template
bone. To compensate for the different positioning during CT acqui-
sition, we align the remaining images of the training data set with
the selected reference. The alignment is done by rigid registration
to overcome the pose disparity and to maintain the size variation of
the tibia. The next step in our model construction consists in warp-
ing the instances in the training set to the reference image. Image
transformation is applied to each voxel of the training set of images
to map them to the voxels inside the region of interest defined by the
segmented reference image.

To capture the entire anatomical variability, we apply an



Fig. 1. Shape space defined by three first principal components. The
center element (labeled in the figure m̄) corresponds to the mean
of the population. Each element in this shape space is formed by
a linear combination of the principal components, in this example
m = m̄+ α1

√
λ1~u1 + α2

√
λ2~u2 + α3

√
λ3~u3.

intensity-based nonrigid registration algorithm [10]. This algo-
rithm defines the deformation on a uniformly-spaced grid and uses
B-splines for interpolation between control points. The advantage
of B-splines is that they are locally controlled, which makes them
computationally efficient even for a large number of control points.
The registration was performed in the combination of SSD (sum
of square distances) similarity metric and gradient descent as opti-
misation function. Based on the deformation fields obtained from
the registration process, we build vectors of corresponding positions
and image intensities.

2.2. Principal Component Analysis

To reduce the dimensionality of the data, we apply PCA. PCA is
a multivariate factor analysis technique aiming at finding a low-
dimensional manifold in the space of the data, such that the dis-
tance between the data and its projection on the manifold is small
[2]. PCA is the best, in the mean-square error sense, linear dimen-
sion reduction technique. The way to find the principal components
is to compute the sample covariance matrix of the data set, ~S, and
then find its eigenstructure ~SU = ~UΛ. ~U is a D ×D matrix which
has the unit length eigenvectors ~u1, ..., ~uD as its columns, and ~Λ is a
diagonal matrix with the corresponding eigenvalues λ1, ..., λD . The
eigenvectors are the principal components and the eigenvalues their
corresponding projected variances.

3. OPTIMISATION IN PCA SPACE USING LEVEL SETS

3.1. PCA shape space mapping

Let us consider the shape space defined by the weighted linear com-
bination of the first L ≤ D eigenvectors ~u1, ..., ~uL of the PCA
decomposition of a set of training shapes in RD . Each element
m ∈ RD in this shape space is defined by a set of coefficients
α1, ..., αL (Figure 1):

m = m̄+

L∑
i=1

αi

√
λi~ui, (1)

where λ1, ..., λL are the eigenvalues corresponding to each princi-
pal component, and m̄ is the arithmetic mean of the training sets.
Now let us consider a scalar mappingM : A = [αmin, αmax]L →
R. This mapping is intended to represent a clinically meaningful
anatomical criterion derived from the shapes in the PCA space (e.g.
femoral inclination angle [6]). We now would like to find all in-
stances in the shape space that meet a certain criterion dependent
on a scalar measure ε ∈ M(A). This problem is approached as a
segmentation in the PCA shape space defined by the mapping M
defined above, and solved using the level sets framework described
in the following section.

3.2. Level set segmentation

Segmentation techniques based on active contours, or deformable
models, have been widely used in image processing for different
medical applications [11, 12]. The idea behind active contours is
to extract the boundaries of homogeneous regions within the image,
while keeping the model smooth during deformation. A particular
instantiation of this paradigm is that of active contours based on level
sets [13].

Let us consider a parameterized closed surface C(s) : S =
[0, 1]L−1 → RL defined in a bounded region Ω ∈ RL. In order
to segment the observed image µ : Ω→ R we propose to minimize
the following energy functional:

E(C) = a

∫
ω

(µ− ε) ∂Ω + b

∫
S

|C′| ds, (2)

where ω ⊂ Ω and C = ∂ω is the closed surface. The first term rep-
resents the boundary force that attracts the evolving surface toward
a predefined segmentation constraint ε = const, while the second
term regulates the smoothness of the surface. Here, a and b are pos-
itive scalar weights.

The segmentation algorithm is based on the implicit represen-
tation of deformable models implemented within the framework of
level sets, and allows automatic change of topologies without re-
parametrization [14]. Using the level set formulation, the boundary
surface C = ∂ω can be modeled as a zero level set of a Lipschitz
function φ, defined on the entire image domain Ω (Figure 2). By
minimizing the energy functional with respect to φ we get a model
associated Euler-Lagrange equation for boundary flow (see [6] for
details):

∂φ

∂t
= a (µ−M) δ(φ) + b div(

∇φ
|∇φ| ) δ(φ). (3)

Thus, adopting the nomenclature of the previous section,M will be
theL-dimensional “image” µ to be segmented, defined in the domain
of shape coefficients Ω = A. We emphasize again, that while level
set segmentation techniques have been used in the object’s geometry
space, our aim is to use it in the parametric space of the statistical
shape model.

3.3. Hierarchical approach to zero level set evolution

In order to decrease the computational complexity of the standard
level set method we apply a hierarchical narrow band level set ap-
proach, which uses only the points close to the evolving front at
every time step [15]. First we initialize our level set function us-
ing automatic seed initialisation on a low resolution shape space
map. Then, minimisation of the energy functional 3 is performed
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Fig. 2. Hierarchical approach to narrow band zero-level set evolution. (a) Initial low resolution PCA shape space map with a stable zero level
set in red colour and a narrow band around it. (b) Higher-resolution map with the augmented narrow band and zero level set, adopted from
the low-resolution map. (c) The values of white pixels in the grid map come from the low resolution map, while the values of the red pixels
that come from the augmented map still need to be calculated.

to evolve the surface towards the segmented region. The seed initial-
ization consists of partitioning the data image u0 into N windows
Wn, n = 1..N of predefined size.

We define a thin band around the zero-level set that contains the
neighboring points with distance to the zero-level less than dmax.
The level set is then updated only on these points, instead of re-
calculating it for each grid point (Figure 2). As the zero-level set cor-
responding to the front evolves, we must ensure that it stays within
the band. For this, we re-initialize the band after 10 iterations, when
the front is close to the edge of the domain, using the current zero-
level set as the initial surface. Once the stable boundaries of the low
resolution map are reached we increase the resolution of the shape
space and continue zero-level set surface evolution in the augmented
low-resolution narrow band.

4. IMPLEMENTATION AND RESULTS

We present results obtained from a training set of tibia surface mod-
els extracted from CT data. The training set consists of 92 left hu-
man tibia from which Asian, Caucasian, male and female are equally
present. Statistical shape model was then computed, as explained in
Section 2. We retain the first five principal components which ac-
count for 92% of shape variability in the population. Using more
than five modes to explain the statistical model would give us more
subtle changes which, however, do not bring modifications in the
area of implant placement (Figure 3). We define the mapping trans-
formation M as the mean error distance from 844 points on the
implant surface to the best fitted points on the bone surface. The
PCA shape space is then built by sampling the space of shape co-
efficients, generating the corresponding shape, and then computing
the mappingM to obtain the measure of interest. We use the range
−3 ≤ αi ≤ 3 for every shape coefficient. This accounts for 99.7%
of the shape variability encompassed in each principal component.

We apply our method to evaluate performance of orthopaedic
implant. A modified Iterative Closest Point (ICP) technique, devel-
oped in our group for the specific task of bone implant fitting [16],
was used to compute the scalar mapping. In this work, a collision
constraint was incorporated to ensure that no points in the implant
mesh model fall inside the bone model. In addition, fitting guide-
lines provided by the implant manufacturer were included as fitting
constraints, to favor fittings of the implant that are collinear with the
bone main axis, and do not take place above the bone plateau. Fig-
ure 4 shows the initialisation step of the automatized implant fitting

Fig. 3. The first five modes of variation for the left human tibia:
m̄−3

√
λi~ui, m̄, m̄+3

√
λi~ui, for i = 1..5. The arrows point to the

area of implant placement, which is most affected by first and fifth
principal component.

procedure and the final result of the fitting where the colour map of
the implant represents the distance map of the fitting error. We start
with a low dimension map 60x60 and we initialise the zero level set
by applying seed initialisation on the PCA shape space, and then we
proceed with hierarchical zero level set, as explained in Section 3.3.
We do not need to explicitly compute mean error fitting, for every
point in the shape space, but only in a narrow band around the zero
level set. We continue with a hierarchical narrow band approach by
augmenting our space to dimensions 120x120 and 240x240. Narrow
band level set approach is mandatory to decrease high computation
times and to reduce the search space of shape parameters.

The segmented areas in Figure 5a and Figure 5b represent the
range of parametric values that generate tibia shapes satisfying the
given segmentation criterion ε, i.e. that best fit to the given implant,
with a fitting error of ε = 0.8mm and ε = 1mm respectively. Fig-
ure 5c shows an example of a construction of a 3D PCA shape space
(i.e. using 3 principal components to generate the shape instances)
and the result of the level set optimisation for the fitting error less
then 1mm. We decided to exclude principal components u3 and u4

since their variations do not affect the bone in the area of the implant
placing (Figure 3). It can be seen in Figure 5 that the result of the
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Fig. 5. Automatic hierarchical 2D level set segmentation gives the spectrum of shapes that have fitting error less than (a) 0.8mm, and (b)
1mm. (c) 3D level set segmentation gives the spectrum of shapes that have the fitting error less than 0.8mm.

(a) (b)

Fig. 4. (a) The initialisation of the implant fitting. (b) The final
result of the implant fitting shows the distance map of fitting error,
where the red colour represents the perfect fitting of the implant to
the bone and the green colour represents the distance of 3mm to the
bone surface.

fitting is much more dependable on the first principal component, as
the segmented area falls in the negative values of u1. It can be con-
cluded that changes of the length of tibia bone affect the result of the
fitting, as do changes of the oblique line of tibia and a slight torsion
of the lateral surface of the tibia.

5. CONCLUSIONS AND FUTURE WORK

Current evaluation and optimisation of the implant is done by man-
ual fitting and fixation procedures, applied on a small set of cadaver
bones in a trial-and-error process to find the optimal shape and me-
chanic properties. The method that we propose allows to virtually
test the implants on a representative set of bones, generated by sam-
pling the statistical model, and to optimise implant shape as to fit a
maximum of the target population. Hence, our result is of great im-
portance for the implant manufacturer. Ongoing work includes the
correlation of the principal components to the given implant geom-
etry, so that the modifications to the implant design/geometry could
be assessed directly from the segmented map.
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