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Purpose 
Statistical shape models have been widely used for image segmentation and shape estimation 
from sparse sets of landmarks [1,2]. Existing works on optimisation in shape space aim at finding 
a single instance from the statistical shape model that best approximates the input data, subject 
to some regularisation constraint. In certain cases, it may be interesting to find all instances of the 
shape model that meet a certain criterion. For example, one may be interested in estimating 
which range of population falls within a given anatomical criterion, thus establishing a partition of 
the shape space into “valid” and “invalid” shapes. In this work, we propose a method for global 
optimisation of shape constraints that effectively finds all instances in the PCA (principal 
component analysis) shape space that meet a certain criterion.  
 
Methods 
The method is based on level sets in the parametric shape space defined by PCA. PCA is a 
multivariate factor analysis technique aiming at finding a low-dimensional manifold in the space of 
the data, such that the distance between the data and its projection on the manifold is small [3]. 
We use PCA to compute a statistical description of the shape model and to obtain the average 
vector of the positions mav and the principal modes of variation u1,...,uD. Considering a shape 
space as a weighted linear combination of the first L≤D eigenvectors u1,...,uL, each element m 
that belongs to RD in this shape space can be defined by a set of coefficients α1,...,αL (Figure 1) 
as: m = mav + ∑L

i=1αi sqrt(λi) ui , where λ1,...,λL are the eigenvalues corresponding to each 
eigenvector of the PCA decomposition of a set of training shapes in RD. We define as well a 
scalar mapping µ : A=[αmin,αmax]L → R that can be any measure derived from the shapes in the 
PCA shape space, and can represent a clinically meaningful pathoanatomical criterion. Our goal 
is to find all instances in the shape space that meet a certain criterion dependent on a scalar 
measure µ. This problem is solved using level set segmentation on the shape space defined by 
the mapping µ. The level set segmentation allows for the representation of objects with complex 
topologies [4,5,6] and in our application it can be used to identify disconnected subsets of the 
shape space that meet the criterion. In order to segment the observed space µ we propose to 
minimize the following energy functional: E(C) = a ∫w(µ-M) dx + b ∫s|C\'| ds , where ω belongs to 
RD, and C(s)=∂ω/∂s is a parameterised propagated surface embedded in the shape space. The 
first term represents the boundary force that attracts the evolving surface towards a predefined 
segmentation constraint M = const, while the second term regulates the smoothness of the 
surface. The zero level set computation is further optimised using automatic seed initialisation 
and narrow band level set evolution [7].  
 
Results 
We validate our method by an application to shape analysis of human femora. The results are 
obtained from a training set of 30 surface models extracted from CT data. These models 
represent complete left human femora. Correspondences across data sets were established with 
a spherical harmonic (SPHARM) based shape representation method. These correspondences 
are further optimized via a Minimum Description Length (MDL) optimization. The average shape 
was computed by simple averaging of corresponding landmarks across the data sets. The 
remaining variation was analyzed by PCA (Figure 2). We retain the first three principal 
components, which account for 89.22% of shape variability in the population. In our case, we use 
the range -3≤αi≤3 for every shape coefficient. This accounts for 99.7% of the shape variability 
encompassed in each principal component. We generate a scalar 3D map by computing the 
difference between the anteversion angles of the mean femur shape and the generated instance 
shape. We do not need to explicitly compute µ for every point in the shape space, but only in a 
narrow band around the zero level set, to reduce computational burden. Finally, the segmented 
area gives the set of shapes that have a similar range of anteversion angle (Figure 3). This 



information can then be used by implant manufacturers to determine the best implant design to fit 
most of the population. 
 
Conclusion 
The method for optimisation in PCA shape space allows to find a partition of the shape 
distribution into regions that meet / do not meet a given criterion. Illustrative results have been 
shown for anatomical analysis of femora. Although the example has been elaborated for 3D maps 
(i.e. taking only 3 principal components), the method is applicable to maps of any dimension, 
determined by the number of principal components retained. To our knowledge, this is the first 
research into the problem of finding all instances in a shape distribution meeting a given criterion. 
The practical use of such a concept is of extreme importance in the study of the anatomical 
evidence of a pathology, or the morphologic features in implant positioning.  
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Fig.1. Shape space defined by the three first principal components. The center element mav 
corresponds to the mean of the population. Each element m in this shape space is formed by a 
linear combination of the PCs ui: m = mav + ∑L

i=1αi sqrt(λi) ui.  



 
 

Fig.2. First three modes of variation for left femur. The lines represent the positive direction of of 
the principal component. The first mode describes the change of the femur length, second mode 
is related to the inclination of the femoral head and the third mode describes a deformation of the 
posterior part of the femoral head and a slight torsion and curvature of the central region. 

 

 
Fig.3. (a) Automatic 3D seed initialisation of the level set. (b) The zero level set during the 
evolution. (c) The narrow band around zero level set. (d) The final zero level set. 


