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Preface

This volume contains articles from the Brain Lesion (BrainLes) workshop as well as
the Brain Tumor Segmentation (BRATS) and Ischemic Stroke Lesion Segmentation
(ISLES) challenges, which were held jointly at the Medical Image Computing for
Computer-Assisted Intervention (MICCAI) Conference on October 5, 2015.

The presented works address computer scientific and clinical researchers working on
glioma, multiple sclerosis (MS), cerebral stroke, and traumatic brain injuries. This
compilation does not claim to provide a comprehensive understanding from all points
of view; however, the authors present their latest advances in segmentation, disease
prognosis, and other applications to the clinical context.

The volume is divided into three parts: The first part comprises the submissions to
the BrainLes workshop, the second contains a selection of papers regarding methods
presented at the BRATS challenge, and the third part includes a selection of papers on
methods presented at the ISLES challenge.

The aim of the first part is to provide an overview of new advances in medical image
analysis in all of the aforementioned brain pathologies. The contributions bring toge-
ther researchers from the medical image analysis domain, neurologists, and radiologists
working on at least one of these diseases. The aim is to consider neuroimaging
biomarkers used for one disease applied to the other diseases. This session did not have
a specific dataset to be used.

The second part focuses on the papers from the BRATS challenge. In order to gauge
the current state of the art in automated brain tumor segmentation and compare different
methods, a large dataset of magnetic resonance imagining (MRI) scans of brain tumors
was made available. The participants at the challenge compared the results obtained
with their methods against manual segmentations.

The third part contains descriptions of the algorithms participating in ISLES, which
aimed to provide a fair and direct comparison of methods for ischemic stroke lesion
segmentation from multispectral MRI images. A public dataset of diverse ischemic
stroke cases and a suitable automatic evaluation procedure were made available for the
following two tasks: subacute ischemic stroke lesion segmentation and acute stroke
outcome/penumbra estimation.

We heartily hope that this volume will promote further exciting research on brain
lesions.

February 2016 Alessandro Crimi
Oskar Maier

Bjoern Menze
Mauricio Reyes
Heinz Handels
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Brain Lesions, Introduction

Alessandro Crimi(B)

Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163 Genova, Italy
alessandro.crimi@iit.it

Abstract. A brain lesion is a brain tissue abnormality which can be seen
on a neurological scan, such as magnetic resonance imaging or computer-
ized tomography. Brain tumor, multiple sclerosis, stroke and traumatic
brain injuries are different diseases and accidents affecting in different
ways the brain. Their unpredictable appearance and shape make them
challenging to be segmented in multi-modal brain imaging. Nevertheless,
they share similarities in the way they appear in medical images.

1 Background

The brain is one of the most studied and important organs of the human body.
Despite being protected by the skull, and suspended in cerebrospinal fluid, it is
susceptible to a series of damage and disease. Injuries can arise after a trauma
with external object or internal complications as stroke. The brain can also be
affected by degenerative disorders as Parkinson’s [1] and Alzheimer’s disease [2],
multiple sclerosis (MS) [3], and by tumors [4].

These injuries and damages manifest changes in the brain parenchyma visi-
ble on magnetic resonance images (MRIs). The knowledge of the exact location,
shape and extent of the pathological tissue is generally vital for precise diagnosis,
monitoring, and treatment decisions. For instance in glioma - which is the most
common form of malignant brain tumors in adult- the evaluation of treatment
mainly relies on the patient survival time and the radiographic response rate or
progression-free survival [5]. These radiographic responses are computed on two-
dimensional tumor measurements on computed tomography (CT) or MRI [4].
MS is an acquired, inflammatory, demyelinating disease of the central nervous
system. It is mostly common in the Northern Hemisphere and it manifests itself
very heterogeneously among the patients. Imaging is one of the main investiga-
tive tools for MS in both the two phases of the disease (neurodegeneration and
inflammation). The early stage is given by focal white matter (WM) inflamma-
tion, and then with diffuse lesions of WM, gray-matter (GM) and spinal-cord
lesions [3,6]. Consensus has been reached on criteria to identify hyper-intense,
contrast-enhanced lesions, and MRI features of cord lesions have also been iden-
tified [7].

Most strokes result from a blood clot in relevant blood supply highways for
the brain, which can cause damage or destroy nearby brain tissue. Analysis of
strokes is further complicated by the fact that damage often crosses into multi-
ple regions of the brain. Stroke is usually diagnosed in the acute phase mostly
c© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 1–5, 2016.
DOI: 10.1007/978-3-319-30858-6 1



2 A. Crimi

using CT, and in many cases also using MRI. Since spatial measures of ischemic
changes have been shown to correlate with clinical outcome, a metric for damage
assessment for CT has been introduced [8]. Moreover, MRI is the main modality
for estimating global and regional alterations and its progression in traumatic
brain injuries (TBI) [9]. To evaluate the damages, morphological analysis is car-
ried out on T1, T2 and Fluid Attenuated Inversion Recovery (FLAIR). More
recently diffusion tensor imaging (DTI) and consequent metrics as Track-Based
Spatial Statistics [10] have also been used. Apart from diagnosis and monitor-
ing progression, imaging has been increasingly used in neurosurgery [11] and
radio-therapeutic planning [12]. Lastly, most biopsies are guided with contrast-
enhanced T1-weighted MR [13].

2 Image Analysis

A well-known cumbersome step for the management of all these diseases is the
delineation of relevant structures in medical images. This is time-consuming, gen-
erally performed manually by an expert physician, and it is sensitive to inter-
and intra-operator variability. This led to the introduction of methodologies for
automatic segmentation of lesions in brain scans, with the aim of reducing the
amount of work for physician and to reduce variability. Despite the progresses,
this task is still challenging. The difficulties in automatic tumor and ischemic
tissue segmentation arise since active tumors, clots and necrotic tissues vary
greatly across patients in their size, location, shape and appearance. Moreover,
these lesions often exhibit inhomogeneity in intensity as well as large intensity
variations between subjects, especially if they are acquired with different scan-
ners or at different imaging centers. In MS, small lesions can also be mistaken
for vessels and other periventricular structures.

Some methods for glioma segmentation rely on spatial prior to derive tumor
specific “bio-marker” [14]. However, most methods rely on intensity contrast
information from manually annotated images. In this context, voxels depict-
ing tumoral tissue have been modeled as outliers [15], and Markov random
fields approaches have been used to encourage similarity among neighboring
labels [16]. The same techniques have been used in MS lesion segmentation
respectively using outliers detection [17] and texture analysis using conditional
random fields [18]. This can be seen as a proof that methods for one disease
can be applied to others. Current research on segmentation is also based on
deep convolutional neural network [19], and it is expected that in the future a
plethora of methods based on this technique will be encountered.

The goodness of the automatic segmentation is generally assessed by compar-
ing the result of the algorithms to the manual segmentation, generally by using
the Jaccar or Dice indices [20]. These indices are statistics used for comparing
the similarity and diversity of sample sets. The Jaccar index is defined as the
size of the intersection of the set of voxels in the manual annotation A and the
set of voxels resulting in the automatic annotation B, divided by the size of the
union of them. Similarly the Dice index s is given as
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s =
2|A ∩ B|
|A| + |B| . (1)

These indices yield a single scalar value between 0 and 1, quantifying the good-
ness of spatial overlap, which can be applied to studies of reproducibility and
accuracy in image segmentation. Other ways to measure the segmentation over-
lap are distance measures as the mean absolute distance and the Hausdorff
distance between contours [21], which quantify the distance between manually
and automatically segmented surfaces as maximum distance of a set points in
one contour to the nearest point in the other contour.

Beyond segmentation itself, image analysis has been employed to extract bio-
markers. Some of these are based on shapes, as the VASARI features, which is a
comprehensive feature-set to describe the morphology of brain tumors on routine
contrast-enhanced MRI [22]; Laplace-Beltrami Eigenvalues [23] and spherical
harmonics [24] of the hippocampal shape, to discriminate patients affected by
Alzheimer disease from mild cognitive impairment and control; and tensor-like
representations to evaluate certain spatio-temporal changes of MS lesions to
indicate more severe course of the disease [25].

3 Conclusion

Many works have been done to automate clinical practices in neuroimaging for
brain-lesions. However, open questions remain. For instance, the use of measures
like Dice and Hausdorff scores can be controversial. Despite these are currently
the most used tools, it has been informally discussed by the community that
reducing the entire process of segmentation to one single value, not necessarily
allow a more precise evaluation of the goodness of the segmentation for diagnosis
or other clinical purposes. A possible solution could be to use several overlap
measures since they may capture different aspects [26], or to allow measures
which do not boil down to a single scalar value which yet have to be introduced.

Summarizing, despite there is no general approach of segmentation for all
diseases, some methods could be applied to more than one disease interchange-
ably. It is therefore convenient to exchange ideas between experts of different
fields.
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Abstract. In this paper we propose a new generative model for simul-
taneous brain parcellation and white matter lesion segmentation from
multi-contrast magnetic resonance images. The method combines an
existing whole-brain segmentation technique with a novel spatial lesion
model based on a convolutional restricted Boltzmann machine. Unlike
current state-of-the-art lesion detection techniques based on discrimina-
tive modeling, the proposed method is not tuned to one specific scan-
ner or imaging protocol, and simultaneously segments dozens of neu-
roanatomical structures. Experiments on a public benchmark dataset in
multiple sclerosis indicate that the method’s lesion segmentation accu-
racy compares well to that of the current state-of-the-art in the field,
while additionally providing robust whole-brain segmentations.

1 Introduction

Conditions that affect the integrity of the white matter, including small ves-
sel disease and multiple sclerosis, form a significant health concern. Lesions in
the white matter are frequently associated with memory impairment, headaches,
depression, muscle weakness, and many other conditions. Because magnetic reso-
nance (MR) imaging can visualize lesion formation with much greater sensitivity
than clinical observation, the ability to reliably and efficiently detect white mat-
ter lesions from MR scans is of great value to diagnose disease, track progression,
and evaluate treatment. Quantifying the independent contribution of white mat-
ter lesions to clinical disability is also important for enhancing our understanding
of disease mechanisms, and for facilitating efficient testing in clinical trials.

Because of considerable intra- and inter-rater variabilities in manual anno-
tations, and because of the sheer amount of imaging data acquired in clinical
trials, there is a strong need for computational tools that can analyze brain
images with white matter lesions in a fully automated fashion. Although many
partial solutions have been proposed (e.g., [1]), a generally applicable tool that
works robustly across disease states and imaging centers remains an open prob-
lem [2]. Many of the best performing methods for lesion segmentation currently
c© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 9–20, 2016.
DOI: 10.1007/978-3-319-30858-6 2
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use extended spatial neighborhoods to provide rich contextual information, using
a discriminative approach in which the specific intensity characteristics of train-
ing images are explicitly used to encode the relationship between image appear-
ance and segmentation labels (e.g., [3–5]). However, because of the dependency of
MR intensity contrast on the scanner platform and pulse sequence, and because
there exists no standardized clinical MR protocol to study white matter dam-
age, such discriminative methods do not generalize well to cases where the target
and training data come from different scanners or centers. Furthermore, these
methods do not provide segmentations of the non-lesioned parts of the brain into
various cortical and subcortical structures, although regional atrophy patterns
convey vital clinical information in diseases such as multiple sclerosis [6].

In this paper, we propose a novel method for jointly segmenting white mat-
ter lesions and a large number of cortical and subcortical structures from multi-
contrast MR data. The method combines a previously validated method for
whole-brain segmentation of healthy brain scans [7] with a novel spatial model for
lesion shape and occurrence that is conditioned on surrounding neuroanatomy.
In particular we propose to use a restricted Boltzmann machine (RBM) [8] to
provide much richer spatial models than the low-order Markov random fields
(MRFs) that have traditionally been used in the field for spatial regularization
of lesion segmentations [9]. By using a generative rather than a discriminative for-
mulation, the method is able to completely separate models of anatomy (which
are learned from manual segmentations of training data) from intensity mod-
els (which are estimated on the fly for each individual scan being segmented).
Because the intensities of training data are never used, the model can be applied
to images with new contrast properties without needing new training data.

We test our approach on publicly available data from the MICCAI 2008 MS
lesion segmentation challenge [10], demonstrating the feasibility of the method.
Compared to related work for simultaneous whole-brain and lesion segmen-
tation [11], the proposed method segments considerably more structures, and
learns spatial lesion models automatically from training data rather than rely-
ing on a set of hand-crafted rules to remove false positive detections.

2 Modeling Framework

We build upon a previously published generative modeling approach [7], in which
a forward probabilistic image model is “inverted” to obtain automated segmenta-
tions. In the following we first briefly summarize the existing whole-brain segmen-
tation method we build upon; then introduce the proposed RBM lesion model;
describe how we integrate it within the model for whole-brain segmentation; and
specify how we use the resulting model to obtain automated segmentations.

2.1 Existing Whole-Brain Segmentation Method

Let D = (d1, . . . ,dI) denote a matrix collecting the (log-transformed) inten-
sities in a multi-contrast brain MR scan with I voxels, where the vector
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di = (d1i , . . . , d
N
i )T contains the intensities in voxel i for each of the available N

contrasts. Furthermore, let l = (l1, . . . , lI)T be the corresponding segmentation,
where li ∈ {1, . . . , K} denotes the one of K possible segmentation labels assigned
to voxel i. A generative model then consists of a prior segmentation probability
distribution p(l) that encodes prior knowledge about human neuroanatomy, and
a segmentation-conditional probability distribution p(D|l) that measures how
probable the observed MR intensities are for different segmentations. In [7] the
segmentation prior is parametrized by a sparse tetrahedral mesh with node posi-
tions θl. Assuming conditional independence of the labels between voxels given
θl, the prior is given by:

p(l) =
∫

θl

p(l|θl)p(θl)dθl

where p(l|θl) =
I∏

i=1

p(li|θl),

and p(θl) is a topology-preserving deformation prior. The prior model is learned
from manual annotations in 39 subjects as described in [7].

For the segmentation-conditional distribution p(D|l), a Gaussian mixture
model (GMM) is associated with each neuroanatomical label to model the rela-
tionship between segmentation labels and image intensities. The smoothly vary-
ing intensity inhomogeneities (“bias fields”) that typically corrupt MR scans are
modeled as a linear combination of spatially smooth basis functions that are
added to the local voxel intensities. Letting θd denote all bias field and GMM
parameters with prior p(θd) ∝ 1, the resulting segmentation-conditional distri-
bution is given by:

p(D|l) =
∫

θd

p(D|l,θd)p(θd)dθd,

where p(D|l,θd) =
I∏

i=1

p(di|li,θd)

and p(d|l,θd) =
Gl∑
g=1

wlgN
(
d − CTφi

∣∣μlg,Σlg

)
.

Here N (·) denotes a normal distribution; Gl is the number of Gaussian distrib-
utions associated with label l; and μlg, Σlg, and wlg are the mean, covariance,
and weight of component g in the corresponding mixture model. Furthermore,
φi evaluates the bias field basis functions at the ith voxel, and C = (c1, . . . , cN )
where cn denotes the parameters of the bias field model for the nth MR contrast.

With this model segmentation proceeds by estimating l̂ = arg maxl p(l|D),
using the approximation p(l|D) � p(l|D, θ̂d, θ̂l) where {θ̂d, θ̂l} are the parameter
values that maximize p(θd,θl|D). These values are estimated using coordinate
ascent, where the atlas deformation parameters θl are optimized with a conjugate
gradient (CG) algorithm, and the remaining parameters θd with a generalized
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expectation-maximization (GEM) algorithm [7]. The optimization is done itera-
tively in an alternating fashion, keeping the deformation parameters fixed while
optimizing the intensity model parameters and vice versa until convergence. The
GMM parameters are initialized based on the structure probabilities given by
the segmentation prior after affine registration to the target scan. We emphasize
that the intensity model parameters are learned given the target scan and thus
automatically adapt to its intensity properties. In [7] the intensity-adaptiveness
was demonstrated on several datasets acquired with different sequences, scanners
and field strengths.

2.2 Spatial Lesion Prior Using a Convolutional RBM

In order to model the spatial configuration of white matter lesions, we employ
a restricted Boltzmann machine (RBM) [8], a specific type of MRF in which
long-range voxel interactions are encoded through local connections to hidden
units, which effectively function as feature detectors. Letting z = (z1, . . . , zI)T

denote a binary lesion map, where zi ∈ {0, 1} indicates whether the voxel is part
of a lesion, a RBM prior on z is defined by

p(z) =
∑
h

p(z,h), with

p(z,h) ∝ exp
[ − ERBM(z,h)

]
,

where h = (h1, . . . , hJ)T , hj ∈ {0, 1} denotes a vector of J binary hidden units,
and the RBM “energy” is defined as:

ERBM(z,h) = −bT z − cTh − hTWz.

The parameters of this model include the vectors b and c (which bias individual
visible and hidden units to take on certain values), as well as the weight matrix
W (which models the interaction between the hidden and visible units). The
attractiveness of this specific MRF model arises from the presence of the hidden
units, which increase the expressive power of the model, as well as the property
that the values of z are independent of one another given h and vice versa, which
greatly facilitates inference computations. Specifically, for each hidden unit hj

and lesion zi the conditional distributions are written as [12]:

p(hj = 1|z) = σ
(
cj +

(
Wz

)
j

)
p(zi = 1|h) = σ

(
bi +

(
hTW

)
i

)
,

where σ(x) = (1 + exp(−x))−1.
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In order to scale this framework to model full-sized images, we use a con-
volutional approach that imposes a repeated, sparse spatial structure on the
parameters [12]. For the sake of clarity of presentation, in the following we
describe the case for one-dimensional images, although the technique general-
izes readily into three dimensions. In the convolutional RBM a set of P filters
{fp}Pp=1, f

p = (fp
1 , . . . , fp

Q)T is defined, each of size Q � I. The parameter matrix
W is then restricted to be of the form

W =

⎛
⎜⎝

W1

...
WP

⎞
⎟⎠ , where Wp =

⎛
⎜⎜⎜⎝

fp
1 . . . fp

Q 0 . . . 0
0 fp

1 . . . fp
Q . . . 0

...
. . . . . . . . . . . .

...
0 . . . 0 fp

1 . . . fp
Q

⎞
⎟⎟⎟⎠ ,

so that each filter detects the same specific feature in different parts of the
image, and inference can be done efficiently using convolution. Similarly, in the
parameter vector c each filter output shares the same bias across the image [12].
In our implementation we do not put such a restriction on the visible biases b,
as this allows modeling spatially varying prior probabilities of lesion occurrence.

We automatically learn appropriate values for the parameters {W,b, c} from
manually annotated training data, i.e., binary lesion maps for a number of dif-
ferent subjects. For this purpose, we use the persistent contrastive divergence
(PCD) learning algorithm, which performs stochastic gradient ascent on the
log-likelihood of the training data using approximate gradients computed with
Markov chain Monte Carlo (MCMC) sampling [13].

2.3 Joint Model

We incorporate the RBM lesion model into the whole-brain segmentation frame-
work by assuming that a lesion can only occur in a voxel when its underlying
neuroanatomical label is white matter (l = wm), effectively changing its status
from healthy white matter (z = 0) into white matter lesion (z = 1). Towards
this end, we define a joint segmentation prior on both l and z:

p(l, z) =
∫

θl

p(l, z|θl)p(θl)dθl, where

p(l, z|θl) =
∑
h

p(l, z,h|θl) and

p(l, z,h|θl) ∝ exp
[

− ERBM(z,h) +
I∑

i=1

log p(li|θl) −
I∑

i=1

φ(li, zi)
]
,

where in abuse of notation p(li|θl) refers to the deformable atlas of the whole-
brain segmentation model, and φ(l, z) evaluates to zero when l = wm or
z = 0, and infinity otherwise. The role of φ(l, z) is to restrict lesions to appear
only inside white matter – without it the model would devolve into simply
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p(l, z) = p(l)p(z). In similar vein, we define an intensity model which is con-
ditional on both l and z:

p(D|l, z) =
∫

θd

p(D|l, z,θd)p(θd)dθd,

where p(D|l, z,θd) =
I∏

i=1

p(di|li, zi,θd)

and p(d|l, z,θd) =
Gl∑
g=1

wlgN
(
d − CTφi|μlg, γ

zΣlg

)
.

This model preserves the original segmentation-conditional GMMs for voxels
without lesions (z = 0), but widens the variances of the Gaussian components
by a user-specified factor γ > 1 otherwise. Such wide distributions aim to capture
the fact that lesions often do not have a clearly defined intensity profile in MR,
e.g., ranging from iso-intense to white matter to intensities similar to CSF in
T1-weighted contrasts.

2.4 Inference

Segmentation with the proposed model can be accomplished by first estimating
the parameters {θ̂d, θ̂l} that maximize p(θd,θl|D), and subsequently analyz-
ing p(l, z|D, θ̂d, θ̂l), as in the whole-brain segmentation method described in
Sect. 2.1 [7]. However, optimization of the model parameters is now complicated
by the fact that the RBM model introduces non-local dependencies between the
voxels through the weighted connections between the lesions and the hidden
units. To side-step this difficulty, during the parameter estimation phase – in
which we have no interest in accurately segmenting the white matter lesions –
we temporarily replace the RBM energy ERBM(z,h) with a simple energy of the
form:

Etmp(z, l) = −
I∑

i=1

[li = wm]
(
zi log(w) + (1 − zi) log(1 − w)

)
,

where 0 ≤ w ≤ 1 is a user-specified parameter which essentially defines a uniform
spatial prior probability for lesions to occur within white matter. This effectively
removes the hidden units from the model, and reduces the form of p(θd,θl|D)
to the one of the original segmentation method, so that the same optimization
strategy can be used. Compared to the original method, the only difference is
that each Gaussian distribution N ( · |μlg,Σlg

)
associated with the white matter

label l = wm is replaced with a mixture of the form:

(1 − w)N ( · |μlg,Σlg

)
+ wN ( · |μlg, γΣlg

)
, (1)

yielding a distribution with the same mean but heavier tails, making parame-
ter estimation more robust to intensity outliers such as white matter lesions.
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The adaptation in the GEM algorithm to enforce the parameter sharing between
the two mixture components in Eq. (1) is straightforward.

Once the optimal parameter estimates are found, we replace the temporary
energy with the original RBM energy and infer the corresponding whole-brain
and lesion segmentation by MCMC sampling from p(l, z|D, θ̂d, θ̂l), exploiting
the specific structure of the RBM model. In particular, we generate S triplets
{ls, zs,hs}Ss=1 by sampling from the distribution p(l, z,h|D, θ̂d, θ̂l) using block-
Gibbs sampling. This is straightforward to implement because each of the con-
ditional distributions factorizes over the voxels (for l and z) or the hidden units
(for h). The sampling is performed in two alternating steps: first, we sample the
values for the hidden units given the lesions:

hs ∼
J∏

j=1

p(hj = 1|zs−1).

Then, given the sampled hidden unit values hs, we jointly sample the labels l
and z from:

{ls, zs} ∼
I∏

i=1

p(li, zi|di,hs, θ̂d, θ̂l)

where

p(li, zi|di,h, θ̂d, θ̂l) ∝
{

p(di|li, zi, θ̂d)p(li|θ̂l)p(zi|h), if li = wm or zi = 0
0, otherwise.

The initial lesion segmentation, i.e., z0, is obtained as the maximum-a-posteriori
estimate using the temporary energy Etmp.

Once we have acquired S triplets, the samples of the hidden units {hs} are
discarded as they are of no interest to us. The “hard” segmentations of l and z
are obtained by voxel-wise majority voting across {ls} and {zs}.

3 Experiments and Results

3.1 Data

We demonstrate the proposed method on the 20 publicly available training cases
of the MICCAI 2008 challenge on multiple sclerosis lesion segmentation [10].
This dataset includes 10 subjects scanned at Children’s Hospital Boston (CHB)
and another 10 scanned at the University of North Carolina (UNC). For each
subject the scan set consists of a T1-weighted, a T2-weighted and a FLAIR scan
with isotropic resolution of 0.5mm, along with expert segmentations provided
by CHB1. As a pre-processing step the data was downsampled by a factor of
two to a resolution of 1mm isotropic as is customary for this dataset [3,5,14].
No further pre- or post-processing, such as intensity normalization or bias field
correction, was applied.
1 Manual segmentations from UNC are now also available, but at the time of the
challenge this was not the case [10] so we decided to use only the segmentations
provided by CHB.



16 O. Puonti and K. Van Leemput

3.2 Implementation

We closely follow the implementation details of the whole-brain segmentation
method described in [7]. Because of the small number of manual segmentations
available for training the RBM model, we applied two rotations of 10 and −10
degrees around the three main axes, producing 6 extra training scans per subject.
We trained different RBM models with either P = 20 or P = 40 filters, with
sizes of (Q × Q × Q), where Q was either 5, 7 or 9. Each model was trained
with 5600 gradient steps of size 0.1 in the PCD algorithm [13]. Based on pilot
experiments, we found that using two mixture components for white matter
worked well (i.e., Gwm = 2), provided that one of the Gaussians is constrained to
be a near-uniform distribution that can collect model outliers other than white
matter lesions (in practice we use a Gaussian with a fixed scalar covariance
matrix 106I and weight 0.05). Finally, as the main characteristic of white matter
lesions is that they appear hyper-intense compared to normal white matter in
FLAIR contrast [2], we decided to only allow voxels to be assigned to lesion in
the Gibbs sampling process if their intensity is higher than the estimated white
matter mean in FLAIR.

We implemented the algorithm in Matlab, except for the mesh deformation
part, which was written in C++, and the RBM convolutions, which were per-
formed on a GPU. In our experiments, estimation of the parameters {θ̂d, θ̂l} was
performed on a cluster where each node has two quad-core Xeon 5472 3.0 GHz
CPUs and 32 GB of RAM. Only one core was used in the experiments, taking
roughly 1.7 h per subject. Gibbs sampling was done on a machine with a GeForce
GTX Titan 6 GB GPU. We generated S = 150 samples, collected after an initial
burn-in of 50 sampling steps, taking approximately 10 min per subject. Thus the
full segmentation time for a single target scan is roughly two hours.

3.3 Evaluation Set-Up

In order to compare our results against previous methods on the same data, we
use the true positive rate TPR = TP

TP+FN and the positive predictive value PPV =
TP

TP+FP as performance metrics. Here TP, FP and FN count the true positive,
false positive and false negative voxels compared to the expert segmentation.
Because our method contains four user-specified parameters γ, w, Q and P ,
which can have a large influence on the obtained results, and because the RBM
requires training data to learn its parameters, we perform our evaluation in a
cross-validation setting. In particular, we split the available data randomly into
five distinct sets, each having 16 training and 4 test subjects. For segmenting each
set of 4 test subjects, the remaining 16 are used to train the RBM and to find
the best combination (γ,w,Q, P ), defined as the combination maximizing the
product of the mean TPR and PPV over the 16 subjects. Using the product as a
measure of fitness promotes parameter combinations that provide both sensitive
and specific lesion segmentations.
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Fig. 1. Example segmentations from two subjects: CHB04 (first row) and CHB08 (sec-
ond row). From left to right: T1-weighted scan, T2-weighted scan, FLAIR scan, manual
segmentation overlaid on the FLAIR scan, and the full segmentation obtained using
the proposed method. Lesions are denoted in red (Color figure online).
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3.4 Results

Figure 1 shows two examples of the joint whole-brain and lesion segmenta-
tions obtained using the proposed method, along with the manual segmenta-
tions. Although our method can segment 41 different neuroanatomical structures
in total [7], the MICCAI challenge data only includes manual segmentations of
lesions, so validation of the automatic segmentations of these structures could
not be performed. However, visual inspection of the 20 cases did not reveal any
significant failures in the whole-brain segmentation component of the method.

In Table 1 we compare our lesion segmentation performance with that of
two state-of-the-art lesion segmentation tools: a random forest (RF) classi-
fier [3], which is a discriminative method, and a dictionary-learning approach
(DL) [14], which is unsupervised and therefore contrast-adaptive (as is the pro-
posed method). Compared to the winning method [15] of the MICCAI 2008
lesion segmentation challenge, which obtained a mean TPR of 0.21 and a mean
PPV of 0.30, all the methods show greatly improved segmentation results. On
average the proposed method achieves better results than both the DL and RF
approaches, although the improvement over the RF approach is very slight. We
note that neither of the two benchmark methods segments other structures than
lesions, and that the RF classifier is specifically trained on the contrast prop-
erties of this particular data set, and is therefore less generally applicable than
the proposed and DL methods. Note that the results of the DL method are not
entirely comparable, as the authors used a different set of manual annotations
for validating the UNC subjects. This explains the quite large difference in per-
formance of the DL method compared to the two other methods for subjects
UNC01 and UNC06.

In very recently published work [5], the authors present a lesion segmentation
framework based on deep convolutional encoder networks. This model is some-
what similar to the proposed method in the sense that both use convolutional
architectures for learning suitable features for lesion detection automatically.
The authors also report results on the MICCAI 2008 dataset, obtaining an aver-
age TPR of 0.40 and an average PPV of 0.41 which ties the performance of the
proposed method. However, their approach suffers from the same limitations as
the RF method, i.e., it is a discriminative method that only segments lesions.

4 Discussion

In this paper we have proposed a method for joint white matter lesion detection
and whole-brain segmentation using a novel spatial lesion model. Due to the
generative modeling approach, the method is not tied to one specific scanner
platform or imaging protocol, and shows good performance when compared to
the current state-of-the-art in lesion segmentation. The presented results are
significantly limited by the amount of training data, which was very small given
the number of parameters and potential expressive power of the RBM model.
Future work will involve further experimentation with different RBM training
algorithms and sampling strategies, and an extensive performance validation on
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Table 1. Quantitative comparison with two state-of-the-art methods.

DL [14] RF [3] Proposed DL [14] RF [3] Proposed

Patient TPR PPV TPR PPV TPR PPV Patient TPR PPV TPR PPV TPR PPV

CHB01 0.60 0.58 0.49 0.64 0.75 0.57 UNC01 0.33 0.29 0.02 0.01 0.02 0.01
CHB02 0.27 0.45 0.44 0.63 0.57 0.48 UNC02 0.54 0.51 0.48 0.36 0.75 0.29
CHB03 0.24 0.56 0.22 0.57 0.30 0.69 UNC03 0.64 0.27 0.24 0.35 0.28 0.19
CHB04 0.27 0.66 0.31 0.78 0.59 0.49 UNC04 0.40 0.51 0.54 0.38 0.62 0.40
CHB05 0.29 0.33 0.40 0.52 0.45 0.39 UNC05 0.25 0.10 0.56 0.19 0.50 0.18
CHB06 0.10 0.36 0.32 0.52 0.19 0.50 UNC06 0.13 0.55 0.15 0.08 0.17 0.10
CHB07 0.14 0.48 0.40 0.54 0.34 0.65 UNC07 0.44 0.23 0.76 0.16 0.60 0.26
CHB08 0.21 0.73 0.46 0.65 0.37 0.70 UNC08 0.43 0.13 0.52 0.32 0.27 0.21
CHB09 0.05 0.22 0.23 0.28 0.04 0.55 UNC09 0.69 0.06 0.67 0.36 0.67 0.21
CHB10 0.15 0.12 0.23 0.39 0.19 0.69 UNC10 0.43 0.23 0.53 0.34 0.47 0.48

DL [14] RF [3] Proposed
Mean TPR=0.33 PPV=0.37 TPR=0.40 PPV=0.40 TPR=0.41 PPV=0.40

larger data sets of white matter lesions. We further plan to also evaluate the
obtained healthy structure segmentations by quantifying local atrophy patterns
in large collections of brain images of MS patients.
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Abstract. The accurate segmentation of lesions in magnetic resonance
images of stroke patients is important, for example, for comparing the
location of the lesion with functional areas and for determining the opti-
mal strategy for patient treatment. Manual labeling of each lesion turns
out to be time-intensive and costly, making an automated method desir-
able. Standard approaches for brain parcellation make use of spatial
atlases that represent prior information about the spatial distribution
of different tissue types and of anatomical structures of interest. Dif-
ferent from healthy tissue, however, the spatial distribution of a stroke
lesion varies considerably, limiting the use of such brain image segmen-
tation approaches for stroke lesion analysis, and for integrating brain
parcellation with stroke lesion segmentation. We propose to amend the
standard atlas-based generative image segmentation model by a spatial
atlas of stroke lesion occurrence by making use of information about the
vascular territories. As the territories of the major arterial trees often
coincide with the location and extensions of large stroke lesions, we use
3D maps of the vascular territories to form patient-specific atlases com-
bined with outlier information from an initial run, following an iterative
procedure. We find our approach to perform comparable to (or better
than) standard approaches that amend the tissue atlas with a flat lesion
prior or that treat lesion as outliers, and to outperform both for large
heterogeneous lesions.

Keywords: Stroke lesion segmentation · Atlas construction · Prior
knowledge · Cerebral vascular territories · Outlier-inlier

1 Introduction

The accurate segmentation of anatomical structures and of lesions that are visi-
ble in magnetic resonance image (MRI) of stroke patients has been a somewhat
c© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 21–32, 2016.
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neglected topic in the development of automated brain image segmentation algo-
rithms until very recently [1]. Most algorithms for segmenting structures of the
brain in MRI use prior knowledge on the location and the appearance of white
matter, gray matter, etc. On the one hand, there are discriminative approaches
using, for example, random forests together with local image features [2,3], that
often have a high accuracy, but that can only be applied to images acquired with
the exact same MR imaging sequences as the training data. Generative models,
on the other hand, describe the intensity distribution in a more informative and
flexible fashion: Seghier et al. [4] proposed a method that constructs a lesion atlas
using fuzzy clustering.However, in the clinicalworkflowoftenothermodalities have
to be taken into account. Dalca et al. [5] proposed a method based on the inten-
sity distribution which differentiates between stroke pathologies and leukoaraio-
sis lesions. However, the stroke segmentation bases only on the intensity model
and ignores spatial information according to the cerebral vascular territories [6].
[7] already considered an atlas of vascular territories as a post-processing step in
order to give the physician an idea in which territory the lesion might have occurred
but so far did not use this information as prior knowledge in a probabilistic infer-
ence process. Some approaches consider lesions as clearly distinct outliers of a
Gaussian Mixture Model (GMM) whose parameters μ and Σ are optimized by
an Expectation-Maximization (EM) algorithm. An early attempt for automated
model outlier detection using a GMM was proposed by Leemput et al. [8] for mul-
tiple sclerosis lesions which are in most cases rather small and therefore more likely
to be homogeneous in their intensity. Probabilistic atlases of healthy tissue classes
provide a mapping from location to intensity. However, in particular for extensive
stroke lesions this is not the case: lesion andhealthy tissue intensitiesmight overlap,
leading to an improper separation of those classes.

We propose a fully automated method for stroke lesion segmentation in MR
images that is using GMMs as a generative model by taking into account both
cerebral vascular territories (CVT) [6] and model outlier information [8]. Similar
efforts have been undertaken by [9] for brain tumor segmentation which used
pre/post T1-weighted contrast images to calculate a patient-specific lesion prior.
By contrast, our method does not require such specific modalities, making it
more flexible to available data. Further, [10,11] proposed a latent atlas which is
inferred from the given data through an alternating optimization procedure.

In the following we describe the overall model and the resulting iterative app-
roach (Sect. 2), we present experiments (Sect. 3), and offer conclusions (Sect. 4).
More specifically, our paper provides as contributions the usage of cerebral vas-
cular territories as additional prior spatial information (Sect. 2.3) for iterative
lesion atlas construction (Sect. 2.4).

2 Methods

Our overall approach relies on a two-steps procedure: First, the algorithm setting
tries to fit a robust GMM of the intensity distribution using healthy tissue atlases.
It first identifies lesion candidates according to [8]. Then, these outliers provide
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spatial hints used as a separate lesion atlas which makes them inliers in a sec-
ond EM run where they are an additional component of the GMM in a standard
non-robust EM segmenter. We therefore consider the method an outlier-inlier
approach. The calculated outlier-atlases are further enhanced by incorporating
contextual knowledge using the information of CVT. Territories are weighted pro-
portionally to the number of lesion candidates found in their spatial region. In
each EM iteration, this lesion atlas gets optimized until the best model parame-
ters with respect to the likelihood of the data are found. Further postprocessing
is applied in the form of Conditional Random Fields and morphological operators
to eliminate false positives resulting from the intensity-based estimation. In this
paper, we will mainly analyze ischemic stroke lesions since they occur most often
in practice, accounting for up to 87 % of all strokes [12]. Those steps are reflected
in Fig. 1 where we start with pre-processing as co-registration, bias field correc-
tion and skull stripping. Then we perform the model outlier detection followed by
a lesion atlas construction. We initialize a standard EM segmentation algorithm
with the previously obtained lesion atlas and iterate until the best model para-
meters are found. In order to further eliminate false positives, we either perform
morphological operations or apply conditional random fields (CRF).

2.1 Generative Model for Stroke Lesion Segmentation

We first revisit important concepts from [8,13] upon which our method is based.
Images are given by maps from a finite D-dimensional coordinate space to the
intensity space which may be one-dimensional for gray-scale images. We denote
MR images as flattened, i.e., 1-dimensional vectors v = {v1, v2, . . . , vN} where
I = {1, . . . , N} is the index set of all voxels and vi is the intensity (as gray-
value) of voxel i. The segmentation is described by labels c = {c1, c2, . . . , cN}
mapping a voxel to a tissue class, possibly including stroke lesion. For a voxel i,
ci indicates to which tissue type it belongs. C is a finite set of tissue classes, e.g.,
{WM ,GM ,CSF} or {WM ,GM ,CSF ,LES}. The latent segmentation l has to
be inferred from the observed intensities v. We optimize the model parameters
Θ = (μc, Σc)c∈C to find the Θ∗ that yields the maximal likelihood with respect
to the data set v using, e.g. the EM algorithm. Recall that the probability density
function (PDF) of a GMM with respect to C is given by:

p(x) =
∑

c∈C αc · 1

(
√
2π)D

√
|Σc| exp(− 1

2 (x − μc)T Σ−1
c (x − μc)) (1)

where
∑

c∈C αc = 1, ∀c ∈ C, αc ≥ 0. The individual Gaussian PDFs correspond-
ing to c ∈ C are also referred to as components or classes. Each component c
consists of a centroid (or mean) μc, a covariance Σc and a given weight αc.
In healthy tissue, we relate each Gaussian component to one major tissue type
(WM, GM, CSF) to quantify those compartments in each modality for the multi-
modal case. The assumption that one Gaussian component models the intensities
of one tissue type turns out to work well in practice [14,15]. In our approach,
lesions are eventually modeled as an additional component in the GMM.
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Fig. 1. Overview of the segmentation pipeline.

2.2 Robust Model Outlier Detection

Standard GMM model parameter optimization assumes that each data point is
indeed generated by at least one class. Outliers in the data set are therefore hard
to explain by only considering a GMM, in particular, if a point does not seem
to fit any of the classes. To illustrate this, recall that in GMMs, our goal is to
maximize the log-likelihood of the observed data.

Q(Θ) =
∑

i∈I log
(∑

c∈C p(c)fc(vi | Θ)
)
, (2)

where p(c) denotes the prior probability of component c and fc refers to the
PDF of the component c of the GMM spanned by Θ.

Maximizing (2) with respect to Θ (for a fixed number of components) is
however not robust to outliers as those occurring in lesions [8]. In particular,
consider a voxel i with intensity vi that does not fit well to any class c ∈ C. Since
a probability distribution p(c | vi) has to normalize to 1, the voxel cannot show
small probability for all classes at the same time. Consequently, the algorithm
has to consider very high covariances to include outliers which severely affects
the results. Additionally, outliers having small probabilities strongly negatively
influence the likelihood of the model in (2). This can be seen since log fc(x |
Θ) → −∞ as fc(x | Θ) → 0.

This problem is alleviated by means of robust statistics [13]. Instead of fitting
standard Gaussian PDFs, a contaminated variant is proposed where each data
point is either generated by a Gaussian N (μ,Σ) with probability 1 − ε or by a
unknown uniform outlier distribution δ with probability ε. The density function
converges to a standard Gaussian density by setting ε = 0. The question upon
seeing vi is whether it stems from N (μ,Σ) or from δ. A perfect classification
separates data points vi into a set G of “good” samples drawn from N (μ,Σ)
(inliers) and a set B of “bad” samples (outliers) originating from δ.

G = {vi generated by N (μ,Σ) | i ∈ I} (3)
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B = {vj not generated by N (μ,Σ) | j ∈ I} (4)

Since G and B cannot be perfectly restored from the observed data, a practical
classification method is needed. Therefore, we want to classify a data point as
outlier if it exceeds a certain distance threshold κ to the distributions spanned
by our model. The distance between a data point vi and the calculated mean μc

of one class c is estimated by the Mahalanobis-Distance

d2c(xi) = (xi − μc)Σ(−1)
c (xi − μc) (5)

We classify a voxel as outlier if and only if dc(xi) > κ, leading to the sets Gκ and
Bκ; the smaller κ the more lesion candidates are detected. Letting κ → ∞r

¯
esults

in a standard (outlier-free) EM segmenter [8]:

Gκ = {i : ∃c ∈ C : dc(vi) ≤ κ | i ∈ {1, . . . , N}} (6)

Bκ = {j : ∀c ∈ C : dc(vj) > κ | j ∈ {1, . . . , N}} (7)

The best values for κ are determined experimentally as done in Sect. 3.

2.3 Cerebral Vascular Territories

In spite of spatial information given by an atlas, we search for adequate replace-
ments in stroke lesions. It turns out that radiologists use common patterns about
cerebral vascular territories (CVT) that specify the area which is covered by one
of the main vessel trees to diagnose strokes since the extensions of large stroke
lesions often follow the outlines of the territory the blocked artery is feeding [16].

Figure 2 shows the spatial appearance of the three territories which are cov-
ered by one of the three main vessel trees. Following [16], we particularly man-
ually label anterior cerebral artery (ACA), posterior cerebral artery (PCA) and
middle cerebral artery (MCA) territories for our evaluation. A recent study on
2213 patients [17] has shown that the majority of stroke lesions appear in the
MCA territory. Incidentally, large and heterogeneous lesions tend to occur in
this particular territory.

2.4 Construction of the Personalized Lesion Atlas

Based on estimated model outliers and the 3D CVT atlas we construct a new
patient-specific lesion prior (see Fig. 2c). We assume the set of outliers Bκ to be
determined by the first EM run using only healthy tissue classes. Suppose I =
{1, . . . , N} let v : I → [0, 1] be an image mapping voxel indices to MR intensity
values (we write vi for the intensity at voxel i) and V be the set of all images. The
lesion atlas is a particular image l ∈ V where li can be interpreted as proportional
to the probability of i being part of a lesion. We write t ∈ T = {ACA,MCA, . . .}
for a vascular territory. Each vascular territory is characterized by its included
voxels It ⊆ I (see Fig. 2a).

For each vascular territory t, we estimate an atlas by setting voxels in It ∩Bκ

to 1 and smoothing this image. Formally, we first obtain images v(t) : I → [0, 1]
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(a) Dorsal (b) Lateral (c) Reweighting of one slice.

Fig. 2. Cerebral vascular territories drawn in 3D with ITKSNAP from a 2D template
depicted by [6]. Yellow denotes MCA, turquoise ACA and violet PCA for the right
hemisphere. The left hemisphere was labeled equivalently (Color figure online).

by setting v(t)(i) = 1 if i ∈ It ∩Bκ and 0 otherwise. We smooth this image using
a Gaussian filter in 3D. We denote the smoothed image as ṽ(t) = smooth(v(t)).
Then, we estimate a normalized voting coefficient proportional to the probability
of the lesion occurring in t by

vCoeff t =

∑
i∈It

ṽ(t)(i)
|Bκ| (8)

Finally, we obtain the voted territory by

v(t)(i) = v(t)(i) · vCoeff t (9)

Each territory consequently gets reweighted as can be seen in Fig. 2c. The overall
lesion atlas used for the second EM-run is finally obtained by the image l̂(i) ∈ V,
defined by

l̂(i) =
∏
t∈T

v̂(t)(i) (10)

to achieve a multiplicative, smoothing effect in bordering regions. Care has to be
taken if for a voxel i, either of v̂(t)(i) is 0, effectively erasing all other values. We
avoid this problem by substituting 0 by 1 in l̂(i) temporarily and replacing these
artificially inserted ones by zeros later on. Figure 2c shows the main approach we
used to construct the lesion prior out of the cerebral vascular territory atlas. An
important detail is to label left and right hemispheres individually, according to
their perfusion pattern. Otherwise, e.g., the large MCA region (including weak
false positives) is weighted disproportionally high.

3 Results

We applied our stroke lesion segmentation framework onto 13 different patient
datasets with 152 manually annotated ground truth slices (axial, coronal and
sagittal) including a variety of stroke types and shapes. Stroke lesions are char-
acterized as T1 hypo-, T1gad hyper-, T2 hyper-, and FLAIR hyper-intense.
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Fig. 3. Qualitative Comparison of the manual ground truth segmentation (blue line),
Model Outlier Detection (red line) and our proposed method (green line) presented
for FLAIR MRI of patient 1 (left) and 13 (right) using morphological operators as
post-processing (Color figure online).
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All datasets where co-registered onto a T1-weighted reference image such that
the input images are aligned with the tissue atlases. Each patient dataset con-
sists of T1-weighted, T1-Gadolinium, T2-weighted, and FLAIR MRI scans from
patients in the sub-acute phase, acquired about one or two day after the event.
We show FLAIR in the qualitative analysis because in FLAIR the lesion is
best visible. We drew the CVT atlas with ITK-SNAP [18]. To make sure that
the atlas is aligned with all the other images (i.e., MRI images and atlases),
we drew the vascular territories onto the above-mentioned T1-weighted refer-
ence image. We first did a quantitative assessment of the segmentation results
by computing the dice score [19] (also known as F1-score for binary segmen-
tation) with different post-processing techniques (morphological operator and
Conditional Random Fields) and parameter settings (different flat priors and κ
values(= kappa) for the outlier threshold). We decided to evaluate our method
against other approaches on the same patient datasets since the dice should be
seen as a relative rather than an absolute measure. Figure 4 depicts the model
outlier detection with different κ settings. It performs clearly better than using a
flat prior for a dedicated lesion class in Fig. 5 after morphological operators. Both
Figs. 6 and 7 illustrate the performance of different κ settings on the outlier-inlier
approach. It became clear that simply adding an additional class with a flat prior
is not competitive to Model Outlier Detection or CVT-Outlier-Inlier (compare
Fig. 5). Furthermore, with the best setting we applied a paired student t-test to
compare those methods statistically. In order to obtain a valid comparison we
applied all the methods on the same datasets and used the best configuration
we could obtain from them.

Even though the Model Outlier Detection works better on average over all
patients, we could show that our approach performs better on patients with
extensive lesions at a significance level of α = 0.005 since it is considered as
being very significant, i.e., very unlikely to be a result of a random effect. This
subgroup of patients was selected prior to the evaluation. All results are pre-
sented in Table 1 the first row without post-processing, and the other rows with
post-processing. Qualitative results from patient 1 and 13 are shown in Fig. 3
where we can observe that with CVTs we get less outliers compared to model
outlier detection. Admittedly, the CVT-based approach has difficulties with very

Fig. 4. Model outlier detection with mor-
phological operators as post-processing.

Fig. 5. Lesion class with flat prior with
morphological operators as post-processing.
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Fig. 6. CVT Outlier-inlier with morpho-
logical operators.

Fig. 7. CVT Outlier-inlier with CRF as
post-processing.

small lesions (e.g., patient 5, 8, or 11) where model outlier detection is more
robust but it provides much more confidence with large lesions (e.g., patient 13
or 7). When nearly the whole area of one main tissue compartments is covered
by stroke, it can happen that the lesion intensities are explained by a (larger)
healthy tissue compartment and not identified as lesion. This happens since the
EM algorithm is agnostic about symmetric assignments of classes to intensities
after initialization with given tissue atlas. Intuitively, class, say, 5 (initially rep-
resenting outlier intensities) may “swap” positions with class 4 that represented
white matter. The reason for the high variance of the dice in the outlier-inlier

Table 1. Patient dice scores for different segmentation algorithms with different post-
processing approaches. Bold-faced numbers indicate cases with the best score for each
patient.

Pat. id CVT no post MO morph. CVT morph. MO CRF CVT CRF

Patient 1 0.57 0.54 0.61 0.55 0.51

Patient 2 0.21 0.62 0.67 0.72 0.64

Patient 3 0.26 0.41 0.37 0.19 0.34

Patient 4 0.36 0.47 0.5 0.35 0.42

Patient 5 0.05 0.39 0.01 0.3 0.0

Patient 6 0.28 0.61 0.62 0.65 0.4

Patient 7 0.4 0.51 0.72 0.46 0.62

Patient 8 0.23 0.51 0.0 0.1 0.0

Patient 9 0.32 0.53 0.56 0.08 0.42

Patient 10 0.0 0.19 0.06 0.13 0.01

Patient 11 0.03 0.57 0.01 0.43 0.0

Patient 12 0.31 0.6 0.5 0.4 0.44

Patient 13 0.87 0.62 0.81 0.42 0.77

Average 0.3 0.51 0.42 0.37 0.35

Stdev 0.23 0.12 0.29 0.2 0.26
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approach are numerical issues of the EM algorithm. Smaller lesions get sup-
pressed by noise objects during the lesion atlas update and therefore the EM
does not properly converge anymore since the covariance matrix may become
singular. The structuring element for the three-dimensional morphological oper-
ator was a sphere with radius = 2.5. We can also observe in Figs. 6 and 7 that the
results of the outlier-inlier approach are less prone to changes of the κ (=outlier
threshold) compared to the model outlier detection alone.

4 Conclusion

We investigated an automated method for stroke lesion segmentation that could
prove to be useful, e.g., in the analysis of images acquired in clinical studies.
Our method extends previous work in model outlier detection for lesions, first
applied to multiple sclerosis patients using a GMM. Using robust statistics, out-
liers can be detected and classified as lesion. However, for large and hetero-
geneous lesions this is not enough, as a lesion spans a spectrum of intensity
values which can better be captured by a dedicated Gaussian component in the
mixture model. Drawing inspiration from the way radiologists perform stroke
detection, we incorporated knowledge about cerebral vascular territories that is
combined with outlier information to form a lesion atlas. This lesion atlas is then
reweighted proportionally to the incurred outliers of each territory in each itera-
tion until maximum likelihood model parameters are found. Several approaches
to construct this atlas were examined and compared to a flat prior as a baseline.

Our evaluation showed that the outlier-inlier approach on average performs
comparable to the model outlier detection for an overall set of 13 patients and
significantly better than a uniform prior for a lesion class. The performance was
enhanced by the postprocessing methods: conditional random fields and mor-
phological operators. Considering large stroke lesion patients alone, our method
dominates the other approaches evaluated in this paper.

In future work, we consider additional features and disease patterns to
improve segmentation. One way would to substitute the EM-Algorithm optimiz-
ing a GMM by maximum likelihood estimation with an approximate Bayesian
inference framework. For instance, we could employ the expectation propaga-
tion and the clutter problem by [20] or enhance the re-weighting scheme for
patient-specific lesion atlas in a more advanced manner in order to improve the
segmentation results. Another possible improvement would be to model each
tissue compartment with more than one Gaussian.
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Abstract. Traumatic brain injury (TBI) can cause widespread and long-lasting
damage to white matter. Diffusion weighted imaging methods are uniquely
sensitive to this disruption. Even so, traumatic injury often disrupts brain
morphology as well, complicating the analysis of brain integrity and connec-
tivity, which are typically evaluated with tractography methods optimized for
analyzing normal healthy brains. To understand which fiber tracking methods
show promise for analysis of TBI, we tested 9 different tractography algorithms
for their classification accuracy and their ability to identify vulnerable areas as
candidates for longitudinal follow-up in pediatric TBI participants and matched
controls. Deterministic tractography models yielded the highest classification
accuracies, but their limitations in areas of extensive fiber crossing suggested
that they generated poor candidates for longitudinal follow-up. Probabilistic
methods, including a method based on the Hough transform, yielded slightly
lower accuracy, but generated follow-up candidate connections more coherent
with the known neuropathology of TBI.

1 Introduction

Traumatic brain injury (TBI) can cause extensive white matter (WM) damage that can
be long-lasting and far reaching in its associated impairments. Diffuse axonal injury
(DAI) is partly responsible, and is frequently detected in the corpus callosum, brain

© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 33–44, 2016.
DOI: 10.1007/978-3-319-30858-6_4



stem, gray-white matter junctions, and the parasagittal white matter. DAI can only be
definitively diagnosed post mortem, but diffusion-weighted imaging (DWI) shows
considerable potential in detecting these disruptions in the living brain. While histology
and tract tracing certainly offer more accurate information in studying brain injury,
MRI (magnetic resonance imaging) sequences offer non-invasive methods for assessing
brain injury in humans.

Disruptions in WM integrity associated with TBI are typically observable on DTI
as decreased FA (fractional anisotropy) and increased MD (mean diffusivity), sug-
gesting myelin disruption [1]. We previously examined this dataset using tract-based
measures of WM integrity extracted with autoMATE (automated multi-atlas tract
extraction) [2, 3], finding widespread differences in MD and RD [4]. We recently found
that combining HARDI measures with measures of interhemispheric transfer time from
EEG resulted in improved prediction of cognitive function [5]. Additionally, we have
experimented with other processing parameters, examining fiber turning angle. We
found trends towards more significant group differences detected when more stringent
turning angles were used in tractography [6]. These FA “dropouts” can make advanced
analyses such as tractography difficult, as tract-propagation methods may stop in
regions where the fractional anisotropy is abnormally low; some methods even use a
threshold on FA to limit fiber propagation. As tractography algorithms vary in the
equations and models they use reconstruct tracts, they may also vary in their success in
tracking fibers through disrupted regions. Such limitations are vital to understand, as
fibers that appear to differ in a TBI patient may either be overtly lost, or just not
detected due to interactions between the algorithm used and diffusion signal changes
associated with TBI. To investigate how different fiber tracking methods perform on
scans from children with TBI, we tested 9 different tractography algorithms to see how
sensitive the resulting connectivity matrices were in differentiating between our groups.
These 9 algorithms were selected as they have previously been evaluated by our group,
so we have other results to compare ours to in the event that one algorithm consistently
demonstrates superior performance [7, 8].

In the developing brain, TBI is especially disruptive. In animal studies, TBI during
development can decrease experience-dependent plasticity - a key process for brain
maturation and development [9]. Given the long course of WM development and
maturation, TBI during development can delay or alter the maturation of WM tracts.
Even today, little is known about how TBI affects developing brains, what course
recovery may follow, and what interventions may assist in the process. Some children
experience a full, speedy recovery, while others continue to be affected by the injury
years later. Injury severity accounts for a large portion of this variance in outcome, but
a considerable amount is still unexplained. We expect that neuroimaging biomarkers
hold the key to explaining more of the variance and improving outcome predictions.
Developing the most sensitive biomarkers to cover the range of disruption is a chal-
lenge. In this paper we focus on tractography algorithms that most successfully dis-
tinguish between TBI and control children more than a year post-injury.
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2 Methods

2.1 Subjects and Image Acquisition

TBI participants were recruited from 4 Pediatric Intensive Care Units (PICUs) at Level
1 Trauma Centers in Los Angeles County. Healthy controls, matched for age, sex, and
educational level, were recruited from the community through flyers, magazines, and
school postings. Participants were studied in the chronic phase (13−19 months
post-injury). We included 17 TBI participants (3 female) and 17 controls, in a “yoked”
control design (individually matched for age and sex). Inclusion criteria: non pene-
trating moderate-severe TBI (intake or post-resuscitation GCS score between 3 and 12),
8−19 years old, right handed, normal vision, English proficiency. Exclusion criteria:
history of neurological illness or injury, motor deficits or metal implant preventing safe
MRI scanning, history of psychosis, ADHD, Tourette’s, learning disability, mental
retardation, autism, or substance abuse. Participants with large space-occupying lesions
were not included in analyses.

Participants were scanned with 3TMRI (Siemens Trio) with whole-brain anatomical
and 72-gradient diffusion imaging. Diffusion-weighted images (DWI) were acquired
with these acquisition parameters: GRAPPA mode; acceleration factor PE = 2;
TR/TE = 9500/87 ms; FOV = 256 × 256 mm; isotropic voxel size = 2 mm. 72 images
were collected per subject: 8 b0 and 64 diffusion-weighted images (b = 1000 s/mm2).

2.2 Data Preprocessing and Cortical Extraction

Non-brain regions were automatically removed from a b0 image from the DWI volume
using the bet function in the FSL toolbox (http://fsl.fmrib.ox.ac.uk). Brainsuite was
used for the T1-weighted images (http://brainsuite.org); these brain extractions were
refined by a neuroanatomical expert. All T1-weighted scans were linearly aligned to a
common template using 9 DOF registration. DWI volumes were corrected for eddy
current distortion using FSL’s eddy correct function. Averaged b0 maps were elastically
registered to the structural scan using a mutual information cost function to compensate
for EPI-induced susceptibility artifacts. The transformation matrix from the linear
alignment of the mean b0 to the T1-weighted volume was applied to each of the 64
gradient directions to reorient them. Based on the eddy-corrected DWIs, whole brain
tractography was conducted using 9 different deterministic and probabilistic tracking
algorithms. Elastic deformations obtained from the EPI distortion correction were
applied to the tracts’ 3D coordinates for accurate alignment. Very short fibers
(<10 mm) and duplicate fibers were filtered out.

34 cortical labels per hemisphere [10] were automatically extracted from aligned
T1-weighted structural MRI scans using FreeSurfer version 5 (http://surfer.nmr.mgh.
harvard.edu/), aligned to the T1-weighted images, and downsampled using nearest
neighbor interpolation to the space of the DWIs. To ensure tracts would intersect
cortical label boundaries, labels were dilated with an isotropic box kernel of width 5
voxels. We created nine 68 × 68 connectivity matrices for each subject using each
separate tractography method (listed below). Each element of the matrix described the
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number of fibers that intersected each pair of cortical labels or regions of interest
(ROIs). We also created a separate set of connectivity matrices normalized by the total
number of fibers reconstructed, and matrices that were both count-normalized and
normalized by the ROI volume (the sum of the volumes of the two terminal ROIs). Of
course, other normalization methods are possible, but these were selected as among the
most commonly used.

2.3 Tractography

We tested nine different tractography methods, including four tensor-based determin-
istic algorithms: FACT [11], 2nd order Runge-Kutta (RK) [12], streamline (SL) [13],
and tensorline (TL) [14], and two deterministic tractography algorithms based on the
4th-order spherical harmonic derived orientation distribution functions (ODFs)–FACT
and RK. We also tested the Hough voting method [15], which is based on ODFs
represented by 4th order spherical harmonics, and the Probabilistic Index of Connec-
tivity (PICo) [16], based on ODFs represented by 6th order spherical harmonics. For
the Hough method, tract reconstruction was constrained to 10,000 fibers.

The six deterministic methods were run with Diffusion Toolkit (http://trackvis.org/
dtk/). Fiber tracking was restricted to regions with fractional anisotropy (FA) ≥ 0.2 to
avoid gray matter and cerebrospinal fluid; fiber paths were stopped if the fiber direction
encountered a sharp turn (with a critical angle threshold ≥ 30°). Recent reports suggest
that fiber angles as sharp as 90° may be biologically plausible [17], but such a large
threshold can also allow for large numbers of false positive fibers.

The Hough method was performed as described previously [15]. Voxels with an
FA ≥ 0.2 were probabilistically seeded, and 10,000 fibers were reconstructed. PICo
was conducted with Camino (http://cmic.cs.ucl.ac.uk/camino/). For PICo, voxels with
FA ≥ 0.2 were seeded, and ODFs were estimated using 6th-order spherical harmonics
and a maximum of 3 non-redundant local ODF maxima were detected. The fiber
turning angle threshold was set to 30°/voxel, and tracing was stopped at any voxels
with an FA < 0.2. Probtrackx was performed after Bedpostx [18]. Up to 3 fibers were
modeled per voxel. Probtrackx was run on all voxels with FA > 0.2. Probtrackx
repeatedly samples from the voxel-wise principal diffusion direction calculated in
Bedpostx, creating a new streamline at each iteration, building a distribution on the
likely tract location and path. 1000 iterations were chosen to ensure convergence of the
Markov chains, from which the posterior distributions of the local estimate of the fiber
orientation distribution were sampled.

2.4 Support Vector Machine (SVM) Classifier

SVMs [19] are one popular form of supervised learning model that we used to classify
our connectivity features, to differentiate connectivity patterns in TBI and normal
development. Clearly other machine learning models are possible, but here we chose
SVMs as their properties are well-understood. SVMs classify 2-class data by training a
model, or classification function, to find the optimal hyperplane between the 2 classes
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in the data. Let xi 2 R
d represent the connectivity feature vectors, where d is the

dimension of the feature set of interest and Yi = ± be their label with –1 and 1
representing TBI and control. Our target hyperplane is:

w; xh iþ b ¼ 0;

where w 2 R
d should separate as many data points as possible. We find this hyperplane

by solving the L2-norm problem:

argmin
w;b;v

1
2

w;wh iþD
X

i
v2i

� �
;

such that

yi w; xih iþ bð Þ� 1� vi; vi � 0

where vi are slack variables and D is a penalty parameter. In many instances, a
hyperplane cannot be found that completely separates the 2 classes of data, and slack
variables are added to create soft margins to separate most of the points.

Our classification design was to test the information provided by the connectivity
features with repeated stratified 10-fold cross-validation [20]. We repeated the
cross-validation 10 times. Each repeat represents a different random grouping of dataset
for 10-fold cross-validation. For cross-validation, our performance metric was accuracy
(number of correctly identified subjects divided by the total number of subjects).

For each classifier, we also ranked the features by their relationship to the hyper-
plane [21]. The ranking was computed by sorting in decreasing order the wj j values
from the hyperplane. Features with high values contribute the most to the decision
boundary between the classes. In our experiments, we fit the SVM model to the entire
dataset to compute the rankings. These rankings indicate which network measure or
what element of a connectivity matrix is most important to the classifier in the context
of all others in a feature set.

We used the linear SVM implementation in scikit-learn 0.16.1 with the default
parameters. These have been suggested to work well in a wide array of problems, but it
may have been possible to boost the accuracies we computed in this work by opti-
mizing these parameters using a nested cross-validation on the training data to improve
the performance of the classifier. Because the connectivity matrices are symmetric, we
converted the lower triangular part of each matrix (including the diagonal as it provides
useful information about each ROI) to a feature vector in the classifier to avoid
including redundant data.

3 Results

3.1 Comparing Tractography Algorithm Outputs

We first compared the outputs of the different tractography algorithms, in terms of the
average and maximum tract length reconstructed across the TBI and control groups.
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This was done to understand effects attributable to any bias in the ability to track fibers
in the TBI group versus controls. Any method displaying a significant group difference
in ability to track might be useful in classification analyses, although the meaning of the
group difference would unclear, as it would be confounded by an interaction between
tracking accuracy and diagnosis. We evaluated tract length (rather than tract numbers)
as FA drop out is a known problem in TBI, which could presumably lead to shorter
tracts in TBI if the tracking was disrupted. Results of these evaluations are shown in
Fig. 1. This information was not available for Probtrackx, because it outputs voxels
rather than points along a curve. Interestingly, there was no detectable difference
between groups in the average or maximum tract lengths across any of the tractography
algorithms. As expected, the probabilistic models were more successful in recon-
structing long fibers, as evidenced by significantly longer average tract lengths in both
groups for the Hough and PICo models, which are both probabilistic (p = 1.0 × 10−29).
Hough outputs will have a longer average, as it is limited to 10,000 fibers.

3.2 SVM Accuracy of Connectivity Matrices

To rank the tractography algorithms, we compared the accuracies of the SVM asso-
ciated with the matrices. Results are shown in Fig. 2. These chart the average accuracy
and standard deviation across the 10 repeats of the 10 fold cross-validation. The
connectivity matrices that had been normalized for total fiber count and for ROI
volume had significantly higher classification accuracy (p = 0.033). Among the
tensor-based models, FACT-SL and FACT-TL had the highest classification accuracy.
Among the ODF-based models, FACT-HARDI and FACT-HARDIrk had the highest
accuracy.

Fig. 1. The average (in mm) reconstructed across tractography algorithms for the TBI and
control groups. This information was not available for Probtrackx. There was significant
difference between average tract lengths of the probabilistic and deterministic methods
(p = 1.0 × 10−29).
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3.3 Most Robust Elements in Connectivity Matrix

After determining the accuracy of the different tractography algorithms, we further
investigated which connections contributed most to the classification. Figure 3 displays
the connections that ranked in the top 1 % of classification weights (of the non-zero
matrix elements) across all 9 tractography models. These results reveal an important
pattern in our results. While many of the FACT algorithms ranked well in accuracy, the
connections contributing most to this differentiation do not necessarily fit with prior
knowledge on the expected neuropathology of TBI. The connections with the highest
classification weight for the Hough method, PICo, and Probtrackx, on the other hand,
include long anterior-posterior connections, and those that involve the corpus callosum.
These are the pathways that are most consistently implicated in post mortem ultra-
structural evidence of DAI in TBI.

3.4 Group Differences

As classification weights can be noisy, we examined our data in several other ways. We
ran linear regressions comparing TBI and control, including age and sex as covariates.
We corrected for multiple comparisons using FDR (q < 0.05). We did not find any
significant group differences in matrix elements across any of the algorithms tested.
With only 34 participants, we believe this is a power issue. Heterogeneity is a issue in
TBI, which means that group differences need to outweigh the considerable within
group variance for significant differences to arise.

Fig. 2. SVM classification accuracy across the 4 tensor-based models, 4 ODF-based models,
and 1 ball-and-stick model. Accuracy of the raw matrices, fiber count norm. Matrices, and count
and ROI-volume norm. Matrices are shown. Accuracy (above columns) is the mean accuracy
across 10-fold cross validation, repeated 10 times. One-way ANOVA found significant
differences between raw matrix accuracy and count- and volume-normalized matrix accuracy
(Color figure online).
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3.5 Reliability Between Algorithms

We also examined the reliability between algorithms, focusing on cross-hemispheric
connections as the corpus callosum is so vulnerable in TBI. Specifically we wanted to
see whether the FACT algorithms failed to detect differences in cross-hemispheric
connections, or failed to reconstruct them altogether. Focusing on connections that
appeared in at least 95 % of subjects, the vast majority of interhemispheric connections
we examined were only found by one method. Only 4 interhemispheric connections
were detected by all methods. Probtrackx reconstructed the most interhemispheric
connections, followed by Camino and Hough.

4 Discussion

TBI causes widespread damage to WM integrity, but there has been little comparison
of fiber tracking methods that may be used to examine this damage. Here we compared
9 tractography algorithms, testing which methods best separated TBI patients from
controls. Several of the deterministic tractography algorithms performed very well in
terms of classification accuracy, but the neuropathology of TBI needs to be considered
when selecting candidate tracts as targets for longitudinal analysis. There is consid-
erable heterogeneity in outcome following TBI, much of it unexplained. Tracking the
integrity of these vulnerable areas may help clinicians identify those individuals who
would benefit from additional intervention.

Fig. 3. Connections with highest classification weight across 9 tractography algorithms. The top
1 % of connections (of non-zero matrix elements) are shown in blue, with all ROIs indicated by
black spheres. Left in the image is right in brain. Count- and vol.-norm. matrices were used
(Color figure online).
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Unlike degenerative brain disorders such as Alzheimer’s disease and its prodromal
stateMCI (mild cognitive impairment), where classification aids greatly in understanding
the gradual progression of disease, there is little uncertainty as to whether an individual
has suffered a moderate or severe TBI. The primary usefulness of this work with TBI is
instead identifying reliable methods to detect areas of disruption to follow longitudinally.
The corpus callosum (CC) is the most commonly reported area of disruption [22], but
deterministic methods often give poor reconstructions in areas of crossing fibers. Such
fiber crossing is extensive where the projections of the CC body intersect with the
corticospinal tract, cingulum, and inferior fronto-occipital fasciculus. Visual inspection
of the tracts revealed that tract dropoff was indeed a significant problem in the CC across
all 6 deterministic models, for both TBI and controls. Prior studies show some disruption
in tract projections in the parietal and occipital lobes, which is perhaps what the deter-
ministic methods are detecting. Even so, disruption in the CC tends to be more pro-
nounced [4–6], found using autoMATE (automated multi-atlas tract extraction) [2–6].
Hough tractography should be more robust to lesions than eigenvector propagation
methods as it minimizes a curvilinear integral through the data, so it should traverse
lesions rather than stop. All tractography methods have weaknesses, and some are more
problematic in TBI than others. From a purely classification point of view, those that fail
more in TBI might have better classification accuracy but would prove less useful in
developing biomarkers. Classification in itself is not the point, finding biologically
meaningful, statistically reliably biomarkers is.

Long anterior-posterior tracts such as the cingulum, superior longitudinal fasciculus,
and inferior fronto-occipital fasciculus also tend to be disrupted in TBI. The deter-
ministic methods we evaluated scored higher in classification accuracy, but probabilistic
methods, such as Hough, identified regions that are already consistently implicated in
the TBI literature, perhaps making them better targets for longitudinal study. The highest
classification weights for the Hough method are shown in Fig. 4. This figure displays the
connections with the top classification weights, terminal ROIs, and underlying fibers.
We also must acknowledge that there are varied outcomes in TBI, and heterogeneity in
injury severity, type, location, and a range of other mitigating factors. This heterogeneity
undoubtedly affected our results. Through our inclusion/exclusion criteria, and only
including patients in a circumscribed post-injury window (13−19 months), we have
minimized some sources of heterogeneity, but others persist and cannot be controlled for
in a study of this size.

Our classifier was based on the fiber density of these connections (meaning the
number of detected fibers that intersect each pair of regions), normalized by the total
fiber count and the total ROI volume. Prior studies report long-lasting differences in FA
and MD [23], so weighting the connectivity matrices using these diffusivity measures
as well, may increase classification accuracy. Also, we used a linear SVM classifier.
Non-linear SVM methods would likely lead to higher accuracy. A larger sample size
would also almost certainly improve our results. As this is an on-going study, this is a
question we will continue to investigate.
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Fig. 4. Top left – Highest classification-weighted connections from Hough tractography
algorithm, with corresponding region labels overlaid. Top right and bottom two rows – Hough
tractography with region labels overlaid. Only those regions that were endpoints for high
classification weight connections for the Hough method are shown.
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5 Conclusion

We compared 9 tractography algorithms, first for their ability to distinguish pediatric
TBI patients from matched controls but secondly, and more importantly, to identify
connections that show group differences, to study longitudinally. The deterministic
methods we tested yielded higher classification accuracies generally, but suffered from
a limited ability to track the projections of the corpus callosum, a prime area of
disturbance in TBI. The Hough transform probabilistic method had slightly lower
classification accuracy, but for the classification it relied most strongly on connections
that are consistent with our understanding of the neuropathology of TBI – which
consistently implicates cross-hemispheric and long anterior-posterior connections. The
success of the probabilistic models in identifying several known areas of disruption
indicate that probabilistic tractography may be beneficial in analyses of TBI.
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Abstract. White-matter lesions are associated to several diseases,
which can be characterized by neuroimaging biomarkers through lesion
segmentation in MR images. We present a novel automated lesion seg-
mentation method consisting of an unsupervised mixture model based
extraction of candidate lesion voxels, which are subsequently classified by
a random decision forest (RDF) using simple visual features like multi-
sequence MR intensities sourced from connected voxel neighborhoods.
The candidate lesion extraction prior to RDF training and classification
balanced the number of non-lesion and lesion voxels and the number
of non-lesion classes versus a lesion class. Thereby, the RDF established
highly discriminating decision rules based on such simple visual features,
which have the benefit of no computational overhead and easy extraction
from the MR images. On MR images of 18 patients with multiple scle-
rosis the proposed method achieved the median Dice similarity of 0.73,
sensitivity of 0.90 and positive predictive value of 0.61, which indicate
accurate segmentation of white-matter lesions.

Keywords: White-matter lesion · Random decision forest ·
Segmentation

1 Introduction

Neuroimaging biomarkers are early and thus important surrogates of clinical
signs in a number of neurological and cerebrovascular diseases, and mental dis-
orders. To reduce a high socio-economic impact of these diseases, development
of the biomarkers is very important as it enables early disease characteriza-
tion, monitoring and prompt treatment optimization. However, extraction of the
biomarkers requires accurate and reliable in vivo quantification of normal and
pathological brain structures, usually from magnetic resonance (MR) images.
In multiple sclerosis (MS) patients, for instance, inflammatory lesions in brain
parenchyma are visible in T2-weighted and FLAIR MR sequences. To obtain MS
biomarkers such as lesion volume, count and location, accurate segmentation of
these lesions in brain MR images is required.
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Segmentation of MS lesions can be performed manually, however, this task
is time-consuming and subjective and, thus, the obtained segmentations are
generally not reliable enough for biomarker extraction. On the other hand, auto-
mated segmentation of brain MR images is challenging because of MR acquisi-
tion imperfections (MR bias field and image noise), patient-to-patient variations
of rather complex brain anatomy and varying manifestation of pathology. For
these reasons none of the current methods can yet be considered a standard
method [3], and the development of accurate, reliable and efficient automated
lesion segmentation remains an open challenge [14].

In a recent review [3] the methods for lesion segmentation in brain MR images
were classified into unsupervised and supervised. Most unsupervised methods are
based on the estimation of a generative model of multi-sequence MR (msMR)
intensity distributions (e.g. of T1w, T2w and FLAIR), but may also use com-
bined intensity-space distributions [4]. The generative model is designed to cap-
ture the intensity distribution of the normal brain structures, while the voxels
with msMR intensities that deviate far from the estimated model are considered
as lesions. While using a simple generative model like Gaussian mixture with
one component per major normal brain structure may not sufficiently capture
typical variations of the msMR intensity distributions, more complex generative
models are very difficult to accurately estimate [16]. An atlas based unsupervised
method was developed by Shiee et al. [10] that first performs a rigid registration
of topological and statistical brain atlases to the msMR images. The atlases are
employed in an interleaved fuzzy segmentation and fast marching based extrac-
tion of topologically consistent normal brain regions and lesions. The method
jointly identifies the white-matter (WM) and lesions. Lesions are further dis-
tinguished from the WM based on their fuzzy class membership and intensity
centroid and a rather complex structure relationship model, which was intro-
duced to reduce false positives at the boundary of gray-matter (GM) and WM
tissues and between WM and the ventricles. While the unsupervised methods are
somewhat effective at accounting for heterogeneity of normal structures, their
main limitation is the lack of capacity to account for the large heterogeneity of
the visual appearance and location of lesions.

Supervised methods aim to directly account for the heterogeneity of lesion
appearance and location by learning a set of optimal visual features and discrim-
inative classifiers based on training msMR images with manual lesion segmen-
tations. Most supervised methods compute a rich set of visual features on the
training images and then prune the set in the process of learning the discrimi-
native classifiers like k nearest neighbors [11], random decision forest (RDF) [5],
logistic regression model [12], etc. Interestingly, simple low-level visual features
such as raw msMR intensities have so far been rarely used as the only features
for training the discriminative classifiers, possibly due to rather large intensity
variations within and across brain structures and lesions and across different
MR image datasets. Supervised methods often employ high-level visual features
like labels or priors of co-registered brain atlas [15], morphologic properties of
candidate lesion regions and sagittal brain symmetry [5], aggregative intensity,
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shape and location [1], etc. Aside from the atlas based features, however, most
high-level features are computed from low-level features like the msMR intensi-
ties. The selection and means of computing the high-level features is based on
the understanding of the lesion classification, which is subjective. Hence, besides
the added computational overhead of computing the high-level features, these
may discard important information contained in the low-level features that is
needed for accurate discrimination of lesions from the other structures.

In this paper, we propose a combined unsupervised and supervised method
for WM lesion segmentation. Unsupervised method was based on a generative
model of major brain structures and model-outlier driven extraction of candi-
date lesion voxels, in which the number of non-lesion and lesion voxels and the
number of non-lesion classes versus a lesion class are more balanced compared
to considering all voxels. This was important for a subsequently applied super-
vised method based on RDF, which employed simple visual features in the form
of low-level msMR intensities sourced from connected voxel neighborhoods of
the candidate lesion voxels. Retrospective analysis of the trained RDF showed
that the balancing of the number of voxels and classes by the unsupervised
method enabled the RDF to establish highly discriminating decision rules based
on such simple visual features. On msMR images of 18 patients with MS, the
proposed method achieved the median Dice similarity of 0.73, sensitivity of 0.90
and positive predictive value of 0.61, which indicate accurate segmentation of
WM lesions.

2 Methods

Lesion segmentation is obtained by consecutively executing an unsupervised and
supervised method on preprocessed msMR images, which comprise T1-weighted
(T1w), T2-weighted (T2w), and fluid attenuated inversion recovery (FLAIR)
sequences. Preprocessing that was performed on each dataset consisted of brain
mask extraction on T1w image [6], intra-subject affine registration of the three
MR sequences [7], and followed by N4 intensity inhomogeneity correction on
masked MR sequences [13] and per sequence intensity normalization by match-
ing the quartile positions of intensity histogram of a masked MR sequence to
the mean quartile positions obtained across multiple MR datasets [9]. Prior to
segmentation, the MR images were resampled to 1 mm3 isotropic resolution.

In overview, the proposed lesion segmentation approach first applies the unsu-
pervised method based on three-component Gaussian mixture modeling and
FAST-TLE [8], which extract the candidate lesion voxels SCL from the msMR
images. Next, an RDF based supervised method, trained on SCL of training
image datasets and employing low-level msMR intensities in connected voxel
neighborhoods, further distinguishes the SCL of a test image into true and false
positive lesion voxels. In the following, the unsupervised step for the extraction
of candidate lesion voxels, computation of visual features and the supervised
RDF based step are described in more detail.
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2.1 Unsupervised Extraction of Candidate Lesion Voxels

For each voxel x ∈ R
3 in registered T1w, T2w, and FLAIR MR images

3-vectors I(x) = {IT1w(x), IT2w(x), IFLAIR(x)} was formed. The distribution
of I(x) : x ∈ S, where S is a brain mask [6], was modeled by a three-component
Gaussian mixture, which represented three major normal-appearing brain struc-
tures, i.e. cerebrospinal fluid (CSF), GM and WM. By registering the MNI atlas
to T1w image, the atlas priors of CSF, GM and WM structures were used to
initialize the corresponding weights, means and covariances of the Gaussian mix-
ture components. The final mixture parameters were obtained using the FAST-
TLE [8] with an outlier trimming fraction set to 0.1. Then, a set of candidate
lesion voxels SCL was formed from voxels, which had the FLAIR intensity higher
than the mean GM intensity, estimated on the FLAIR sequence. In this way, the
number of voxels |SCL| for further classification was reduced approximately by
a factor of five compared to |S| with a small trade-off in overall sensitivity to
actual lesion voxels (cf. Fig. 1b, c).

2.2 Visual Features for RDF

For each candidate lesion voxel xc ∈ SCL an ensemble of visual features φ(xc)
was extracted from I(x) in a 3D neighborhood N (xc, N), in which the central
voxel xc was enclosed by (2N + 1) × (2N + 1) × (2N + 1) cubic neighborhood
(Fig. 1d). Ensemble of visual features for point xc was obtained as:

φ(xc, N) = {Ii(x) : x ∈ N (xc, N); i = T1w,T2w,FLAIR}, (1)

which comprises all the msMR intensity values contained in N (xc, N). For later
analysis of feature influence the neighborhood N (xc, N) was decomposed into
non-overlapping layers L(xc, L); L = 0, . . . , N (Fig. 1e). For instance, N (xc, 2)
was decomposed into three non-overlapping layers L(xc, 0), L(xc, 1) and L(xc, 2).
Analogously to (1), the ensemble of visual features in a layer L was obtained as
φL(xc, L) = {Ii(x) : x ∈ L(xc, L); i = T1w,T2w,FLAIR}.

Fig. 1. (a) FLAIR image with (b) reference segmentation SREF (red) and (c) the
estimated volume of interest SCL (blue). (d) A 5×5×5 neighborhood N (xc, 2) around
the voxel xc ∈ SCL. (e) The second layer of N (xc, 2 denoted as L(xc, 2).
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2.3 RDF Based Lesion Classification

The RDF used for classification was trained on M msMR images Im(x); m = 1,
. . . , M , for which reference lesion segmentation SREF was available (Fig. 1b).
A set of true positives (TP) STP and a set of false positive (FP) SFP lesion
voxels were created for training the RDF. The set STP contained those points
xc ∈ SCL, which were also part of SREF (Fig. 1b). The set of FPs was selected
such that SFP = {x : x /∈ STP ∧x ∈ SCL}. To balance the cardinality | · | of the
two point sets, the points in smaller of the two sets STP and SFP were randomly
multiplicated such that |STP | ≈ |SFP |.

The visual features for training the RDF were computed as φ(xc). Cor-
responding class indicator variable c(xc) ∈ {TP, FP} was set according to
the reference segmentation SREF . The RDF had T independent decision trees
Ψt; t = 1, . . . , T of depth D and, to determine optimal node splits for each tree,
was trained by maximizing information gain [2]. The number of points in the
training sets STP and SFP that reach a certain leaf were used to compute the
posterior probabilities pt(c(xc)|φ(xc)) at each leaf in the t-th tree.

A trained RDF was used to classify candidate lesion voxels in SCL as
extracted by the unsupervised method. For each xc ∈ SCL the ensemble of visual
features φ(xj) was computed, then the posterior probabilities over T trained
trees were evaluated by the RDF and, finally, averaged so as to obtain the final
posterior probability map P(xc):

P(xc) =
1
T

T∑
t=1

pt(c(xc) = TP|φ(xc)), (2)

Classification into non-lesion or lesion was obtained by thresholding P(xc) by
τL ∈ [0, 1]. The set of voxels classified as lesion was SL = {x : P(x) > τL ∧ x ∈
SCL}.

3 Experiments and Results

3.1 MR Datasets and Ground Truth

For the purpose of evaluating the lesion segmentation method a cohort of 18
patients with MS were imaged on a 3T Siemens Magnetom Trio MR system at
the University Medical Centre Ljubljana (UMCL). All 18 subjects have given
written informed consent at the time of enrollment for imaging. The authors
have obtained approval from the UMCL to use the data. The authors confirm
that the data was analyzed anonymously.

Each patient dataset consisted of brain MR images with multi-slice axial T1w
and T2w (3 mm slice thickness), and a 3D FLAIR sequence (1 mm3 isotropic).
Reference lesion segmentations were created manually by two neuroradiologists,
who could observe in side-by-side view the T1w, T2w and FLAIR registered
in the 1 mm3 isotropic space of the FLAIR images. The neuroradiologists then
merged and jointly revised the merged segmentations to obtain final consensus
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reference segmentations, which were used to evaluate the lesion segmentation
methods. The range of lesion volume computed from the reference segmentations
varied from 4.1 to 55.9 ml across all datasets.

3.2 Experiments

The supervised RDF method was evaluated using three-fold cross-validation: 18
datasets were randomly split into three groups of six images, the RDF train-
test process was repeated three times, each time using two different groups of
total 12 datasets for training and the remaining group of 6 datasets for testing.
The RDF was trained using T = 20 trees with a depth of D = 10 with the
T1w, T2w and FLAIR intensities, which were sourced from connected voxel
neighborhoods. To analyze the impact of different voxel neighborhoods of size N
on lesion segmentation, the neighborhood sizes N = 0, 1, 2 were tested. Further,
for neighborhood size N = 1, we performed three additional experiments to test
the impact of using only the intensities of FLAIR or the intensities of a pair
of sequences ({T1w, FLAIR} and {T2w, FLAIR}) compared to using all three
sequences ({T1w, T2w, FLAIR}).

Performance of the proposed lesion segmentation was evaluated on all 18
datasets by computing Dice similarity coefficient (DSC), sensitivity as true pos-
itive rate (TPR) and positive predictive value (PPV) between the reference and
lesion segmentations, obtained by thresholding the average posterior probability
maps P(xj) with τL = 0.5. For comparison we also evaluated on all 18 datasets
the state-of-the-art unsupervised topology-preserving anatomical segmentation
method (LTOADS) [10].

The impact of particular feature on the RDF based lesion classification was
analyzed across layers L(xc, L); L = 0, . . . , N and across MR sequences by
observing the frequency of feature φL(xc, L); L = 0, . . . , N selection across tree
nodes in the RDF. The obtained frequency was normalized according to the
highest frequency across layers or sequences.

3.3 Results

Results of evaluation of the lesion segmentation methods are given in Table 1.
Figure 2 shows box-whisker plots of the DSC values computed for the visual fea-
tures in connected voxel neighborhoods of sizes N = 0, 1, 2. Using voxel intensi-
ties (N = 0) gives similar DSC values compared to the unsupervised LTOADS
method. Compared to N = 0, the use of msMR intensities of the 3 × 3 × 3
connected voxel neighborhood (N = 1) as visual features significantly increased
the DSC. Further increasing N to 2 only slightly increased the DSC value.

The proposed method had a very low DSC in one case, in which lesion load
was the lowest. This case contained a number of small regions of high FLAIR
intensity in the GM that were erroneously classified as lesions by the proposed
method. Consequently, a high number of false positive lesion voxels and the low
number of true positive lesion voxels resulted in a low DSC value.
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Table 1. Median values of DSC, TPR and PPV computed across 18 test datasets.
FLAIR was abbreviated as F.

Metric Unsupervised Supervised, {T1w,T2w,F} Supervised, N = 1

LTOADS SCL N = 0 N = 1 N = 2 {F} {T1w,F} {T2w,F}
DSC 0.63 0.15 0.57 0.71 0.73 0.68 0.70 0.69

TPR 0.48 0.92 0.85 0.91 0.90 0.89 0.90 0.90

PPV 0.88 0.08 0.44 0.59 0.61 0.57 0.58 0.58

Fig. 2. Box-whisker plots of DSC values for (a) LTOADS method [10] and the proposed
method tested with three connected voxel neighborhood sizes (N = 0, 1, 2), and (b)
the proposed method (N = 1) based on intensity features of different MR sequences.

Figure 2b shows box-whisker plots of the DSC values computed using fea-
tures sourced from various sets of MR sequences and a 3×3×3 connected voxel
neighborhood (N = 1). Compared to Fig. 2a the selection of the neighborhood
size has a greater impact on the DSC values compared to the selection of MR
sequences. Using less than all the three sequences only slightly decreased the
DSC values, but increased the variability of DSC values observed across the 18
datasets. Though not shown here, the DSC values obtained without the use of
FLAIR sequence were significantly worse. This was expected, since the intensities
of FLAIR were generally the most frequent visual feature employed in RDF clas-
sification in any of the tested sequence sets containing FLAIR, but also because
the lesions are most clearly depicted in FLAIR and thus neuroradiologists mainly
relied on FLAIR to create the reference segmentations.

Figure 3 shows the normalized frequency of visual features φ(xc) in RDF for
each of the two or three layers L (Fig. 3a and b, respectively) and per sequence,
from which the intensities were sourced (Fig. 3c–e). Features from the zeroth
layer L = 0 (i.e. central voxel) were most frequently used in RDF classification,
while features in the second layer L = 2 did not contribute much to classifica-
tion. Increasing the connected voxel neighborhood N from 0 to 2 (cf. Fig. 3c,
e) noticeably changed the balance between the normalized feature selection fre-
quencies across sequences. While all sequences equally contributed to the lesion
classification with N = 0, the normalized frequency of FLAIR features generally
increased with larger N .
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Fig. 3. Normalized frequency of T1w, T2w and FLAIR intensity features in RDF
classification across layers L = 0, . . . , N for voxel neighborhoods (a) N = 1, and (b)
N = 2 and sequences for voxel neighborhoods (c) N = 0, (d) N = 1, and (e) N = 2.

Figure 4 shows the contribution of each visual feature φ(xc) in the 5 × 5 × 5
(N = 2) connected voxel neighborhood to the classification of lesion candidates
SCL. As features are propagated through the RDF during classification, the
number of tree nodes that selected a particular feature type (e.g. intensity of
T1w, T2w, FLAIR from L = 0, 1, 2) was accumulated across all trees for each
voxel in the brain mask. As observed in Fig. 3, FLAIR features were used more
frequently than the T1w and T2w features. In the zeroth layer L = 0, the FLAIR
and T2w features were mainly used to detect the lesions (TPs), while FLAIR was
also frequently used to distinguish FPs at WM-GM tissue interface. The T1w
intensity in L = 0 was rarely used, however, interestingly, the intensity from the
first layer L = 1 of T1w was frequently used to eliminate FPs at WM-GM tissue
interface. In all the layers L = 0, 1, 2 the T1w sequence was sometimes used to
resolve FPs due to dirty appearing WM, as observed between the two lesions
posterior to the left ventricle (Fig. 4).

Figure 5 shows the obtained lesion segmentations for LTOADS and the pro-
posed method based on RDF features sourced from three different connected
voxel neighborhood sizes (N = 0, 1, 2), with the reference segmentation super-
imposed onto the FLAIR sequence. Using N = 0 resulted in more FPs compared
to using a larger N , while there was little or no visual difference between lesion
segmentations obtained with N = 1 and N = 2. This is also reflected in minor
changes of evaluation metrics between N = 1 and N = 2 in Table 1. Compared
to the proposed method, LTOADS segmentations have less false detections, how-
ever, they have quite a substantial amount of non detected lesions.
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Fig. 4. Normalized frequency of visual features across sequences (T1w, T2w, FLAIR)
and connected voxel neighborhood layers (L = 0, 1, 2) with respect to the voxel location.
Reference lesion segmentation is superimposed (red) onto the FLAIR image.
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Fig. 5. Axial cross-sections of the reference and the obtained lesion segmentations by
LTOADS [10] and the proposed method for N = 0, 1, 2. Color labels: true positives
(green), false positives (red), and false negatives (blue).

4 Discussion

The advantage of the proposed lesion segmentation method is the extraction of
candidate lesion voxels using an unsupervised step, which is relatively robust to
the heterogeneity of MR intensity of normal brain structures and which may also
be used to compensate these variations. Compared to the number of all voxels
in the image, the obtained relatively small set of candidate lesion voxels enables
the supervised method based on RDF to learn highly discriminating decision
rules during the training phase based on simple low-level visual features like
multi-sequence MR intensities sourced from a connected neighborhood of each
voxel. Hence, the extraction of high-level features, which, besides adding some
computational overhead, is often difficult to perform in an accurate and robust
manner, is not required.

The impact of applied visual features was analyzed on 18 MR images of MS
patients, which contained lesions in the WM, so as to determine the optimal size
of the connected voxel neighborhood as a trade-off between the discriminative
power of added features and their number used in RDF training and execution.
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Namely, a high number of features might not be feasible in view of increased
computational and storage complexity. Performance of lesion segmentation for
differently sized connected voxel neighborhoods was evaluated using three quan-
titative metrics: DSC, TPR, and PPV. The median values of all three metrics
(Fig. 2, Table 1) increased significantly by using the 3×3×3 connected neighbor-
hood (N = 1), as compared to using central voxel only (N = 0), in the ensemble
of visual features. Furthermore, increasing N to 2 only slightly increased the
median values of metrics, however, the gain was rather small compared to the
added number of features. A similar comparison between different sets of MR
sequences showed only a marginal change in metrics if, compared to FLAIR,
either the T1w or T2w or both were used for classification. As long as FLAIR is
used for lesion classification in the RDF, the choice of the set of MR sequences
has a much lower impact on the final lesion segmentation performance than the
size of connected voxel neighborhood.

A detailed analysis of the contribution of each feature to classification per-
formance of the RDF (Figs. 3 and 4) showed a high influence of FLAIR intensity
features irrespective of the neighborhood size, layer or voxel location. Conversely,
T2w intensity features were used only to classify voxels belonging to the lesions
in reference segmentation, and T1w was used to classify lesion borders and to
resolve FPs at major tissue interfaces like WM-GM. An analogy can be drawn
to the manual segmentations, where a neurologist mainly relied on the FLAIR
sequence to perform lesion segmentation.

A combination of unsupervised and supervised methods can improve seg-
mentation of white-matter lesions, wherein the former reduces the training set
of visual features used later in the latter and thus improves its discriminative
power for lesion classification. Further, simple visual features from connected
voxel neighborhoods present no computational overhead and are easy to extract
from the MR images.
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Abstract. We report our methodological developments to investigate,
in a multi-center study using mean diffusivity, the tissue damage caused
by a severe traumatic brain injury (GSC < 9) in the 10 days post-
event. To assess the diffuse aspect of the injury, we fuse several atlases to
parcel cortical, subcortical and WM structures into well identified regions
where MD values are computed and compared to normative values. We
used P-LOCUS to provide brain tissue segmentation and exclude voxels
labeled as CSF, ventricles and hemorrhagic lesion and then automatically
detect the lesion load. Preliminary results demonstrate that our method
is coherent with expert opinion in the identification of lesions. We outline
the challenges posed in automatic analysis for TBI.

1 Introduction

Traumatic brain injury (TBI) remains a leading cause of death and disabil-
ity among young people worldwide and current methods to predict long-term
outcome are not strong. TBI initiates a cascade of events that can lead to
secondary brain damage or exacerbate the primary injury, and these develop
hours to days after the initial accident. The concept of secondary brain damage
is the focus of modern TBI management in Intensive Care Units. The imbal-
ance between oxygen supply to the brain tissue and utilization, i.e. brain tis-
sue hypoxia, is considered the major cause for the development of secondary
brain damage, and hence poor neurological outcome Monitoring brain tissue
oxygenation after TBI using brain tissue O2 pressure (PbtO2) probes surgically
inserted into the parenchyma, may help clinicians to initiate adequate actions
when episodes of brain ischemia/hypoxia are identified. The aggressive treat-
ment of low PbtO2 values (< 15 mmHg for more than 30 min) was associated
c© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 57–68, 2016.
DOI: 10.1007/978-3-319-30858-6 6
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with better outcome compared to standard therapy in some cohort studies of
severe head-injury patients [1]. However, another study was unable to find similar
benefits to patient outcome [2]. We are in the process of starting a randomized
controlled multi-center trial (23 centers, 400 patients) in order to assess the
impact of such therapeutic strategies (standard vs PbtO2-based).

MRI is an excellent modality for estimating global and regional alterations in
TBI and for following their longitudinal evolution [3]. To assess the complexity
of TBI, several morphological sequences are required: FLAIR (Fluid Attenu-
ated Inversion Recovery) and T2-weighted images for visualizing respectively
non hemorrhagic lesions and hemorrhagic lesions, and 3D T1-weighted image
(such as MPRAGE) for assessing volume loss. Moreover, diffusion tensor imag-
ing (DTI) offers the most sensitive modality for the detection of changes in the
acute phase of TBI [4,5] and increases the accuracy of long-term outcome pre-
diction compared to the available clinical/radiographic pronostic score [6]. Mean
Diffusivity (MD) or Apparent Diffusion Coefficient (ADC) have been widely used
to determine the volume of ischemic tissue, and assess intra- and extracellular
conditions. A reduction of MD is related to cytotoxic edema (intracellular) while
an increase of MD indicates a vasogenic edema (extracellular). Changes of MD
are expected with severe TBI. The volume of lesions on DTI shows a strong
correlation with neurological outcome at patient discharge [6]. We consider a
clinically relevant criterion to be the volume of vulnerable brain lesions after
TBI, as previously suggested [7]. In consequence, we need an automatic segmen-
tation method to assess the tissue damage in severe trauma (GSC < 9), acute
phase i.e. before 10 days after the event.

There are only a few studies that investigated alterations in TBI, mainly
on moderate or mild TBI (Glasgow score > 12) (see [8] for a review) and very
few on severe TBI, in chronic stage i.e. more than several months post-injury
[9–13] or acute phase, less than 10 days post-injury [6,14]. Clearly, current pro-
posed methods lack sufficient robustness to capture TBI-related changes without
excessive user input [15]. Skull deformation, the presence of blood in the acute
phase, the high variability of brain damage that excludes the use of anatomical a
priori information and the diffuse aspect of brain injury affecting potentially all
brain structures render TBI segmentation particularly demanding. To assess the
diffuse aspect of the injury, the brain is firstly divided into ROIs using an atlas
[6,9,16] or multiple atlases [17]. Then, a selection of the structures frequently
implicated in TBI such as thalamus, putamen, brainstem and occipital cortices is
considered [13,17]. The methods proposed in the literature are mainly concerned
with volumetric changes following TBI and scarcely report lesion load.

In this paper, we report about our methodological developments to assess
lesion load in severe brain trauma in the entire brain. We use P-LOCUS [18] to
provide brain tissue segmentation and exclude voxels labeled as CSF, ventricles
and hemorrhagic lesion. We propose a fusion of several atlases to parcel cortical,
subcortical and white matter (WM) structures into well identified regions where
MD values can be expected to be homogenous. Abnormal voxels are detected
in these regions by comparing MD values with normative values computed from
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healthy volunteers. The preliminary results, evaluated in a single center, are a
first step in defining a robust methodology intended to be used for in multi-center
studies.

2 Materials and Methods

2.1 Patients

The patients (n =5) had a GCS < 9 with a diagnosis of severe trauma. The con-
trol group (n =2) had no evidence of a past or present brain trauma. The study
was approved by the Institutional Review Board at the Hospital of Marseille and
informed consents were obtained prior to participation directly from the partici-
pants (controls) or next of kin (patients). Compared to the standard CT scan, MR
imaging allows to detect more brain lesions. For this reason, the participation to
this trial may offer benefits to each individual that largely outweighs the risks.

2.2 Data Acquisition

Images were acquired on a Siemens Verio 3 T system whole body scanner (CHU
Marseille-Timone). The following morphological sequences were acquired: axial
FLAIR (TR/TE/TI:7840/96/2500 ms, 27 contiguous slices, 0.7 × 0.7× 5 mm3),
and T2 Susceptibility Weighted-Imaging (TR/TE: 35/20 ms, 0.8× 0.8×
1.6 mm3), 3D sagittal T1-weighted sequence (MPRAGE,TR/TE/TI: 2300/2.98/
900 ms, 1 × 1 × 1 mm3). In addition, DTI was acquired in an axial plane per-
pendicular to the main field B0. The DTI parameters used were: field of view of
300 mm, matrix size 96 96, and slice thickness 2 mm (resulting in nearly isotropic
voxels). Magnetic field gradients were applied in 63 directions with a value of
1000 mT/m.

2.3 Image Processing

Preprocessing. All MRI scans were reviewed to check for motion and other
artifacts. T1-weighted and FLAIR images were processed using P-LOCUS, a
Bayesian HMRF approach for tissue and lesion segmentation [18] and resam-
pled at a resolution of 2× 2× 2 mm3. DTI images were first denoised [19] and
preprocessed using the FSL software1. The images were corrected for geometric
distortions caused by Eddy currents and intensity inhomogeneity. The diffusion
tensor was estimated, and the local diffusion parameter MD was calculated for
the entire brain in each patient and control. These parameters were computed
from the three estimated eigenvalues that quantify the parameters of water dif-
fusion in three orthogonal directions. Brain extraction, coregistration and resam-
pling were successfully realized using P-LOCUS even in cases exhibiting large
skull deformations.

1 http://www.fmrib.ox.ac.uk/fsl/.

http://www.fmrib.ox.ac.uk/fsl/
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SegmentationModel Specification. We consider a finite set V of N voxels on
a regular 3D grid. We denote by y = {y1, . . . ,yN} the intensity values observed
respectively at each voxel. Each yi = {yi1, . . . , yiM} is itself a vector of M = 2
intensity values corresponding toT1-weighted andFLAIR sequences. The segmen-
tation task is to assign each voxel i to one of K classes considering the observed
features data y. This assignment is considered latent data and is denoted by z =
{z1, . . . , zN}. Typically, the zi’s corresponding to class memberships, take their
values in {e1, . . . , eK} where ek is a K-dimensional binary vector whose kth com-
ponent is 1, all other components being 0. We will denote by Z = {e1, . . . , eK}N
the set in which z takes its values. We considered 5 classes, 4 for tissues: WM, grey
matter (GM), and cephalo spinal fluid (CSF) divided in two classes (ventricles and
extra-ventricular), plus an additional lesion class. The set of voxels V is associated
to a neighborhood system. Spatial dependencies between voxels are modeled by
assuming a Markov Random Field (MRF) prior. Denoting ψ = {η, φ} additional
parameters, we assume that the joint distribution p(y, z;ψ) is a MRF with the fol-
lowing energy function:

H(y, z;ψ) = HZ(z; η) +
∑
i∈V

log g(yi|zi;φ), (1)

where the g(yi|zi; φ)’s are probability density functions of yi.
The energy decomposes into a data term and missing data term further

specified below. For brain data, the data term
∑

i∈V

log g(yi|zi; φ) in (1) corre-

sponds to the modelling of tissue dependent intensity distributions. For our
multi-dimensional observations, we consider M-dimensional Gaussian distribu-
tions with diagonal covariance matrices. For each class k, (μk1, . . . , μkM ) is the
mean vector and {sk1, . . . , skM} the covariance matrix components. We will use
the notation μm = t(μkm, k = 1 . . . K) and sm = t(skm, k = 1 . . . K). When zi = ek
then G(yim; 〈zi, φm〉) and G(yim; 〈zi, μm〉, 〈zi, sm〉) both represent the Gaussian dis-
tribution with mean μkm and variance skm. The entire set of Gaussian parame-
ters is denoted by φ = {φkm, k = 1, . . . K, m = 1, . . . , M}. Our data term is then

defined by setting g(yi|zi; φ) ∝
M∏

m=1

G(yim; 〈zi, φm〉).
The missing data term HZ(z;β) involving z in (1) is set as follows. The

dependencies between neighboring Zi’s are modeled by further assuming that
the joint distribution of {Z1, . . . , ZN} is a discrete MRF on the voxels grid :

P (z;β) = W (η)−1 exp (−HZ(z; η)) (2)

where η is a set of parameters, W (η) is a normalizing constant and HZ is a
function restricted to pair-wise interactions,

HZ(z; η) = −
∑
i∈S

ztiγ −
∑
i,j
i∼j

ztiBzj ,

where we write zti for the transpose of vector zi and i ∼ j when voxels i and j
are neighbors. The set of parameters η consists of two sets η = (γ,B). Parameter
γ is a K−dimensional vector which acts as weights for the different values of zi.
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When γ is zero, no tissue is favored, i.e. for a given voxel i, if no information
on the neighboring voxels is available, then all tissues have the same probability.
Then, B is a K×K matrix that encodes interactions between the different classes.
If in addition to a null γ, B = b×IK where b is a real scalar and IK is the K ×K
identity matrix, parameters η reduce to a single scalar interaction parameter b
and we get the Potts model traditionally used for image segmentation.

Note that the standard Potts model is often appropriate for classification
since it tends to favor neighbors that are in the same class. However, this model
penalizes pairs that have different classes with the same penalty, regardless of the
tissues they represent. In practice, it may be more appropriate, to encode higher
penalties when the tissues are known to be unlikely neighbors. For example, the
penalty for a white matter and CSF pair is expected to be greater than that
of a grey matter and CSF pair, as these two classes are more likely to form
neighborhoods.

In practice, these parameters can be tuned according to experts, a priori
knowledge, or they can be estimated from the data. More generally, when prior
knowledge indicates that, for example, two given classes are likely to be next to
each other, this can be encoded in the matrix with a higher entry for this pair.
Conversely, when there is enough information in the data, a full free B matrix
can be estimated and will reflect the class structure (i.e. which class is next to
which as indicated by the data) and will then mainly serve as a regularizing term
to encode additional spatial information.

For the distribution of the observed variables y given the classification z, the
usual conditional independence assumption is made. It follows that the condi-
tional probability of the hidden field z given the observed field y is

P (z|y;ψ, η) = W (η)−1 exp

(
−HZ(z; η) +

∑
i∈S

log g(yi|zi, φ)

)
.

Parameters are estimated using the variational EM algorithm which provides
a tractable solution for non trivial Markov models [20].

Atlas-Based Approach. Given the variability in the spatial extent and the
magnitude of the injury in case of severe TBI, the use of values averaged from
large regions of WM would not allow the accurate detection of ‘abnormal’ values.
Indeed, if the lesions are focal, the detection power is hampered by the averaging
with healthy tissues values. The standard way is to use an atlas-based approach
where MD at each voxel is compared with normative values computed from
homogeneous regions of interest (ROIs) of a healthy volunteer’s brain acting as
a reference. We expect MD values to be homogenous inside well identified brain
regions defining local normative values. In order to be as exhaustive as possible,
we combined two atlases found in the literature. First, the Neuromorphomet-
rics atlas2, as provided with SPM123 for academic use, was used to demarcate
2 http://www.neuromorphometrics.com/.
3 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/.

http://www.neuromorphometrics.com/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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cortical and sub-cortical regions (mainly GM). For WM regions, we used the
ICBM DTI81 atlas, largely used in tractography studies to demarcate the prin-
cipal fiber tracts. In the case of overlapping labels, the ICBM DTI81 label was
selected. However these tracts represent only a small part of the WM volume. To
our knowledge there is no atlas dividing the entire volume of WM volume into
anatomically meaningful subregions. Consequently, we automatically divided the
remaining volume into cubes of 20 mm3. This size allows to obtain sufficiently
local information while maintaining WM regions large enough to compute reli-
able normative values. Our combined atlas defines 238 ROIs.

Fig. 1. Overview of the processing pipeline. After denoising, we used PLOCUS for brain
extraction and tissue segmentation, FSL for mean diffusion (MD) map creation and
SMP12 for realignment to a template (normalization). The atlas and the brain tissue
maps were combined to define 238 ROIs where detection of lesion was performed.

Our final combined atlas was then realigned (non-linear deformation using
P-LOCUS) to our control subject’s images and MD values were computed for
each ROI. Figure 1 shows the different processing steps. In the literature, for
lesion detection, authors usually transform DTI scalar maps (mostly FA) into z-
score maps to detect extreme values [3]. Given that MD value distribution is not
normal, the z-score would give a biased measure of extreme values. To avoid this
effect we chose to use two different thresholds: percentile-based and size-based.
By fixing percentile thresholds α1 for minimal and α2 for maximal values, we
identified clusters of extreme values. The skewness of the distribution is directed
toward high values of MD and knowing these values are a marker of cell death
and vasogenic edema, which are very frequent in severe TBI, we used a more
lenient threshold for α2. Figure 2 indicates the form of the MD distribution for
our two control subjects.

We considered lesions as clusters with a size higher than a given threshold β. P-
LOCUS [18] uses T1-weighted and FLAIR images conjointly to perform brain seg-
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Fig. 2. Histogram of MD values for control subjects. Percentile thresholds α1 for min-
imal and α2 for maximal values.

mentation in five classes WM, GM, Lesion and CSF (ventricles extra-ventricular).
Voxels labeled as CSF and hemorrhagic lesion were automatically excluded. The
three thresholds were empirically set on control data to keep the lesion volume
under 1% of the brain volume. α1 was fixed at the 2nd percentile, α2 at the
97.5th percentile (i.e. 2.5% for the highest values) and β at 21 contiguous voxels
(i.e. 168 ml). These thresholds were the used for lesion detection on patient data.

Manual Approach. To quantify the volume of lesions, three neuroradiologists
(OH, CB and YT) with extensive experience in lesion assessment manually seg-
mented the lesion area using the MRIcron software4. They underwent a specific
intensive training to visually detect focal lesions in MD images. Focal lesions
included any focal regions of abnormal signal in the MD map. The task was
time-consuming: for each subject (n =5) and each rater (n = 3), fifty slices were
examined to detect high values and low values of MD. The raters were unsatisfied
with their results: they were not familiar with such precise manual delineation
and despite training the task remained particularly difficult because of low con-
trast and low spatial resolution in the MD images compared to FLAIR and
T1-weighted images. To obtain a reference from these segmentations we used
the STAPLE algorithm [21]. The algorithm considers our collection of segmen-
tations and computes a probabilistic estimate of the true segmentation and a
measure of the performance level represented by each segmentation. To assess
the inter-rater variability we also computed three STAPLE segmentation refer-
ences using manual results in a leave-one-out strategy. We used four evaluation
measures to evaluate the quality of the automatic segmentation compared to the
reference ground-truth: The Dice coefficient (DC) denotes the volume overlap
(DC value of 0 indicates no overlap, a value of 1 perfect similarity), the aver-
age symmetric surface distance (ASSD) the surface fit (the lower the better),
the Hausdorff distance (HD) the maximum error (the lower the better) and
precision & recall (see details in evaluation measures computation in http://
www.isles-challenge.org/).
4 http://www.mccauslandcenter.sc.edu/mricro/mricron/.

http://www.isles-challenge.org/
http://www.isles-challenge.org/
http://www.mccauslandcenter.sc.edu/mricro/mricron/
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Fig. 3. Automatic and manual lesion delineation for five subjects (S1 to S5). For each
subject: left: automatic delineation, right: manual delineation. Green: abnormal low
MD values, Red: abnormal high MD values (Color figure online).

3 Results

Figure 3 shows for our five patients, on transverse views, the reference segmen-
tation computed using STAPLE from three rater segmentations and the corre-
sponding automatic segmentation. The normative values were computed from
two controls in each of the 238 ROIs to keep lesion below 1% for controls.

Figure 4 indicates the volumetric comparison between manual vs automatic
delineation for high MD and low MD values respectively for our five patients.
Using STAPLE, for each subject, we computed three references from the manual
segmentation provided by two raters among three. This allows to highlight the
important inter-rater variability (for instance see for S2). Volume agreements
between manual and automatic results are not perfect. Clearly, the automatic
delineation minimizes high MD values (Fig. 4, left). This is confirmed by the
low precision values with high recall values for high MD (see Table 1). Table 1
reports the values for our different evaluation measures for our five subjects. To
our knowledge no such values are available in the literature for a comparison.

Fig. 4. Left: Automatic vs manual high MD values in voxels. Right: Automatic vs
manual low MD values in voxels. Using a leave-one-out strategy we obtained three
values for each subject. Black line correlation slope.
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Table 1. Measures to evaluate the quality of the automatic segmentation compared
to the reference ground-truth. DC: the Dice coefficient, ASSD: the average symmetric
surface distance, HD: the Hausdorff distance

Evaluation measure S1 S2 S3 S4 S5

– Low High Low High Low High Low High Low High

DC 0.05 0.34 0.36 0.36 0.26 0.39 0.21 0.42 0.15 0.58

ASSD (in mm) 21.48 6.71 5.24 4.14 7.99 4.28 6.85 6.74 10.37 3.06

HD (in mm) 83.76 35.78 46.39 45.61 50.99 39.45 44.36 44.77 48.17 56.67

Precision 0.03 0.29 0.33 0.23 0.20 0.28 0.28 0.31 0.37 0.45

Recall 0.10 0.42 0.42 0.85 0.37 0.63 0.17 0.65 0.10 0.82

4 Discussion

In our study, vulnerable brain lesions were defined based on morphological images
and by abnormal values of MD using DTI to distinguish between cytotoxic and
vasogenic edema. We used specific analysis of each individual case because the
spatial distribution of brain trauma lesion is highly heterogeneous and can not
be revealed by a group study. We compared lesion volume delineation using a
multi-modal atlas-based automatic method to that of manual delineation by three
neuroradiologists. Our results show that the proposed method allows identifica-
tion of some lesions in severe TBI in coherence with that defined by our experts.
Several measures that assess the quality of the automatic segmentation com-
pared to the reference ground-truth (see Table 1) reveal that some discrepan-
cies exist between manual and automatic methods. Clearly, these results should
be improved. To our knowledge no such measures have been published yet for
automatic lesion detection in severe TBI. These values may serve as a starting
point for comparison with alternative techniques. Our trained experts reported
that there were not totally confident with their final rating. We observed that
lesions were particularly difficult to segment manually due to low contrast and
low spatial resolution in diffusion images compared to FLAIR or T1-weighted
images; these latter being more familiar to the experts. This was reflected by
the high inter-rater variations across the experts (see Fig. 4). We used STA-
PLE to compute a probabilistic estimate of the true segmentation. However, the
low number of raters involved (n = 3) and high inter-rater variability limit the
validity of such a “ground truth”. This could explain in part the observed dis-
crepancies between manual vs automatic approaches. The manual task required
a specific training and was time-consuming. Consequently, it was difficult to
involve more trained experts to define an “expert consensus” and limit bias.
In this study we considered mean diffusivity (MD), a physiological parame-
ter extracted from DTI scans, to distinguish between vasogenic and cytotoxic
edema. While MD is sensitive to sparse small lesions with low MD values (cor-
responding to high-level intensity spots in FLAIR) and allows physical quantifi-
cation of the lesion in terms of water molecule diffusivity alteration, high-level
contrast in FLAIR images allows an easy delineation of large damaged regions
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with high MD values. Further work should be done to improve brain injury
characterisation in exploiting such complementary information with our auto-
matic method.

The methodological difficulties in performing MRI in the acute phase of
severe TBI explain the rarity of studies for this period. Only two studies [6,14]
address the problem of severe trauma (Glasgow score < 9) in acute phase i.e.
less than 10 days post-injury. The former, a multi-center study, aimed to define a
long-term outcome prediction from quantitative parameters extracted from DTI
in specific ROIs in white matter. The latter was concerned with the evolution
of ADC values in the traumatic lesions. No quantitative measurement of the
lesion volume was reported for these two studies. Compared to Tumor, Stroke
or Multiple Sclerosis, a few papers addressed automatic lesion segmentation in
TBI5. The majority of TBI studies report volume changes computed in specific
ROIs. Few approaches report the lesion load [15,22]. Because the spatial distri-
bution of the lesion cannot be anticipated, our approach considered the entire
brain without any a priori spatial hypothesis. We used two atlases to parcel the
entire brain. MD was then computed in each ROI. An MD-driven alternative will
be to search for homogenous MD territories clustering directly from the set of
control DTI. Strangman et al. [13] reported inadequate skull stripping and poor
subcortical structure segmentation with the most common method, FreeSurfer.
Using non-linear deformation of a priori tissue probability maps on individ-
ual T1-weighted and FLAIR images we successfully used P-LOCUS to provide
brain tissue segmentation and exclude voxels labeled as CSF in ventricules and
hemorrhagic lesions. To detect outlier/abnormal MD values, we defined norma-
tive values on normal controls. Such normative values are highly scanner and
sequence dependent and, as in our multi-center study, should be defined for each
center involved. Because the influence of age on MD values, the range of normal
control age should be matched with TBI patients. The influence of the size of the
normal control population on the norm definition should be evaluated. Recently,
[23] proposed a method to harmonize diffusion MRI data across multiple scan-
ners. Several rotation-invariant features are computed from spherical harmonic
basis functions and used to estimate a region-based linear mapping between
signal from different scanners. Such a method might be used to define norma-
tive values in pooling normal controls from different sites. A poor estimation of
the normative mean in each ROI of the control group biases the detection of
aberrant values [22]. Instead of an atlas-based approach, a voxel-based approach
to segment abnormal values directly from individual diffusion-weighted images
could be introduced avoiding the definition of normative values. However, such
an approach remains difficult due to the low contrast present in these images.

In conclusion, this paper reports the image processing steps and the diffi-
culties encountered of the first program aiming to assess the impact of a thera-
peutic strategy based on PbtO2 in monitoring the volume of severe post-trauma

5 Between 2004–2014, more than 500 papers were published on lesion segmentation for
each of these pathologies and only 53 for TBI. Source WebOfScience with keywords:
Brain and MRI and (Segmentation or Classification) and ‘Pathology’.
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cerebral lesions and on neurological outcome in a randomized controlled trial.
We hypothesise that early monitoring of brain oxygenation with PbtO2 can
reduce the volume of vulnerable brain lesions and, possibly, improve neurolog-
ical outcome in TBI patients from an unfavorable to a favorable neurological
outcome. These preliminary results obtained on a small number of subjects in
one center are encouraging and a larger evaluation including more controls and
patients is undergoing.
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Abstract. Brain tumor segmentation and brain tumor growth assess-
ment are inter-dependent and benefit from a joint evaluation. Starting
from a generative model for multimodal brain tumor segmentation, we
make use of a nonparametric growth model that is implemented as a con-
ditional random field (CRF) including directed links with infinite weight
in order to incorporate growth and inclusion constraints, reflecting our
prior belief on tumor occurrence in the different image modalities. In
this study, we validate this model to obtain brain tumor segmentations
and volumetry in longitudinal image data. Moreover, we use the model to
develop a probabilistic framework for estimating the likelihood of disease
progression, i.e. tumor regrowth, after therapy. We present experiments
for longitudinal image sequences with t1, t1c, t2 and flair images,
acquired for ten patients with low and high grade gliomas.

1 Introduction

The assessment of disease progression after brain tumor treatment is very impor-
tant in clinical practice for disease surveillance and treatment planning, but also
in drug trials and clinical studies for evaluating drug or treatment efficacy.

Automatic tumor segmentation is well-suited for tumor volumetry. In con-
trast to expensive manual segmentations, they obtain fast, reproducible and
objective results. Over the past years, several automatic tumor segmentation
methods have been developed [1]. Among these, longitudinal methods have been
implemented to explicitly use time information. For example in [2], 4-dimensional
(4D) spatio-temporal cliques are included in a CRF, enforcing regularisation
over time. However, this temporal regularisation tends to smooth sudden growth
events and the empirical temporal smoothness parameters are not easy to learn.
c© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 69–79, 2016.
DOI: 10.1007/978-3-319-30858-6 7
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The authors of [3] present a model based on a 4D CRF using infinite link func-
tions that effectively constrain voxel classifications depending on predefined con-
ditions, which allow to constrain tumor segmentations to grow or shrink for every
time transition. This model can handle abrupt changes in tumor growth and only
includes one parameter for spatial regularisation.

In literature, tumor growth is often modelled by means of parametric models
based on cell kinetics and reaction-diffusion processes, as reported in [4]. These
models often aim to predict tumor growth (rather than study it in retrospect)
and do not calculate tumor segmentations in itself (prior tumor segmentations
are included for initialisation purposes). The authors of [5] were the first to use a
parametric growth model to assist in brain tumor segmentation. However, para-
metric models are computationally expensive, make assumptions about tumor
growth regularity and cannot easily handle post-operative tumor structures with
resection cavities.

We believe tumor growth modelling and segmentation are inter-dependent,
and aim to exploit this property by jointly optimising both in the same frame-
work. We adopt the longitudinal segmentation model developed in [3] and imple-
ment it as a nonparametric tumor growth segmentation model. We further
develop the model to include a fast and robust estimation of the spatial regulari-
sation parameter and extend this model to detect tumor regrowth in longitudinal
sequences. We consider the clinical scenario where a tumor shrinks after therapy
and automatically detect the time point at which tumor regrowth begins.

2 Methods

An overview of the model is depicted in Fig. 1. We start from a set of 3D MR
intensity images, consisting of M modalities (t1, t1c, t2 and flair), each avail-
able for T time points: I = {I st}s∈(1,...,M),t∈(1,...,T ), where s is a modality index
and t a time index. Furthermore, we use prior tumor probability maps as an
input to our model: X = {X st}s∈(1,...,M),t∈(1,...,T ). These can for example be
calculated by means of generative models lacking spatial, temporal and inter-
modality coherence.

The growth model is specified through growth and inclusion constraints. The
growth constraints specify whether the tumor is expected to grow or shrink for
each time transition. They can either be specified in the model as to incorporate
prior information (as in Experiment 1, Sect. 3.2) or they can be learned in a
probabilistic framework (as in Experiment 2, Sect. 3.3). They are represented
by a binary array indexed over all time transitions, g = [g1, g2, . . . , gT−1], g ∈
{0, 1}T−1, where each element gi imposes growth (1) or shrinkage (0) in between
time points i and i + 1.

The inclusion constraints are represented by a set of pairs of modality indices,
(s′, s′′) ∈ Sincl, such that all tumor voxels in the first modality, s′, are a subset of
the tumor voxels in the second modality, s′′. The inclusion constraints allow us
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Unitemporal
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X Unitary potentials
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Fig. 1. Overview of the proposed method. The inputs are listed and incorporated in
certain terms of the energy function of the CRF. Inference is calculated by means of
graph cut and outputs a binary segmentation. In this work we also use the energy value
as an output of the CRF, in order to evaluate the likelihood of the growth constraints.

to incorporate our prior knowledge of tumor occurrence across different modal-
ities: the tumor voxels in t1 and t1c are to be a subset of the tumor voxels in
t2 and the tumor voxels in t2 are to be a subset of the tumor voxels in flair.

2.1 A 4D CRF as a Nonparametric Growth Model (NPGM)

Graph Construction. The CRF is implemented as a graph consisting of nodes
V, which are represented by the voxel grid and the tumor/non-tumor labels, and
edges E , which are quantified by edge weights and represent the affinity between
nodes: G = 〈V, E〉. The edge weights define an energy function E as a function
of the output segmentation Y = {Y st}s∈(1,...,M),t∈(1,...,T ). The energy function
quantifies how well the output segmentation Y reflects the affinity between
nodes as specified by the edge weights.

Implementation of the Energy Function. The energy function E is imple-
mented as in [3]. It is modelled such that favourable states of Y yield low
energies. Minimisation of the energy function E solves for the optimal output
segmentation Y .

In general, the energy function consists of unitary potentials U and pair-
wise potentials P , weighted by a spatial regularisation parameter λ. The uni-
tary potentials describe individual label preferences and the pairwise poten-
tials describe voxel interactions encouraging spatial coherency. In this study, we
extended the energy function by two functions, f∞ and h∞, to account for edges



72 E. Alberts et al.

of infinite weight, which we introduce in order to exclude pairs of labels violating
our growth or inclusion constraints. The energy function is then written as:

E(Y |I ,X , Θ) =
T∑

t=1

M∑

s=1

⎛

⎝
∑

p∈P
U(xstp, ystp) + λ

∑

(p,q)∈N
P (istp, istq, ystp, ystq)

⎞

⎠

+

T−1∑

t=1

M∑

s=1

∑

p∈P
f∞(gt, ystp, ys(t+1)p) +

T∑

t=1

M∑

s′=1

M∑

s′′=1

∑

p∈P
h∞(Sincl, ys′tp, ys′′tp), (1)

where Y is the binary segmentation output, Θ = {g , Sincl} the growth and
inclusion constraints, istp ∈ I st, xstp ∈ X st, ystp ∈ Y st, P the voxel grid of the
3D volumes and N the set of voxel pairs within a spatial neighbourhood. We
briefly elaborate on the implementation of each term.

The unitary potentials are implemented based on the tumor probability
maps X :

U(xstp, ystp) = ystp (1 − xstp) + (1 − ystp) (xstp) . (2)

The spatial pairwise potentials are implemented within the 3D volumes. They
are quantified by a Gaussian, modelling the MR intensity difference between each
voxel pair within a 3D neighbourhood matrix N26:

P (istp, istq, ystp, ystq) =

⎧⎨
⎩

d(p, q)−1 exp − (istp − istq)2

2σ2
if ystp �= ystq,

0 else,
(3)

where d(p, q) is proportional to the voxel spacing and σ2 is set to the variance
of image intensities present in the 3D volume.

The growth constraints are imposed on voxel pairs belonging to the same
modality, having the same index within the 3D volumes, and being strictly con-
secutive in time. An infinite penalty is imposed if (a) growth is imposed but the
voxels switch from tumor, ystp = 1, to non-tumor, ys(t+1)p = 0, or (b) shrinkage is
imposed but the voxels switch from non-tumor, ystp = 0, to tumor, ys(t+1)p = 1:

f∞(gt, ystp, ys(t+1)p) =

⎧⎪⎨
⎪⎩

∞ if (gt = 1) ∧ (ystp > ys(t+1)p),
∞ if (gt = 0) ∧ (ystp < ys(t+1)p),
0 else.

(4)

The inclusion constraints are imposed on voxel pairs of the same time point and
having the same index within the 3D volumes. An infinite penalty is imposed if
the voxels belong to two modalities in between which the inclusion constraint
holds, (s′, s′′) ∈ Sincl, and if the voxel in s′ is tumor and the voxel in s′′ is not:

h∞(ys′tp, ys′′tp) =

{
∞ if ((s′, s′′) ∈ Sincl) ∧ (ys′tp > ys′′tp),
0 else.

(5)

Once the edge weights have been assigned based on this energy function, the
CRF is solved by graph cut, as described in [6].
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Spatial Regularisation Parameter λ. The regularisation parameter, λ, is an
important system parameter: an overly high value leads to under-segmentation
and an overly low value leads to poor spatial regularisation. Moreover, a good
value for λ differs from one case to another. There are several methods to learn
this parameter. A fairly easy, fast and robust method is adopted in [7], where
the parameter is made spatially adaptable. That is, λ is set to lower values for
voxels close to the edges of the images:

λstp = (1 − Lstp)λmax, (6)

where Lstp is the edge probability of a single voxel and λmax is empirically set
to 3. We calculate the edge probability map L based on the tumor probability
maps X , by applying an edge detector and subsequent Gaussian smoothing.

2.2 Switching from Tumor Shrinkage to Tumor Regrowth

Once the CRF is solved by graph cut, we obtain an energy value. In [8] these
energy values are used to calculate the confidence in spatial voxel classifications.
More precisely, the confidence in a single voxel classification in [8] is based on
the energies acquired from graph cuts with and without a voxel classification
constraint, which is imposed by an infinite link.

As our growth constraints are enforced by the same infinite link functions,
we can transfer this spatial uncertainty measure to the temporal domain and
quantify uncertainties – or confidences – in specific tumor growth constraints.

First, consider a growth constraint for a single time transition from t to
t + 1: gt = a. We define the min-marginal energy for this growth constraint
ψt,a (t being the time index, a ∈ {0, 1} the shrinkage/growth constraint), as the
minimal energy within the family of energies obtained from graph cuts for all
growth constraint patterns where gt is kept equal to a:

ψt,a = C−1 min
g ,Y

E(Y |X , g) , ∀g ∈ {{0, 1}T−1|gt = a}, (7)

with C as the number of voxels constrained with an infinite temporal link. Note
that the calculation of ψt,a requires 2T−2 graph cuts. The confidence in the
growth constraint for this single time transition, σt,a, can then be calculated as
a function of the min-marginal energies ψt,a, similar to [8]:

σt,a =
exp (−ψt,a)

exp (−ψt,a) + exp (−ψt,1−a)
, a ∈ {0, 1}. (8)

This calculation requires 2T−1 graph cuts. Note that this set of graph cuts cov-
ers all possible patterns of growth constraints. The energies of these graph cut
solutions can be re-used to calculate σt′,a′ for all other time points t′.

The confidence in the entire pattern of growth constraints, σg , is then calcu-
lated as the product of confidences over all time transitions: σg =

∏T−1
i=1 σi,gi .
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3 Experiments

3.1 Data Specifications

We used ten patient-specific datasets acquired at the German Cancer Research
Center (DKFZ), yielding a total of 248 images. Each patient-specific dataset
contains four multimodal sequences (t1, t1c, t2 and flair) for three to nine
time points, with time intervals of ± 90 days. Patients initially suffered from
low grade gliomas, but some developed high grade gliomas in the course of the
study.

All images within the same dataset are skull-stripped and affinely co-
registered. For each image, manual ground truth segmentation is available in
three orthogonal slices intersecting at the tumor centre. The manual segmenta-
tions were acquired by a clinical expert who took images of several time points
into account at once.

We calculated tumor probability maps with a generative model based on
an Expectation-Maximisation (EM) segmenter, as in [9]. Modalities belonging
to the same time point are processed together, but time points are processed
independently. The segmentation maps are concatenated over all time points, to
obtain a valid input for the NPGM.

3.2 Experiment 1: Segmentation Accuracy

In this experiment we compare (a) EM segmentations (i.e. acquired from gen-
erative model), (b) NPGM segmentations (i.e. acquired from the nonparametric
growth model) where no growth constraints are included, (c) NPGM segmen-
tations where the tumor is constrained to grow over all time transitions and
(d) NPGM segmentations where the spatial regularisation parameter is voxel-
adaptive as in (6).

Table 1 reports the flair Dice scores for all ten datasets, for each of these
segmentations. Dice scores of t2 and t1 are comparable and not all datasets are
suitable for t1c segmentations. The Dice scores are highest for the segmenta-
tion where the tumor is constrained to grow along time and where the spatial
regularisation parameter is voxel-adaptive.

Figure 2 shows tumor volumetry for three datasets along time. This figure
illustrates that the use of growth constraints does not only attain higher Dice
scores, but also results in a more realistic progress in tumor volume. t2 and
flair segmentations are shown for three patients in Fig. 3 and segmentations
for all modalities are shown for one patient in Fig. 4. These figures illustrate a
clear improvement from EM to NPGM segmentations.

In terms of computation time, a NPGM segmentation of a dataset of eight time
points and four modalities takes ±10 s on a Intel R© Xeon R© Processor E3-1225 v3.

3.3 Experiment 2: Detection of Tumor Regrowth

We adopt the probabilistic formulation for different patterns of growth con-
straints (Sect. 2.2) to detect at which point tumor regrowth begins. We shorten
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Table 1. flair Dice scores for all ten datasets segmented by the EM segmenter and by
the nonparametric growth model (NPGM) with different parameter settings concerning
growth constraints and spatial regularisation parameter.

EM segmentation: [79 % ± 8 %]

63% 79 % 89% 77% 67 % 84% 80 % 79 % 84% 86 %

NPGM - no growth constraints, adaptive λ: [81 % ± 5 %]

78% 80 % 90% 82% 71 % 84% 80 % 80 % 82% 87 %

NPGM - constrained to grow, fixed λ: [82 % ± 5 %]

74% 78 % 91% 81% 80 % 85% 81 % 82 % 83% 86 %

NPGM - constrained to grow, adaptive λ: [83 % ± 4 %]

81% 78 % 93% 82% 81 % 84% 83 % 82 % 83% 87 %

Fig. 2. Tumor volumetry of t2 (dashed lines) and flair (solid lines) showing a clear
advantage in the application of growth constraints (red) rather than leaving them out
(green) when comparing with ground truth (blue) (Color figure online).

the datasets to include three time points. Based on the ground truth volumes,
we rearranged the order of the three time points in order to get 84 sequences
with:

1. tumor shrinking for both time increments, that is: g0 = [0, 0],
2. tumor shrinking for the first time increment and growing for the second time

increment, that is: g1 = [0, 1].

Using the probabilistic growth framework explained in Sect. 2.2, we now cal-
culate the probabilities of g0 or g1 for each sequence. This experiment is of
clinical relevance: tumors tend to shrink temporarily after therapy and tumor
regrowth needs to be detected as soon as possible. For each sequence, the algo-
rithm will estimate confidence measures in g0 and g1. We obtain probabilities
for both tumor growth patterns by normalising these confidence measures:

[pg0
, pg1

] = [σg0
, σg1

]/(σg0
+ σg1

). (9)

Figure 5 illustrates the amount of correctly classified tumor growth patterns.
Of 168 datasets, 128 datasets were correctly classified, 35 datasets were falsely
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Fig. 3. flair and t2 images for three patients with 6, 5 and 4 time points, annotated
with EM segmentations (yellow), NPGM segmentations with a strict growth constraint
along time (red) and ground truth (blue) (Color figure online).

estimated to grow after the second time point (false positives) and only 5 datasets
were falsely estimated to keep shrinking after the second time point (false neg-
atives). To the right in Fig. 5, one can see that the accuracy of tumor regrowth
detection is highly related to the relative increase in tumor volume between the
last time points. As expected, the difference in the tumor growth pattern prob-
abilities (|pg1

− pg0
|) tends to be lower for misclassified tumor growth patterns.
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Fig. 4. flair, t2, t1c and t1 images for one patient with 7 time points, annotated
with EM segmentations (yellow), NPGM segmentations with a strict growth con-
straint along time (red) and ground truth (blue). Ground truth for t1 and t1c is
not shown. These segmentations illustrate the spatial regularisation of the CRF (Color
figure online).

Fig. 5. Distribution of correctly (◦) and incorrectly (×) classified tumor growth pat-
terns as a function of the difference in the growth pattern probabilities (|pg1 −pg0 |) and
as a function of the relative increase in tumor volumes between the last time points.

Note that our classification detects either shrinkage or growth. In other words,
it does not account for cases of ‘stable disease’, where the tumor is neither
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Fig. 6. Upper row : dataset depicting tumor shrinkage over both time transitions, lower
row : dataset depicting tumor regrowth occurring at the second time point. The brain
image slices are annotated with EM segmentations (yellow), NPGM segmentations
with g = [0, 0] and g = [0, 1] (red) and ground truth (blue). Ground truth for t1 is not
shown and tumor is not present in t1c. Volumes are given within the 2D ground truth
annotated slices (in the middle) and for the entire 3D volumes (to the right) (Color
figure online).

shrinking nor growing. This injects noise in our classification model, which gives
rise to misclassifications.

Figure 6 illustrates segmentations of two rearranged datasets – one dataset
with a tumor shrinking over two time increments and one with a tumor shrinking
for the first time increment, but growing for the second time increment – together
with tumor volumetry of t1, t1c, t2 and flair.
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4 Conclusion

In this study, we present a nonparametric model to segment brain tumors and
to estimate the occurrence of tumor growth and/or shrinkage along time. We
show the advantage of including longitudinal information in order to acquire
more accurate tumor segmentations and volumetry. Furthermore, we adopt a fast
and practical solution for the estimation of the spatial regularisation parameter
in the CRF energy function. Our model was extended to include probabilistic
formulations for tumor regrowth after therapy, and it was shown to succeed in
accurately estimating the occurrence of tumor regrowth.
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Abstract. The identification and segmentation of focal hyperintense
lesions on magnetic resonance images (MRI) are essential steps in the
assessment of disease burden in multiple sclerosis (MS) patients. Manual
lesion segmentation is considered to be the gold standard, although it is
time-consuming and has poor intra- and inter-operator reproducibility.
Here, we present a segmentation method based on dual-echo MR images
initialized by manual identification of lesions and a priori information.
The classification technique is based on a region growing approach with
a final segmentation refinement step. The results have revealed high sim-
ilarity between the segmentation performed with this method and that
performed manually by an expert operator, as well as a low misclassifica-
tion of lesions. Moreover, the time required for segmentation is drastically
reduced.

1 Introduction

The analysis of disease burden on magnetic resonance images (MRI) from
patients with multiple sclerosis (MS), both for research and clinical trials,
requires the quantification of the volume of hyperintense lesions on a T2-weighted
MRI sequence [1].

While many automatic methods for MS lesion segmentation have been pro-
posed in the last 15 years, manual segmentation is still considered the gold
standard although it is time-consuming and introduces inter and intra-observer
variability [2].

The situation on available automatic methods for lesion segmentation is
somewhat confused and fragmentary, complicating the difficult task of select-
ing one of the methods. Methods for fully-automated MS lesion segmentation
are usually validated on a restricted dataset of cases and without a common
framework, using different evaluation metrics, making the results difficult to
compare.

c© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 80–90, 2016.
DOI: 10.1007/978-3-319-30858-6 8
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Moreover, those methods are usually not trained or validated using dual-
echo (DE) PD/T2-weighted MRI scans that have historically been used for the
quantification of hyperintense MS lesions. The FLAIR sequence is now more
commonly used because of the better contrast between focal lesions and the
surrounding tissue [3,7]; however, large dual-echo datasets are in existence, and
these represent a great resource for research, so there is a need to implement
new methods to speed up lesion segmentation on those datasets.

The correct segmentation of all lesions is an important issue of the fully-
automatic methods, since they often identify false positives and false negatives [9].

With these considerations in mind, we chose to implement a new method,
based on DE MR images, that could guarantee the correct identification of all
lesions by having an expert physician manually perform this task, but then
automating the lesion segmentation phase which is the most time-consuming
part, contributes most to variability.

This paper presents a semi-automatic method for MS lesion segmentation
based on manual identification of lesions on DE MR images, using a priori
information. It gave high similarity with the ground truth and it also provides a
considerable reduction in the time required for whole task of lesion segmentation.

2 Materials and Methods

2.1 Patients

The dataset consisted of 10 MS patients used for training the algorithm, and 20
MS patients with a range of lesion loads [0.3 – 9 ml] used for the validation. For
each patient, a brain DE turbo spin-echo MRI sequence was obtained using a 3.0
T scanner (Achieva Philips Medical Systems, Best, The Netherlands), (TR/TE
= 2910/16,80 ms, ETL=6; flip angle=90◦, matrix size=256 × 256, FOV=
240× 240 mm2, 50 axial 3 mm-thick slices).

Manual identification of lesions by an expert physician was used to initialize
the algorithm, whereas manual segmentation, performed by the same expert,
was used for validation purposes. Both steps were performed using software for
medical image analysis (Jim Version 6, Xinapse Systems, Colchester, UK).

Approval was received from the ethical standards committee on human exper-
imentation of San Raffaele Scientific Institute. Written informed consent was
obtained from all subjects prior to study enrollment.

2.2 Methods

The following are the operational phases of the method.

Image Standardization. One difficulty with non-quantitative MRI techniques
is that image intensities are arbitrary, even within the same protocol, for the same
scanner and the same subject. This is a problem if a threshold value is to be used
for a region growing approach, as described in the next section. Thus, proton
density weighted (PD-w) image intensity values were standardized to correct for
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the arbitrary intensity scaling for different acquisitions [5]. The method used
requires a training step, to be performed only once for a given MRI protocol on
a cohort of patients, in which three intensity parameters are estimated from each
histogram: the brightest peak position (µ) that corresponds to the grey matter
(GM) peak, and the first and last percentiles (p1 and p2 respectively) set at 1 %
and 98 %.

The intensity range of values [s1,s2] for the standard histogram in which
to project the first and last percentiles intensity values of each input image, is
selected according to a theorem, stated in [6], that guarantees in its formulation
that each intensity value of the original image corresponds unequivocally a new
intensity value on the standard image, so that no image compression is performed
during the transformation. Thus, if standardization is done respecting these
conditions, then there is no loss of information and the original image can be
obtained by inverting the standardized image. The s1 value is fixed to 1, while
s2 is extracted as follows, according to the cited theorem, where the index i
identified each volume V of the training set:

s1 = 1; (1)

s2 − s1 ≥ (maxVi
|(µi − p1i)| + maxVi

|(p2i − µi)|) ∗ F (2)

F = max(
maxVi

|(µi − p1i)|
minVi

|(µi − p1i)| ;
maxVi

|(p2i − µi)|
minVi

|(p2i − µi)| ) (3)

s2 ≥ (s2 − s1) − s1 (4)

The intensity value for the standard GM peak is calculated as the mean of
the GM peak intensities of the training dataset.

During the transformation phase, the intensity value of the GM peak (bright-
est peak) of each input volume was fixed to the standard GM peak intensity
value, and a linear intensity transformation that passes through this point and
minimizes the distance from the two percentiles to the standard intensity range
was applied. In this way the intensity histogram of each given image is rescaled
into the standard one.

Figure 1 shows three PD-w MRI histograms after the standardization process.

Region Growing Algorithm. The core of the algorithm is the pixel-based
region growing segmentation method. This approach to segmentation examines
neighbouring pixels of initial “seed points” and determines whether the pixel
neighbours should be added to the region according to similarity constraints [4].
The process is iterated as a clustering algorithm and stops when the similarity
condition is violated.

The main constraint used for the growth of the segmented region is the
intensity similarity, based on a threshold that varies according to a relationship
determined by a training process described below.

Training. The region growing segmentation approach is applied to the training
dataset where lesions were manually identified using a marker point and outlined
by an expert physician. Region growing starts in each lesion from the markers,
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Fig. 1. An example of three PD-w MRI histograms after the standardization process.
The highest intensity mode and the intensity scales are comparable.

and lesion outlines are used as reference results to find the optimal threshold
that pushes/stops the growth of the segmented region as close as possible to the
manual segmentation. In this way, the optimal values of the threshold associated
with each seed point are extracted and collected, as shown in Fig. 2. The thresh-
old values extracted represent the difference between the seed point intensity
value and the minimum intensity value inside the segmented region which stop
the segmentation of the lesion. Due to the heterogeneity of MS lesions, threshold
values are very noisy, as shown in Fig. 2. A straight line is fitted to those data
to obtain a function for the validation dataset that unequivocally associates a
threshold with each marker point on the PD-w image.

Segmentation. Lesions are first manually identified by an expert physician who
places markers on the PD-w images while also having the T2-w image visible as
a reference.

Starting from each marker (seed point), expansion of the segmented region
continues to the adjacent pixels constrained according to a threshold value. This
value (Ti) is different for each lesion and it is extracted by the threshold function
computed during the training phase:

Ti = mf ∗ (seedi) + qf (5)

where mf and qf are respectively the slope and the intercept of the threshold
function; seedi is the intensity value of the i − th lesion marker point.

To avoid the segmentation going outside lesions, the region growing approach
is combined with edge detection of lesions. For this purpose a half-way contrast
image is obtained by averaging the non-standardized PD-w and T2-w images.
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Fig. 2. Threshold values extracted after the training process on the manual segmented
lesions. The red line is the fitted line used to select the threshold function for the region
growing approach. Lesion load ranging from 0.8 to 3.8 (Color figure online).

The PD-w image has better contrast between white matter (WM) and cere-
brospinal fluid (CSF) than the T2-w image, while the latter shows better contrast
between WM and GM than the PD-w image. The “mean” image is created to take
advantage of both images tissue contrasts, as shown in Fig. 3.

This image is filtered using a high-pass unsharp filter to create an image
in which the high-frequency components (edges) are amplified [8]. The edge-
enhanced image is subtracted from the original image, to obtain an image in
which lesion edges are zero-crossing points between negative and positive values,
representing respectively the internal and the external side of the lesion.

A new image S is obtained, as shown in Fig. 4:

S = I − filt(I); (6)

where I is the original image and filt(I) is the filtered image.
This result is finally employed to restrict the growth of lesion segmentation

when a lesion edge is reached.
Since the two constraints did not perform satisfactorily if used alone, because

of noise or artefacts on the images, the intensity threshold is combined with the
detection of lesion edges to obtain the stop condition of the region growing
algorithm:

StopCondition = (‖Is − Ipi‖ > T ) ∩ (Spi > 0) ; (7)

where Is is the intensity of the seed point, Ipi is the intensity of the i − th
adjacent pixel to classify in the standardized PD-w image and T is the threshold
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Fig. 3. An example half-way contrast image (c) obtained by averaging the PD-w image
(a) and the T2-w image (b).

Fig. 4. An example of edge enhanced subtraction image.

value previously extracted, just once for each lesion before the start of the region
growing algorithm.

To stop the growth of the segmented region both conditions need to be satisfied.

Threshold Refinement Step. The threshold curve is used only to initialize the
growth of the segmented region, and after an initial segmentation a more robust
intensity threshold is estimated. For each segmented lesion, the distribution of
intensity values is extracted after the first step of segmentation and the refined
threshold of this distribution is used as a new intensity threshold to restart the
region growing.

The refined threshold is selected according to the dimensions of the lesion:
if a lesion is small (less than 10 pixels) the intensity distribution extracted is
unreliable due to the low number of samples, so that the twentieth percentile
of the distribution is selected as the refined threshold to avoid the inclusion of
outliers. On the other hand, if a lesion is large (more than 10 pixels), the fifth
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Fig. 5. An example of initial segmentation on the left figure, compared to the lesion
segmentation after the refinement step, on the right.

percentile of the distribution is selected as the new threshold, since the intensity
distribution is more reliable.

According to the new threshold values, the region growing is restarted from
the previous segmentation. A final refined segmentation is obtained using the
same stopping condition but with a new threshold T (Fig. 5).

The method is implemented in MatLab� and the output of the algorithm is
the mask of the segmented lesions and the lesion load in mm3.

3 Validation

Manual segmentation by an expert operator was used as the gold standard.
The metrics used for the validation are computed considering each lesion sepa-
rately and then overall lesions.

1. Dice Similarity Coefficient (DSC), to assess the similarity between the seg-
mentation performed manually and that performed with the proposed method
for each lesion:

DSC =
2|Av ∩ Mv|
|Av| + |Mv| ; (8)

where |Av ∩ Mv| is the number of voxels classified as lesion by both this
method and the expert operator. |Av| is the number of voxels classified as
lesion by this method and |Mv| is the number of voxels classified as lesion by
the expert operator.

2. Root Mean Square Error of lesion load (RMSE) in ml:

RMSE =

√√√√ 1
n

n∑
i=1

(Mi − Ai)2 (9)
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where n is the number of lesions; Mi is the i − th manually detected lesion
load and Ai is the i − th automatically detected lesion load.

3. True Positive Fraction (TPF); False Positive Fraction (FPF); False Negative
Fraction (FNF):

TPF =
|Av ∩ Mv|

|Mv| ; (10)

FPF =
|Av ∩ ¬Mv|

|Mv| ; (11)

FNF =
|¬Av ∩ Mv|

|Mv| ; (12)

where |Av ∩ ¬Mv| is the number of voxels classified as lesion only by the
new method and not by the expert operator, while |¬Av ∩Mv| is the number
of voxels classified as lesions only by the expert operator and not by this
method.

4 Results

Fig. 6 shows example lesion segmentations. The manually segmented lesion mask
can be visually compared to the output lesion mask of the new method. The
validation metrics were extracted for each lesion load of each patient. Lesions
are labelled in 3-D to compute these metrics.

In Fig. 7, the metrics evaluated over all lesions for each patient are graphi-
cally reported. Averaging the metrics over all patients the following values were
obtained: DSC = 0.78; RMSE = 0.17 ml; TPF = 0.81; FPF = 0.14; FNF = 0.20.

Fig. 6. Examples of lesion segmentation for two different patients performed by an
expert operator (1a and 2a) compared to the performance of the new method (1b and
2b). The corresponding T2-w images are shown in 1c and 2c.
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Fig. 7. In the top left graph a scatter plot is shown to compare manually estimated
lesion load to that estimated by the new method for each patient. In the top right
graph the mean DSC values for each patient are reported. In the bottom graph, the
mean TPF (blue squares), FPF (red crosses) and FNF (black circles) values for each
patient are shown (Color figure online).

5 Discussion

In this paper, a semi-automatic method is presented for segmenting MS lesions
on DE MRI, based on the manual identification of lesions and a trained region-
growing algorithm with prior intensity standardization.

Lesion segmentation obtained using the new method was very similar to the
ground truth, with a high degree of overlap (DSC = 0.78 and TPF = 0.81).
The lesion load obtained with this segmentation method is comparable with
that obtained with the manual segmentation (RMSE = 0.17 ml). FPF and FNF
values indicated that there was low misclassification of lesion voxels.

Moreover, the operator time required to process the images was drastically
reduced: for the images evaluated here, the average time for manual lesion
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segmentation was about 40 min, while for the method proposed the average time
was about 50 s, regardless manually marking the seed points.

The comparison of this method with other proposed automatic or semi-
automatic MS lesion segmentation methods is very challenging. The difficulty
would be to find an available method that can be used with our own data
(PD/T2-w scans). On the other hand, the full re-implementation of a published,
but not freely-accessible method might introduce some small differences or errors
in the code which could mean that the method performs badly. We therefore
chose to compare the method with expert manual segmentation, which is still
considered to be the gold standard. Moreover, it was difficult to find a MS lesion
challenge with a shared PD-T2w MRI dataset for an easy comparison of the
results with other lesion segmentation methods.

Due to the heterogeneous nature of MS lesions, the method sometimes
encountered difficulties in segmenting those lesions with blurred and poorly-
defined borders, which are also difficult for a human observer to delineate. Those
lesions have poor contrast on PD/T2-w scans, thus confounding the constraints
for the region growing approach, and the segmentation exceeded the external
borders of the lesion. This might be improved by introducing further information
about the spatial location of lesions, perhaps using co-registered T1-w images.

The method has been validated on data from a single center, and from a
single type of MRI scanner. Further validation is required by testing the method
on a multi-center dataset with different scanners and scanner operators. Another
additional validation would be to test the sensitivity of the method with respect
to the location of the seed points.

While accuracy is certainly important, it is essential that we assess the repro-
ducibility in future. If a technique is inaccurate or has a bias, as long as this bias
is consistent it should still be possible to measure changes over time. However,
if the reproducibility is poor, real changes in longitudinal studies can be masked
by random variations due to poor measurement.

In future, it may be also possible to fully automate the method, by removing
the need to manually identify lesions by employing FLAIR or double inversion
recovery (DIR) sequences.
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Abstract. Diffusion Tensor Imaging (DTI), the Fractional Anisotropy
(FA) is used to measure the integrity of the white matter (WM); it is
considered as a biomarker for stroke recovery. This measure is highly
sensitive to applied pre-processing steps; in particular, the presence of a
lesion may result into severe misregistration. In this paper, it is proposed
to quantitatively assess the impact of large stroke lesions onto the reg-
istration process. To reduce this impact, a new registration algorithm,
that localizes the lesion via Bayesian estimation, is proposed.

Keywords: Lesion · DTI · Registration · Segmentation

1 Introduction

Diffusion Tensor Imaging (DTI) is increasingly used to examine structural con-
nectivity in the brain in various conditions, including stroke. Studies have sug-
gested that recovery after stroke is related to the structural remodeling of white
matter (WM) tracts in both ipsilesional and contralesional hemispheres [10]. The
Fractional Anisotropy (FA), a metric derived from DTI, is currently the most
commonly used metric to measure the microstructural status of white matter.
Regional FA values are decreased in the corticospinal tract of the lesioned hemi-
sphere and correlated with motor impairment score [10,11]. Indeed, FA appears
to be a promising neuroimaging biomarker for stroke recovery [6].

In the context of brain lesions, the registration and normalization of diffusion
images from the subject to the common reference space is crucial for group
comparison [3]. This notably involves a non-rigid registration step that is not
robust to images featuring stroke lesions, therefore resulting into distorted and
skewed images [7].

The underlying problem resides in the fact that current registration algo-
rithms generally assume that both the image to be registered and its template
present the same but distorted information. Existing solutions target either small
deformations [5] or large deformations [2], with diffeomorphic (metric) mapping.

c© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 91–103, 2016.
DOI: 10.1007/978-3-319-30858-6 9
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In stroke brain imaging, however, the lesioned areas have no match in the
normal template. As a consequence, incorrect registration may (for instance)
artificially shrink the lesion to fit the originate template. A very limited number
of studies have been focusing on this problem. In [4], it is proposed to esti-
mate the lesion contents by inpainting from neighbouring brain areas, therefore
assuming that the brain is normal. However, this method cannot be applied to
large lesions. As an alternative, it is proposed in [1] to mask the lesion by zeroing
the contribution of its voxels in the registration cost function. However, lesioned
areas did not match anymore. It should be noted that the lesions were segmented
by manual delineation of T1-weighted images. Their findings suggest that the
use of masked normalization based on non-linear registration (using DARTEL)
was required to provide accurate results, even though manually segmented masks
were rather coarse.

In DTI, the issue of registration errors induced by stroke lesions of different
sizes remains almost unexplored. Therefore, the aim of this study is twofold:
(i) to quantitatively assess registration errors in both contra and ipsilesional
hemispheres; (ii) to evaluate a new registration algorithm that automatically
segments and masks lesions in order to refine the initial registration step.

To this end, we simulated different sizes of spherical lesions to demonstrate
the effect of non-linear registration on the FA images. Moreover, both ipsi and
contra-lesional hemispheres are investigated, which has not been studied yet.
While registration errors are likely to be larger in the ipsilesional hemisphere, one
may also expect that mis-realignments spread to the contralesional hemisphere.

In existing software, a mask can be fed to the registration process, yet auto-
matic methods capable of segmenting the lesions are still under development1. In
this paper, we estimate the lesion mask with a Bayesian approach, and integrate
it into a two-stage registration algorithm, whose accuracy outperforms state-of-
the-art methods, notably within the contralesional hemisphere. We evaluate our
algorithm in 26 clinical stroke brain lesions, provided by the ISIS-HERMES stroke
study (PHRC 2010 site web). Diffusion magnetic resonance imaging, consisting of
High Angular Resolution Diffusion Imaging (HARDI) with 60 non collinear direc-
tions of gradients, was performed on a Philips 3T Magnet at the University Hospi-
tal of Grenoble (France). Parameters acquisition were: FOV = 240×240×140mm;
70 slices; voxels size = 1.6×1.6×2 mm3; b-value = 1000 s/mm2.

2 Quantitative Assessment of Registration Errors

To the best of our knowledge, no study has been quantifying the registration
errors induced by the use of a lesion, in both contra and ispilesional hemispheres.
In this section, we assess the effect of lesions on linear and non-linear registration
methods, with and without taking into account the corresponding lesion mask.
First we consider lesions of radius k = 20mm, then we analyse the impact of
different sizes of lesions.
1 See BRATS (http://braintumorsegmentation.org) and ISLES (http://www.

isles-challenge.org): 2015’ medical imaging challenges on lesion segmentation.

http://braintumorsegmentation.org
http://www.isles-challenge.org
http://www.isles-challenge.org
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2.1 Methods

Generation of Simulated Stroke Images. FA images I
(p)
P , 0 < p < NP

were obtained in NP = 10 healthy people. These images were registered to the
standard template provided by FSL. Then the inverse transformations to align
the image in the patient space were estimated. For each of these images, an
impaired twin I

(p,k)
S was generated by simulating a spherical lesion of radius

k mm in the template space, then transformed back into the patient space. This
way, all the lesions were localised at the same position. The radius k varies from
5mm to 20mm. The volume of the resulting lesions respectively varies from
0.523 cm3 to 33.49 cm3 , which is below the mean volume of lesions in stroke
patients (100 cm3) that were considered in this study. The different sizes of the
lesions are illustrated in Fig. 1.

Fig. 1. Different sizes of lesions displayed in the template space.

Registration of Original and Impaired Images. Registration was per-
formed with FSL [5]. Linear and non-linear transforms were applied. The reg-
istration cost function was chosen to be the correlation coefficient between the
initial and the registered image. The target image IT corresponded to the stan-
dard template provided by FSL. R denotes the registration operator; associated
superscripts w/ and w/o respectively indicate that the registration is performed
with or without taking into account the lesion mask, while subscripts Lin and
N-Lin respectively indicate that a linear or a non-linear transform has been cho-
sen. A flow chart in Fig. 2 summarizes the procedure of generation of simulated
lesions and the comparison of different registrations.

2.2 Qualitative Assessment of Registered Images for Lesions
of Radius k = 20 mm

Figure 3 shows a simulated image IS, and its registered twins for lesions of radius
k = 20mm. The linear transform provides visually similar images, with and with-
out lesion mask. This stands in contrast with non-linear registration: without
mask, the lesion is shrunk to fit the template, thus providing erroneous results.
Still, the contra-lesional hemisphere seems – visually – to be correctly registered
in all scenarios.
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Fig. 2. (A) Generation of the simulated lesion in the template space. (B) Trans-
formation of this lesion in the patient space to obtain the mask of the lesion and
the image I

(p,k)
S . (C) and (D) correspond respectively to the registration procedure

with (Rw/
N-Lin

(
I
(p,k)
S

)
) and without mask (Rw/o

N-Lin

(
I
(p,k)
S

)
) The step (E) compares the

ground truth and the two obtained images.

Fig. 3. Effect of the transform and the lesion mask on the registration of a simulated
image IS for a lesion of radius k = 20 mm. (a). Linear (resp. non-linear) registration is
performed in (b) and (c) (resp. (c) and (e)). Masks are taken into account in (c) and
(e) only.

Table 1. Linear registration (for a lesion of radius k = 20 mm): RMSD (average and
standard deviation) in three scenarios: influence of (a) the lesion, (b) the lesion mask,
and (c) the cost function.

Scenario (a) Rw/o
Lin (IP) vs Rw/

Lin (IS) (b) Rw/o
Lin (IS) vs Rw/

Lin (IS) (c) Rw/
Lin (IS) vs Rw/

Lin (IS)

RMSD (mm) 0.28 ± 0.07 0.36 ± 0.18 4.88 ± 1.20



Bayesian Stroke Lesion Estimation 95

2.3 Quantitative Error Analysis in Linear Registration for Lesions
of Radius k = 20 mm

Visual inspection of registered images tends to show that the linear registration
is robust to large lesions. We quantified the corresponding registration errors
in terms of Root Mean Square Deviation (RMSD). Mean RMSD (and stan-
dard deviation) (in mm) were compared for linear registrations of: (a) original
images I

(p)
P versus impaired images I

(p)
S , (b) the impaired images I

(p)
S with versus

without a lesion mask, and (c) the same images with the correlation versus the
mutual information as cost functions for the registration.

Table 1 displays the resulting RMSDs; our results show a discete effect of the
lesion (scenario a), as the obtained RMSD is way below the RMSD associated
with a change in the cost function (scenario c). Similarly, whether the lesion
mask is accounted for or not does not make any difference (scenario b).

2.4 Quantitative Error Analysis in Non-linear Registration
for Lesions of Radius k = 20 mm

In order to fully appreciate the effect of a lesion on the estimated non-linear
registration transforms, we quantified – for each pair (I(p)P , I

(p)
S ), 0 < p < NP,

of original and simulated FA images – the registration differences in terms of:
(i) transform Jacobians, and (ii) resulting FA intensities. Only the differences
located in the template’s skeleton (IT > 0.2) [9] of the White Matter (WM) are
considered. Contra and ipsi-lesional hemispheres are investigated separately.

Figure 4 plots the histograms of Jacobians differences Δ
(p)
J and FA inten-

sity differences Δ
(p)
FA that were observed within each pair{

Rw/o
N-Lin

(
I
(p)
P

)
,Rw/

N-Lin

(
I
(p)
S

)}
. As can be seen, both ipsi and contra-lesional

hemispheres are affected by the introduction of the simulated lesion, which, in
the latter case, was hardly detectable visually. In terms of FA intensities, this
results in registration errors as high as 0.2 (resp. 0.1) in the ispilesional(resp.
contra-lesional) hemisphere. Finally, Fig. 4 also shows that the integration of
lesion mask, in either linear or non-linear registration methods, led to reducing
misregistration.

2.5 Quantitative Error Analysis in Non-linear Registration
for Different Sizes of Lesions

The registration procedures with and without the knowledge of the mask were
achieved for different sizes of lesion (radius k = [5, 10, 15, 20]mm). The obtained
results Rw/o

N-Lin (IS) and Rw/
N-Lin (IS) can be observed respectively in Fig. 5.

We tested the difference of measures Δ
(p,k)
FA of FA values for different sizes

of lesion to determine whether Δ
(p,k)
FA is identical for the procedures with and

without the mask. Because the Δ
(p,k)
FA in the ten subjects and both hemispheres,

did not show normal distribution, the non parametric Wilcoxon matched-pair
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Fig. 4. Registration errors: histograms of Jacobian differences (top row) and FA differ-
ences (bottom row). Differences in the ipsilesional hemisphere are plotted on the left,
while those in contralesional hemispheres are plotted on the right. The first (resp. sec-
ond) column corresponds to the ipsilesional (resp. contra-lateral) hemisphere. Finally,
blue (resp. green) histograms correspond to registrations with mask (resp. without
mask) (Color figure online).

signed-rank test was used. It tests the null hypothesis that two related paired
samples come from the same distribution. The results showed significant differ-
ences between the two related paired samples. In addition, the corresponding
z-statistics of the Wilcoxon test are reported.

In Fig. 6, the obtained z-statistics for ipsi and contra hemispheres are dis-
played for several values of radius k. The z-statistics of Δ

(p,k)
FA are lower in the

ipsilesional than the contralesional hemisphere for each values of k, suggesting
that the differences of FA measures between the two methods (with and without
a mask) are even more important in the contralesional hemisphere.

It should be noted that the differences of FA measures increase with the size
of the lesion, showing the necessity of using a mask for registration of images
with lesions, especially in the case of large lesions.

In the second step of this paper, we analyse the deformation induced by the
lesion during the registration procedure, in the stroke brain lesions, with and
without mask, and in the simulated lesion (the ground truth). For that purpose,
we analysed the Dice Coefficient (DC) and the False Negative Errors (FNE).
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Fig. 5. (a–d)Rw/o
N-Lin (IS) and (e–h)Rw/

N-Lin (IS) for different radius k. We can observe
that the shape of the lesions is well preserved when the mask of the lesion is considered.

The DC permits to focus on the similarity of two sets (here the simulated lesion
and one lesion of the two registration procedures, while the FNE highlights the
error to fit the simulated lesion. The DC and FNE results are displayed in Figs. 7
and 8 respectively.

Our findings underline the importance of the masking registration procedure.
The FNE show that the lesions are shrunk during no apriori registration. In
addition, the effect of the lesion is increased with the size of the lesions.

3 Proposed Unsupervised Registration Algorithm

In the previous section, we showed that the presence of lesions introduces signif-
icant registration artifacts when using a non-linear transform. Conversely, linear
registration showed to be quite robust to lesions with similar registered images
with or without applying a lesion mask. Building up on these features, we pro-
pose registration algorithm that splits the registration process into two steps: (i)
a coarse estimation of the registration parameters for which the output is used
to estimate the lesion mask, (ii) a refined estimation step that accounts for the
obtained masks.
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Fig. 6. Boxplot of the z-statistics of the Wilcoxon signed rank test for different sizes
of lesions and for ipsi and contralesional hemisphere. The values on top of the boxplot
correspond to the median values.

Fig. 7. Dice coefficient between the simulated lesions and the lesions obtained after
registration with and without mask, for different sizes of lesions and for ipsi and con-
tralesional hemisphere. The values on top of the boxplot correspond to the median
values.

3.1 Bayesian Estimation of the Lesion Mask

Let IT denote the FA registration template image, as provided by the FSL
software [5]. Let IP be a patient’s image and Rw/o

Lin (IP) its coarsely registered
twin, where Rw/o

Lin is the linear registration operator, without mask.

Gold Standard Segmentation Masks. NP = 26 patient images I
(p)
P , 0 <

p < NP, were linearly registered into the template space. Lesions were manually
delineated by an expert neuroradiologist. When occuring in the left hemisphere
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Fig. 8. False Negative errors between the simulated lesions and the lesions obtained
after registration with and without mask, for different sizes of lesions and for ipsi and
contralesional hemisphere. The values on top of the boxplot correspond to the median
values.

(the contalesional hemisphere in this study), images were mirrored (w.r.t. the
mid-saggital plane) so that they are now all located in the right hemisphere
(ipsi-lateral). Obtained masks M(p)

Ref serve as reference segmentation maps in
this study.

Initial Localization of WM Alterations. Within the template space, the
difference IΔ = IT − Rw/o

Lin (IP), between the template image and the coarsely
registered image, is used to estimate an initial lesion mask Mτ . Typically, the
values of FA voxels inside a lesion are very low (around 0.1). Also, it is commonly
admitted that WM voxel intensities are greater than 0.2. For these reasons, the
initial mask Mτ includes voxels for which the difference IΔ exceeds a certain
threshold τ (in this study, τ was empirically set to 0.3). Region labeling is used to
extract set of segmented regions

{A(r), 1 < r < NR

}
from the computed mask.

Characterization of Segmented Lesions. Besides WM lesion areas, the ini-
tial mask may include other regions: (i) registration errors due to the linear
transform, and (ii) possible atrophy related to leukoaraiosis (close to the cere-
bral ventricules for example). Of course, such areas should be excluded from
the mask. We propose to model two lesion characteristics to distinguish actual
lesions from false positive lesioned areas.

While lesions present with a rather spherical shape, registration errors are
likely to result into elongated or sinuous shapes. Let ν(r) ∈ A(r) be the voxel
whose distance to the edge of A(r) is maximal; this distance θdist(r) is known
as the Chamfer distance. We used θdist(r) to characterize the shape of a region
A(r): those with large Chamfer distances are likely to be lesions.

However, some regions with atrophy may be shaped similarly to lesions.
Therefore, a second feature θprob(r) = PLesion(ν(r)) is proposed: the probability
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that the position of the Chamfer voxel ν(r) is located within a lesioned area. In
order to estimate the lesion probability map PLesion, we averaged the information
provided by the 26 reference masks M(p)

Ref.

Maximum a Posteriori Region Classification. Let X ∈ {Lesion,Other}
denote a random variable that categorizes a region as lesioned or non-lesioned.
The proposed solution is the value X̂ that maximizes the conditional probability
P

(
X|(θdist, θprob)

)
. Using Bayes theorem, X̂ can be expressed as

X̂ = argmax
X

{
P

(
X

) · P
(
(θdist, θprob)|X

)}
. (1)

Statistical modeling of P (X) and P
(
(θdist, θprob)|X

)
. Again, we used the

reference masks M(p)
Ref to determine, in each patient p, whether automatically

segmented regions A(p,r) truly corresponded to lesioned areas or not. Segmented
regions were then split into two groups: the lesioned regions A(p,l)

Lesion and other
regions A(p,o)

Other, 0 < p < NP, 0 < l < NL(p), 0 < o < NO(p).
P (X) is modeled by a Bernoulli distribution; its probability of success is given

by the ratio of the number of lesioned regions to the total number of regions:

P (X = Lesion) =
1

NP

NP−1∑
p=0

NL(p)
NL(p) + NO(p)

, (2)

P
(
(θdist, θprob)|X

)
was estimated via kernel density estimation (with

Gaussian kernels and automatic bandwith selection) [8] It is estimated for the
two alternatives X = {Lesion,Other}; Fig. 9a and b plot the obtained 2D prob-
ability maps for scenarios.

As shown in Fig. 9, the feature pair Θ = {θdist, θprob} successfully discrimi-
nates between lesions and other kinds of WM alterations, while the sole use of
either one or the other doest not.

Lesion Mask Post-processing. Sole regions classifed as lesioned are kept into
the computed mask Mτ . Finally, morphological closing is applied to the refined
mask: this fills remaining holes, and also recovers lesioned gray matter located
in-between detected lesioned WM.

3.2 General Overview of the Proposed Registration Algorithm

The proposed registration algorithm operates iteratively. Initially, the mask M(0)
τ

is set to zero (X = Other) in all voxels. Each iteration i includes two steps:

1. I
(i)
Reg = Rw/

Lin

(
IP,M(i−1)

τ

)
: linear registration of the patient image IP into the

template space, using the mask M(i−1)
τ estimated at previous iteration;

2. update of the lesion mask M(i)
τ using the procedure described in Sect. 3.1,

with image difference I
(i)
Δ = IT − I

(i)
Reg as input.
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Fig. 9. Top: color map of the probability P
(
(θdist, θprob)|X

)
for X = Lesion (right)

and X = Other (left). Bottom: decision maps in the feature plane; red (resp. blue)
areas correspond to X = Other (resp. X = Lesion). Superimposed green dots (resp.

red crosses) correspond to lesioned (resp. other) regions obtained in M(p)
Ref. Bottom-

left: erroneous decisions due to the missing term P (X). Bottom-right: the proposed
solution provides correct decision (Color figure online).

The algorithm iterates until the Sum of Absolute Differences (SAD) between two
consecutive estimations of the mask drops below a certain threshold τR. Finally,
the estimated linear transform and the final lesion mask are used to initiate a
non-linear registration step (Rw/

N-Lin), which further refines the registered image.

3.3 Evaluation of the Proposed Registration Algorithm

We evaluated the proposed registration algorithm with a Leave-One-Out (LOO)
strategy in 26 stroke patient real images I

(p)
P∗ , 0 < p < 26, for which manually

delineated lesion masks were available. For the LOO strategy, one image was
tested and the rest of the set, equals to 25 images, was used to tune the Bayesian
model. Then we analysed another untested image, and so on, until all the images
of the set are tested. Table 2 shows that the proposed registration Rproposed

N-Lin

outperforms the classical non-linear registration (without knowledge of the lesion
mask) in both ipsi and contra lateral hemispheres.



102 F. Renard et al.

Table 2. Registration RMSD estimated for the LOO procedure for different registra-
tion process onto the skeleton of WM [9].

Ground truth versus Compared registered images

Rw/
N-Lin (IP∗) Rw/o

N-Lin (IP∗) Rproposed
N-Lin (IP∗)

contra 0.78 ± 0.46 0.37± 0.25

ipsi 1.09 ± 0.46 1.01± 0.55

4 Conclusion

Our findings evidenced that the use of non masking procedure during the regis-
tration of brain with large lesions induced erroneous FA measures in both the ipsi
and contralesional hemisphere. These features are mainly due to misrealignement
in the registration procedure, as it has been showed with simulated lesions. The
algorithm we developed could minimize the effect of the lesion in the registration
step. In agreement with [1], a rough mask is sufficient for an accurate registra-
tion. However, this algorithm has to be validated in other datasets. Meanwhile,
manual delineation of the lesion and its use in registration process remains the
referent procedure.
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by French ANR projects e-SwallHome (ANR-13-TECS-0011) and ERATRANIRMA
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Abstract. Immunohistochemistry is widely used as a gold standard to inspect
tissues, characterize their structure and detect pathological alterations. As such,
the joint analysis of histological images and other imaging modalities (MRI,
PET) is of major interest to interpret these physical signals and establish their
correspondence with the biological constitution of the tissues. However, it is
challenging to provide a meaningful characterization of the signal specificity. In
this paper, we propose an integrated method to quantitatively evaluate the dis-
criminative power of imaging modalities. This method was validated using a
macaque brain dataset containing: 3 immunohistochemically stained and 1 his-
tochemically stained series, 1 photographic volume and 1 in vivo T2 weighted
MRI. First, biological regions of interest (ROIs) were automatically delineated
from histological sections stained for markers of interest and mapped on the
target non-specific modalities through co-registration. These non-overlapping
ROIs were considered ground truth for later classification. Voxels were evenly
split in training and testing sets for a logistic regression model. The statistical
significance of resulting accuracy scores was evaluated through null distribution
simulations. Such an approach could be of major interest to assess relevant
biological characteristics from various imaging modalities.

1 Introduction

In order to study physiopathological phenomena, a large range of imaging modalities
can be considered, either in vivo or ex vivo. On the one hand, in vivo techniques such as
magnetic resonance imaging (MRI) or positron emission tomography (PET) are useful
to apprehend anatomical and functional aspects of organs longitudinally with a milli-
metric resolution. On the other hand, histology is regarded as a gold standard to
characterize the structure of the tissue, which sections can be imaged at a microscopic
resolution.

In this domain, there are two basic manners to analyze tissue features: histo-
chemistry and immunohistochemistry. Hematoxylin & Eosin (H&E) is one of the most

© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 104–115, 2016.
DOI: 10.1007/978-3-319-30858-6_10



common histochemical stains used in anatomopathology. This kind of staining relies on
the physicochemical properties of the dye and the tissue. It requires the expertise of a
pathologist to accurately recognize various biological structures as well as their healthy
or pathological state. Besides, immunohistochemistry (IHC) relies on the high speci-
ficity of antibodies raised against identified proteins, and that will bind to the antigen
expressed in the tissue. In this case, a positive staining accounts directly for the
presence of the target.

Histology sections can be imaged with various methods, depending on the reso-
lution needed and the dye characteristics: flatbed scanners, whole slide microscopy
imaging, two-photon imaging, etc. Because of high resolution and specificity, images
arising from histology are of great value to characterize in vivo imaging and validate
the specificity of MR contrast agents or PET radioligands [1–3].

In the current practice, it is common to perform comparisons of histological and
MRI sections visually selected by the operator. Indeed, due to their intrinsically dif-
ferent dimensions the joint use of 3D in vivo volumes and 2D ex vivo images raises
challenges. Yet, the lack of accounting for differences in incidence can result in
erroneous associations.

It has been twenty years since the question of automatically matching brain his-
tology sections with MR or PET images arose [1, 4]. A range of existing methods
consists in reconstructing histology volumes, ensuring their anatomical consistency
either by propagative registration [5], blockface photographs guidance [6] or MRI
guidance [7]. These techniques carry high costs in terms of tissue and image pro-
cessing. As a matter of fact, they have been successfully used in various group studies
in mice [8, 9] and their application in non-human primates (NHP) and humans remains
prototypal to this day [10].

Let us mention that recently intact tissue imaging techniques such as knife-edge
microscopy [11], serial two-photon tomography [12] and tissue clearing coupled with
light-sheet microscopy [13–16] have been proposed. Deformations induces by cutting
can thus be avoided; however, these methods require whole brain immunolabelling, are
limited to fluorescence microscopy and generate huge amounts of data. As such they
have only effectively been used in small animals and are not yet suited for primate brain
imaging.

Despite the advances in histology reconstruction and in multimodal registration,
few quantitative analyses of MR and PET images supervised by histology have been
carried out. In a survey we conducted, between 1999 and today, only 6 articles out of
40 dealing with MRI and histology registration achieved a quantitative analysis of the
MR signal based on histochemistry [17–19] or immunohistochemistry [20–22].

Stem cell-based therapies are promising to cure neurological diseases marked by a
neuronal loss such as stroke, multiple sclerosis (MS), Huntington’s or Parkinson’s
diseases [23, 24]. In the case of Huntington’s disease (HD), a genetic neurodegener-
ative disorder that leads to a progressive loss of neurons in the striatum, and ultimately
in various cerebral regions, several studies have shown the ability of fetal and
pluripotent stem cell grafts to reverse cognitive deficits in various animal models [25,
26], as well as in patients [27]. The longitudinal follow-up of such grafts is of major
importance, and several ways to label the injected cells have been developed [28–30].
Taking advantage of both histology and MRI is particularly pertinent to thoroughly
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validate MR contrast in stem cell grafts, an essential issue addressed in this work.
It could represent a valuable manner to acquire relevant information, to tune the pro-
tocol, to supervise the entire study and thus validate the use of MR modality to perform
in vivo follow up during animal model creation or therapy assessment.

Data used in this article originated from a study we carried out on the therapeutic
potential and safety of induced pluripotent stem cell (iPSC) transplantation in a
non-human primate model of HD. A phenotypical HD model was obtained through
injections of quinolinic acid (QA), a neurotoxin that induces severe cerebral lesions.
iPSC were subsequentely implanted in the brain. A question that arose in a translational
context was the characterization of T2 MR signal in and around the graft in order to
enable in vivo longitudinal follow-up of the transplanted cells and of the inflammatory
response.

Consequently, we proposed a generic method to quantitatively assess differences in
an imaging modality signal between different biological regions of interest (ROI) au-
tomatically delineated from immunolabelled histological sections. This method uses
classification scores to measure the discriminative power of the modality. Their sig-
nificance can then be assessed by inferring null distributions from random simulations.
To further illustrate the genericity of our method, we also investigated two supple-
mentary modalities available in our study: unstained blockface photographs and
hematoxylin & eosin (H&E) stained histological sections, both of which present weakly
specific contacts.

2 Materials and Methods

2.1 Data Acquisition

An adult macaca fascicularis received injections of QA bilaterally in the caudate
nucleus and unilaterally in the sensorimotor putamen. Two weeks later, the macaque
was grafted with GFP (Green Fluorescent Protein) positive iPSC-striatal derivatives
[31] around the injured regions. One anatomical T2-weighted MRI sequence was
obtained on a Varian 7T scanner (0.48 × 0.48 × 1 mm, 240 × 240 × 70 matrix, coronal
acquisition) at 6 month after transplantation. Two weeks later, the macaque was
euthanized and the brain was embedded with a colored medium and sectioned in the
coronal plane on a freezing microtome (40-μm-thick sections). Every fourth section,
before cutting, a blockface photograph (BFP) was taken. Four series of ten regularly
spaced sections (one every 32 section, inter-section distance: 1280 µm) located in the
striatum area were respectively stained with anti-GFAP (Glial Fibrillary Acidic Pro-
tein), anti-GFP, anti-DARPP-32 (Dopamine- and cAMP-Regulated neuronal Phos-
phoProtein) antibodies and H&E. Slides were then digitized at a resolution of
0.44 µm/pixel with a Zeiss Axio ScanZ.1.

GFAP is an intermediate filament protein expressed in astrocytes, a multifunctional
cell type of the central nervous system (blood-brain barrier constituency among other).
GFAP is particularly expressed when astrocytes respond to damaged neurons. It was
thus a marker of the inflammatory response of the nervous system.
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GFP is a naturally fluorescent protein commonly used as a reporter of gene
expression. Grafted stem cells were engineered to express it and were thus labelled by
the anti-GFP antibodies.

DARPP-32 is a protein expressed in the dopaminergic pathway and was used as a
marker for striatal neurons.

Examination of the tissues revealed first a large loss of striatal neurons (marked by
DARPP-32) due to the QA injection, second that the grafted cells (marked by GFP)
were surrounded by a strong glial scar (reactive astrocytes, marked by GFAP). The
following analyses aimed at rating the discriminative power of 3 modalities – T2 MRI,
blockface photographs, H&E sections – regarding 3 tissue types: striatum, graft and
glial scar. All modalities are visible in Fig. 1.

2.2 Registration and Segmentation

First, MR intensity bias was corrected using BrainVISA’s bias correction tool (www.
brainvisa.info).

All modalities were then resampled with a combination of median subsampling and
cubic resampling at the same 160-µm-isotropic resolution. Histological sections at a
mesoscopic scale were sufficient to detect the markers of interest while image size was
greatly reduced. In contrast, the MRI volume resolution increased, especially in the
anteroposterior direction. Consequently, MRI and histological coronal sections had a
closer aspect, facilitating their comparison.

In the following steps of the procedure, the chosen reference space will always be
the BFP. While its anatomy differs slightly from that of the brain in vivo, it is closely
related to both the MRI (in 3D) and the histological sections (in 2D) and constitutes the
optimal intermediate. The general registration and segmentation workflow is depicted
in Fig. 2, and the registration procedure follows that of Dauguet et al. [32], except that
the MRI is warped to meet the BFP geometry.

Fig. 1. Reference (first row) and investigated (second row) modalities One of the putamen lesion
and graft sites are also depicted on sections issued from [38]
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MRI to BFP registration: An affine transformation was first computed with our
implementation of the block-matching algorithm [33]. Then, we used the free-form
deformation (FFD) model [34, 35] to compute an elastic transformation (one regularly
spaced 10 × 10 × 10 grid of control points). Registration quality was evaluated by
manually selecting 13 anatomical landmarks on both volumes. To ensure 3D coherent
landmarks, we chose recognizable extreme points of known 3D structures (ventricles,
sulci, corpus callosum, anterior and posterior commissures, etc.). Ten coronal slices
corresponding to the stained histological series were subsequently extracted from the
registered MR volume and from the BFP volume.

Histology to BFP registration: Tissue
masks were computed from histological
images based on pixel color (k-means
algorithm, k = 2). Hemispheres were man-
ually separated and linearly registered to the
corresponding photograph with the
block-matching algorithm. Registration
quality was validated by manually selecting
15 to 22 anatomical landmarks per section.
Roughly half of those were located in the
cortex and half in the basal ganglia, the
latter being the structure of interest in this
study. Landmarks were either extreme
points from recognizable 2D structures
(sulci, ventricles) or apparent lesions, as
depicted Fig. 3.

Fig. 2. Registration and segmentation workflow

Fig. 3. 2D landmarks on a selected BFP
section.
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Staining segmentation: Three biological ROIs were extracted from the histological
sections stained for DARPP-32 (striatal neurons), GFP (graft) and GFAP (reactive
astrocytes). We automatically segmented positive staining from the masked color
images with k-means algorithm (k = 2). ROIs were refined by filtering out small
connected components (GFP and DARPP-32: 50 pixels, GFAP: 25 pixels). GFAP
filtering was less stringent because of the less compact nature of the glial scar.

2.3 Signal Analysis and Machine Learning

Voxels belonging to the three mapped ROIs (GFP, GFAP, DARPP-32) were extracted
from MRI, BFP and H&E images. MR values were of dimension one, whereas BFP
and H&E values were of dimension 3 (red, green and blue intensities). Mapped ROIs
are depicted Fig. 4 and the corresponding intensity histograms are represented Fig. 5.
The observations in each class were numerous, correlated and not necessarily normal,
which violate the assumptions of a parametric analysis such as the t-test.

Classification approaches, such as clustering or machine learning, offer a much
more flexible framework. First, classification scores directly account for the discrimi-
native power of the modality. Second, the large range of classification procedures
allows one to test different separability hypotheses.

To quantify the effect size, we used a supervised classification approach. The fol-
lowing protocol was applied separately to the three studied modalities. First, the data set
was evenly split at the voxel level into training and testing sets. Then, for each possible
pair of classes, training observations were fed to a binary logistic regression model. The
choice of this classifier was led by its renowned good results on ill-separated data as well
as its simplicity. The later minimizes the possibility of over-fitting, especially with
spatially correlated data. We used the l1 penalty and weighted the observations inversely

Fig. 4. Segmented ROIs. Fig. 5. Intensity histograms for each class
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to their class frequencies. This formulation is equivalent to minimizing the following
function, with n observations, f features, c 2 R the intercept, b 2 Rf the coefficients,
X 2 Rn×f the observations, Y 2 {−1, 1}n the targets, w1 and w2 the weights for each
class:

F c; bð Þ ¼ bk k1 þ
Xn

i¼1
wYi log 1þ exp �Yi X

T
i bþ c

� �� �� � ð1Þ

The models were then used to classify the testing observations. To measure the
quality of the resulting classification and to equally take into account the two unbal-
anced classes, we used a weighted accuracy score with each observation weighted by
the inverse of its class frequency, which we write a. Let Y 2 {1, 2}n the ground truth
classes for the testing set, P 2 {1, 2}n the associated predicted classes, I = (Yj = Pj)1≤j≤n
an indicator vector, w 2 Rn the weights for each observation:

a ¼ wTI=
Xn

i¼1
wi

� �
ð2Þ

This score can only be interpreted after ruling out three hypotheses that cannot be
tested parametrically. In this case, one can simulate a distribution of the a scores under
the null hypothesis [36, 37]. Thus, let e* the score obtained on the original data, let
e ¼ e1; � � � ; ekf g the generated scores sorted by ascending value, then:

p ¼ rankðe�in eÞ=ðkþ 1Þ ð3Þ

We tested three hypotheses we wanted to rule out. For each, we computed the score
distribution under the null hypothesis as follow:

• “There is no difference between group populations”

This is equivalent to a non-parametric group comparison. It is possible to infer such
a null distribution by randomly shuffling the class labels in the data set a great number
of times, then applying the proposed classification workflow. Formally, the distribution
e of a scores is generated from P ¼ P1; � � � ;Pkf g a family of permutations of Y after
learning on half of the observations and testing on the other half.

• “The classification is as good as that of a random classifier”

By testing this hypothesis, we compared the regression results against that of a
dummy classification. This allows us to discard a purely lucky result. In this case, the
null distribution was inferred by performing k random classifications. Each observation
was randomly assigned to a class with a probability equal to that of its frequency.

• “The classification is as good as that of a random logistic regression classifier”

Here we checked that the classification score is not solely due to the strategy of the
clustering model, but that the learning step also matters. A family of k random logistic
regression models was generated from k permutations of the training set labels. The
original testing set was classified by each of these models.
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In each case, we used 1000 permutations which was the minimum number of
permutations necessary to detect a significant result, when correcting for multiple
comparisons.

3 Results

Registration yielded good results
as shown by manual validation.
Average distances between land-
marks from photographic and MR
volumes are 360 ± 218 µm in the
anteroposterior direction, 267 ±
189 µm in the dorsoventral direc-
tion and 227 ± 280 µm in the lat-
eral direction. The anteroposterior
error is largely inferior to the
inter-slice distance (1280 µm),
which shows the validity of com-
paring histological and MRI
sections.

Regarding histology/BFP reg-
istration, mean distances respec-
tively for DARPP-32, GFP, GFAP
and H&E are 456 ± 309 µm (cor-
tex: 536 ± 331 µm, striatum:
373 ± 261 µm), 498 ± 440 µm
(cortex: 548 ± 318 µm, striatum:
446 ± 533 µm), 534 ± 330 µm
(cortex: 579 ± 377 µm, striatum:
489 ± 269 µm) and 346 ± 232 µm
(cortex: 385 ± 267 µm, striatum:
308 ± 187 µm). Errors are espe-
cially low in the striatum, which is
the anatomical region of interest in
this study.

Table 1 shows the weighted accuracy scores for each group comparison, as well as
the p-values obtained for each statistical test. P-values printed in bold are those sig-
nificant at a 0.002 threshold (Bonferroni correction) while the italic ones reached the
minimal level for 1000 simulations. Weighted accuracy varied from 0.48 to 0.84, and
given that the expected weighted accuracy for a random classifier is 0.5, it was hard to
rate at first sight the significance of these scores. Obtained p-values reported that the
effect of chance could not be discarded for GFP/GFAP comparisons in MRI and photo,
and DARPP-32/GFAP comparisons in MRI. Once the statistical significance was
asserted, accuracy score conveyed information about the size effect and represented the
confidence one could have in the classification result.

Table 1. Logistic regression’s weighted accuracy
scores and p-values for tested hypotheses.

H&E Photo MRI

Weighted accuracy
DARPP-32
GFAP

0.74 0.83 0.48

DARPP-32
GFP

0.60 0.84 0.67

GFAP
GFP

0.63 0.51 0.62

p against random groups
DARPP-32
GFAP

0.001 0.001 1.0

DARPP-32
GFP

0.001 0.001 0.001

GFAP
GFP

0.001 0.044 0.001

p against random classifier
DARPP-32
GFAP

0.001 0.001 1.0

DARPP-32
GFP

0.001 0.001 0.001

GFAP
GFP

0.001 0.17 0.001

p against random LogReg classifier
DARPP-32
GFAP

0.021 0.001 0.50

DARPP-32
GFP

0.023 0.001 0.001

GFAP
GFP

0.022 0.39 0.16
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Our multimodal dataset enabled scoring of various types of images. Especially,
with a significant accuracy score of 0.67, in vivo T2-weighted MRI showed its ability to
discriminate among grafted stem-cells and striatal parenchyma.

4 Discussion and Conclusion

Based on a pilot study, we were able to characterize the T2 MR contrasts created by
different brain tissue types in a macaque grafted with stem cells. In a first phase, we
associated the graft with a hyper signal in the MR image thanks to co-registration
between MRI and IHC images. We rated the difference in signal between the graft and
the surrounding endogenous tissue with an extremely simple supervised classifier, and
concluded that this modality was suitable for in vivo graft follow up. Interestingly,
those results are coherent with an ongoing spin off study conducted in our lab in which
macaques showed a hyper intense T2 signal in their surviving grafts.

Let us note that, because we were working with a sole animal, we were forced to
perform cross-validation at the voxel level, whereas in a group study a
leave-one-image-out strategy would avoid learning and testing on correlated values.
A way to diminish the correlation between the training and the testing sets could be to
split values at a block level, which would force neighbor voxels to belong to the same
fold. We argue however that in this case, because of the extreme simplicity of the
classification strategy, the risk of over-fitting the data was limited, and thus that spatial
correlation did not fundamentally impact the classification results. Nonetheless, this
issue should be considered when dealing with highly flexible models such as random
forests or neural networks.

Additionally, the proposed framework is extremely flexible: the existing range of
machine learning models can help answer different questions, based on the charac-
teristics of the studied signal. It is for instance possible to compute spatial features from
the signal to take into account its texture. Moreover, several modalities can be
investigated: an exciting application would be the validation of PET radiotracers or of
innovative MR contrast agents.

Besides, because of the high specificity of IHC, positive staining is easy to seg-
ment, making the whole procedure free of any manual intervention. This both prevents
operator bias and favors its use in large scale studies.

Perspectives include investigating the histology sections at the cellular level to
extract more pertinent information and expanding the set of antibodies used to wholly
represent the structure of the tissue. Furthermore, we could use regression rather than
classification to more thoroughly characterize the in vivo physical signal.
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Williams, Aurore Bugi and Nicolas Souedet for their contribution to this work.

112 Y. Balbastre et al.



References

1. Mega, M.S., Chen, S.S., Thompson, P.M.,Woods, R.P., Karaca, T.J., Tiwari, A., Vinters, H.V.,
Small, G.W., Toga, A.W.: Mapping histology to metabolism: coregistration of stained
whole-brain sections to premortem PET in Alzheimer’s disease. Neuroimage 5, 147–153 (1997)

2. Piert, M., Park, H., Khan, A., Siddiqui, J., Hussain, H., Chenevert, T., Wood, D., Johnson, T.,
Shah, R.B., Meyer, C.: Detection of aggressive primary prostate cancer with 11C-choline
PET/CT using multimodality fusion techniques. J. Nucl. Med. 50, 1585–1593 (2009)

3. Lavisse, S., Guillermier, M., Hérard, A.-S., Petit, F., Delahaye, M., Van Camp, N., Ben
Haim, L., Lebon, V., Remy, P., Dollé, F., Delzescaux, T., Bonvento, G., Hantraye, P.,
Escartin, C.: Reactive astrocytes overexpress TSPO and are detected by TSPO positron
emission tomography imaging. J. Neurosci. 32, 10809–10818 (2012)

4. Bürgel, U., Schormann, T., Schleicher, A., Zilles, K.: Mapping of histologically identified
long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain:
position and spatial variability of the optic radiation. Neuroimage 10, 489–499 (1999)

5. Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3D structure
from serial histological sections. Image Vis. Comput. 19, 25–31 (2001)

6. Bardinet, E., Ourselin, S., Dormont, D., Malandain, G., Tandé, D., Parain, K., Ayache, N.,
Yelnik, J.: Co-registration of histological, optical and MR data of the human brain. In: Dohi,
T., Kikinis, R. (eds.) MICCAI 2002, Part I. LNCS, vol. 2488, pp. 548–555. Springer,
Heidelberg (2002)

7. Malandain, G., Bardinet, E., Nelissen, K., Vanduffel, W.: Fusion of autoradiographs with an
MR volume using 2-D and 3-D linear transformations. Neuroimage 23, 111–127 (2004)

8. Lebenberg, J., Hérard, A., Dubois, A., Dhenain, M., Hantraye, P., Delzescaux, T.:
A combination of atlas-based and voxel-wise approaches to analyze metabolic changes in
autoradiographic data from Alzheimer’s mice. Neuroimage 57, 1447–1457 (2011)

9. Oh, S.W., Harris, J.A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C.,
Kuan, L., Henry, A.M., Mortrud, M.T., Ouellette, B., Nguyen, T.N., Sorensen, S.A.,
Slaughterbeck, C.R., Wakeman, W., Li, Y., Feng, D., Ho, A., Nicholas, E., Hirokawa, K.E.,
Bohn, P., Joines, K.M., Peng, H., Hawrylycz, M.J., Phillips, J.W., Hohmann, J.G.,
Wohnoutka, P., Gerfen, C.R., Koch, C., Bernard, A., Dang, C., Jones, A.R., Zeng, H.:
A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014)

10. Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M.-É.,
Bludau, S., Bazin, P.-L., Lewis, L.B., Oros-Peusquens, A.-M., Shah, N.J., Lippert, T., Zilles,
K., Evans, A.C.: BigBrain: an ultrahigh-resolution 3D human brain model. Science 340,
1472–1475 (2013)

11. Mayerich, D., Abbott, L., McCormick, B.: Knife-edge scanning microscopy for imaging and
reconstruction of three-dimensional anatomical structures of the mouse brain. J. Microsc.
231, 134–143 (2008)

12. Ragan, T., Kadiri, L.R., Venkataraju, K.U., Bahlmann, K., Sutin, J., Taranda, J.,
Arganda-Carreras, I., Kim, Y., Seung, H.S., Osten, P.: Serial two-photon tomography for
automated ex vivo mouse brain imaging. Nat. Methods 9, 255–258 (2012)

13. Ertürk, A., Becker, K., Jährling, N., Mauch, C.P., Hojer, C.D., Egen, J.G., Hellal, F.,
Bradke, F., Sheng, M., Dodt, H.-U.: Three-dimensional imaging of solvent-cleared organs
using 3DISCO. Nat. Protoc. 7, 1983–1995 (2012)

14. Chung, K., Wallace, J., Kim, S.-Y., Kalyanasundaram, S., Andalman, A.S., Davidson, T.J.,
Mirzabekov, J.J., Zalocusky, K.A., Mattis, J., Denisin, A.K., Pak, S., Bernstein, H.,
Ramakrishnan, C., Grosenick, L., Gradinaru, V., Deisseroth, K.: Structural and molecular
interrogation of intact biological systems. Nature 497, 332–337 (2013)

A Quantitative Approach to Characterize MR Contrasts 113



15. Renier, N., Wu, Z., Simon, D.J., Yang, J., Ariel, P., Tessier-Lavigne, M.: iDISCO: a simple,
rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910
(2014)

16. Susaki, E.A., Tainaka, K., Perrin, D., Kishino, F., Tawara, T.,Watanabe, T.M., Yokoyama, C.,
Onoe, H., Eguchi, M., Yamaguchi, S., Abe, T., Kiyonari, H., Shimizu, Y., Miyawaki, A.,
Yokota, H., Ueda, H.R.: Whole-brain imaging with single-cell resolution using chemical
cocktails and computational analysis. Cell 157, 726–739 (2014)

17. Osechinskiy, S., Kruggel, F.: Quantitative comparison of high-resolution MRI and
myelin-stained histology of the human cerebral cortex. In: 31st Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, pp. 85–89 (2009)

18. Bol, K., Haeck, J.C., Alic, L., Niessen, W.J., de Jong, M., Bernsen, M., Veenland, J.F.:
Quantification of DCE-MRI: a validation of three techniques with 3D-histology. In: 2012
9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1044–1047. IEEE
(2012)

19. van Engelen, A., Niessen, W.J., Klein, S., Groen, H.C., Verhagen, H.J.M., Wentzel, J.J., van
der Lugt, A., de Bruijne, M.: Supervised in-vivo plaque characterization incorporating class
label uncertainty. In: 2012 9th IEEE International Symposium on Biomedical Imaging
(ISBI), pp. 246–249. IEEE (2012)

20. Stille, M., Smith, E.J., Crum, W.R., Modo, M.: 3D reconstruction of 2D fluorescence
histology images and registration with in vivo MR images: application in a rodent stroke
model. J. Neurosci. Methods 219, 27–40 (2013)

21. Coquery, N., Francois, O., Lemasson, B., Debacker, C., Farion, R., Rémy, C., Barbier, E.L.:
Microvascular MRI and unsupervised clustering yields histology-resembling images in two
rat models of glioma. J. Cereb. Blood Flow Metab. 34, 1354–1362 (2014)

22. Goubran, M., Hammond, R.R., de Ribaupierre, S., Burneo, J.G., Mirsattari, S., Steven, D.A.,
Parrent, A.G., Peters, T.M., Khan, A.R.: Magnetic resonance imaging and histology
correlation in the neocortex in temporal lobe epilepsy. Ann. Neurol. 77, 237–250 (2015)

23. Lindvall, O., Kokaia, Z.: Stem cells for the treatment of neurological disorders. Nature 441,
1094–1096 (2006)

24. Ross, C.A., Akimov, S.S.: Human-induced pluripotent stem cells: potential for
neurodegenerative diseases. Hum. Mol. Genet. 23, R17–R26 (2014)

25. Palfi, S., Condé, F., Riche, D., Brouillet, E., Dautry, C., Mittoux, V., Chibois, A.,
Peschanski, M., Hantraye, P.: Fetal striatal allografts reverse cognitive deficits in a primate
model of Huntington disease. Nat. Med. 4, 963–966 (1998)

26. Mu, S., Wang, J., Zhou, G., Peng, W., He, Z., Zhao, Z., Mo, C., Qu, J., Zhang, J.:
Transplantation of induced pluripotent stem cells improves functional recovery in
Huntington’s disease rat model. PLoS ONE 9, e101185 (2014)

27. Bachoud-Lévi, A.-C., Rémy, P., Nǵuyen, J.-P., Brugières, P., Lefaucheur, J.-P., Bourdet, C.,
Baudic, S., Gaura, V., Maison, P., Haddad, B., Boissé, M.-F., Grandmougin, T., Jény, R.,
Bartolomeo, P., Barba, G.D., Degos, J.-D., Lisovoski, F., Ergis, A.-M., Pailhous, E., Cesaro, P.,
Hantraye, P., Peschanski, M.: Motor and cognitive improvements in patients with
Huntington’s disease after neural transplantation. Lancet 356, 1975–1979 (2000)

28. Modo, M., Mellodew, K., Cash, D., Fraser, S.E., Meade, T.J., Price, J., Williams, S.C.:
Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance
imaging study. Neuroimage 21, 311–317 (2004)

29. Guzman, R., Uchida, N., Bliss, T.M., He, D., Christopherson, K.K., Stellwagen, D., Capela,
A., Greve, J., Malenka, R.C., Moseley, M.E., Palmer, T.D., Steinberg, G.K.: Long-term
monitoring of transplanted human neural stem cells in developmental and pathological
contexts with MRI. Proc. Natl. Acad. Sci. U.S.A. 104, 10211–10216 (2007)

114 Y. Balbastre et al.



30. Kraitchman, D.L., Gilson, W.D., Lorenz, C.H.: Stem cell therapy: MRI guidance and
monitoring. J. Magn. Reson. Imaging 27, 299–310 (2008)

31. Nicoleau, C., Varela, C., Bonnefond, C., Maury, Y., Bugi, A., Aubry, L., Viegas, P.,
Bourgois-Rocha, F., Peschanski,M., Perrier, A.L.: Embryonic stem cells neural differentiation
qualifies the role of Wnt/β-Catenin signals in human telencephalic specification and
regionalization. Stem Cells 31, 1763–1774 (2013)

32. Dauguet, J., Delzescaux, T., Condé, F., Mangin, J.-F., Ayache, N., Hantraye, P., Frouin, V.:
Three-dimensional reconstruction of stained histological slices and 3D non-linear registration
with in-vivo MRI for whole baboon brain. J. Neurosci. Methods 164, 191–204 (2007)

33. Ourselin, S., Roche, A., Prima, S., Ayache, N.: Block matching: a general framework to
improve robustness of rigid registration of medical images. In: Delp, S.L., DiGoia, A.M.,
Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 557–566. Springer, Heidelberg
(2000)

34. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid
registration using free-form deformations: application to breast MR images. IEEE Trans.
Med. Imaging 18, 712–721 (1999)

35. Mattes, D., Haynor, D.R., Vesselle, H., Lewellen, T.K., Eubank, W.: PET-CT image
registration in the chest using free-form deformations. IEEE Trans. Med. Imaging 22,
120–128 (2003)

36. Golland, P., Fischl, B.: Permutation tests for classification: towards statistical significance in
image-based studies. Inf. Process. Med. Imaging. 18, 330–341 (2003)

37. Ojala, M., Garriga, G.C.: Permutation tests for studying classifier performance. In: 2009
Ninth IEEE International Conference on Data Mining, pp. 908–913. IEEE (2009)

38. Bakker, R., Tiesinga, P., Kötter, R.: The scalable brain atlas: instant web-based access to
public brain atlases and related content, pp. 353–366 (2013). arXiv Preprint: arXiv1312.6310

A Quantitative Approach to Characterize MR Contrasts 115



Brain Tumor Image Segmentation



Image Features for Brain Lesion Segmentation
Using Random Forests

Oskar Maier1,2(B), Matthias Wilms1, and Heinz Handels1

1 Institute of Medical Informatics, Universität zu Lübeck, Lübeck, Germany
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Abstract. From clinical practice as well as research methods arises the
need for accurate, reproducible and reliable segmentation of pathological
areas from brain MR scans. This paper describes a set of hand-selected,
voxel-based image features highly suitable for the tissue discrimination
task. Embedded in a random decision forest framework, the proposed
method was applied to sub-acute ischemic stroke (ISLES 2015 - SISS),
acute ischemic stroke (ISLES 2015 - SPES) and glioma (BRATS 2015)
segmentation with only minor adaptation. For all of these three chal-
lenges, our generic approach received high ranks, among them a second
place. The outcome underlines the robustness of our features for seg-
mentation in brain MR, while simultaneously stressing the necessity for
highly specialized solution to achieve state-of-the-art performance.

Keywords: Ischemic stroke · Lesion segmentation · Magnetic resonance
imaging · Brain MR · MRI · Random forest · RDF · Acute · Sub-acute ·
Glioma · Tumor · ISLES 2015 · BRATS 2015 · SISS · SPES

1 Introduction

Many diseases and injuries manifest as pathological changes to the brain and
magnetic resonance (MR) scans are often acquired for diagnosis and assessment,
as this modality exhibits a high soft tissue contrast and is highly customizable.
Examples of such brain lesion causing afflictions are cerebral stroke, multiple
sclerosis, brain tumors and traumatic brain injury.

Knowledge about the exact location, shape and extent of the pathological tis-
sue is often crucial for precise diagnosis [23], monitoring [4], informed treatment
decisions [10], surgical or radiotherapeutic planning [9], biomarker discovery [8],
drug efficacy or effectiveness studies [12,13] and neuroscientific insight [11]. Put
simply, all of these domains would benefit from automatic segmentation of lesions
in brain MR scans.

This demand has reached the medical image processing community and many
groups have approached the problem with a wide range of methods. Sub-acute
ischemic stroke lesions are highly variable in appearance, as they still undergo
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development on a molecular level. A good overview by Rekik et al. [24] summa-
rizes the early years of the field and an increasing number of new propositions
have been made since then [6,7,16,19,25,26]. Acute stroke poses quite a dif-
ferent challenge, where the main goal is the estimation of the penumbra area,
i.e. the potentially salvageable tissue [1]. The set of MR sequences most suit-
able is distinct from the sub-acute case [18] and while the acute stroke lesions
are less variable in their gray-level appearance, a hard time constraint of a few
minutes is imposed on all practical applications. Common clinical practice is
a simple thresholding and mismatch approach, although more complex meth-
ods are known to perform better [5]. A multi-class problem is the segmenta-
tion of glioma, which has been recently summarized in an extensive comparison
work [17]. Here, an exact delineation of the complete tumor as well as a break-
down into its sub components (e.g. core, enhancing) is beneficial for surgical and
radiotherapeutic planning.

The published methods are usually highly adapted to the task at hand and
cannot be readily transferred to similar problems. In this paper, we therefore
introduce a set of hand-selected, voxel-based image features for differentiating
between pathological and healthy brain tissue, which are modeled after human
experts discrimination criteria. To detect the non-linear decision boundaries for
each application task, we employ the machine learning method of random forests.

Automatic feature detection approaches, such as convolutional neural net-
works [2] or random scanning of large feature spaces [27], are explicitly left out
to assess the selected features robustness and suitability for a range of brain
lesion segmentation tasks.

For a fair and direct evaluation under medically realistic conditions, we par-
ticipated in three medical image segmentation challenges (ISLES 2015 - SISS,
ISLES 2015 - SPES, BRATS 2015) with only minor adaptation to our method.

2 Method

In this section, we describe the general random forest framework in which the
features are embedded. Then, we introduce the features as well as the motivation
behind them. Finally, we present the three segmentation tasks, their image data,
evaluation metrics and specific adaptations to our approach.

2.1 Random Decision Forest Framework

Our approach is centered around a standard random forest classifier, preceded by
a number of pre-processing steps for the MR scans and followed by a few crude
morphological post-processing operations (see Fig. 1). An adaptive training set
sub-sampling scheme additionally reduces the training effort at minimal costs of
accuracy. These elements are common to all three segmentations tasks, possible
deviations are described in Sect. 2.3.



Image Features for Brain Lesion Segmentation Using Random Forests 121

Fig. 1. Pipeline schema.

Pre-processing. Training as well as testing images are assumed to be of a
common voxel resolution, already co-registered and skull-stripped.

Bias field is a low-frequency, smooth signal that corrupts MR scans in an
additive and/or multiplicative manner and thus causes homogeneous tissue types
to be represented by different intensity values, rendering their classification more
difficult. We employ the MR Intensity Bias Field Correction tool [14] from the
Computational Morphometry Toolkit (CMTK) to first estimate and then remove
the bias field effect, increasing the intensity homogeneity over the tissue types.

As opposed to computed tomography (CT), the intensity values of most MR
sequences do not directly reflect physical properties of the depicted tissue fol-
lowing a known relationship. Instead, intensity values of a single tissue type
as well as differences between tissue types can differ greatly not only between
the same sequences acquired with different scanners, but even between repeated
acquisitions on the same machine. With a learning based intensity standard-
ization method implemented in MedPy [15] and based on [20] we harmonize
each sequences intensity profile. This method has the advantage of not requiring
a fixed template image and it signals a warning when presented with outliers.
A side effect is a strong spreading of the images’ histograms, which does not
affect our approach.

Training Set Sub-sampling. Since we employ voxel-wise classification for
segmentation, the available training samples can easily surpass the ten million,
leading to long training times. We have shown previously [16], that a carefully
selected, representative subset can considerably reduce the training time with
only a minimal loss in accuracy.

As usual in machine learning applications, we first require a sufficient number
of cases as base training set, which represent the whole domain of the segmentation
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task. Then we can pick from each case a number of training samples, chosen to
reflect its idiosyncrasies.

To acquire a total of N voxel-wise training samples from C cases, we ran-
domly sampled N

C voxels from each training case using stratified random sam-
pling, i.e. keeping each case’s lesion to background ratio intact. Features are then
only extracted for these positions, further speeding up the training procedure.
By choosing a class ratio based on the real class appearance, our method differs
from the usual approach of equilibrated training class ratios.

Classifier Training. We employ the random forest classifier implemented
in [22], which has good generalization characteristics [3]. The classification of
brain lesions in MR is a complex task with high levels of noise [16], hence a
sufficiently large number of trees must be trained.

Post-processing. The output of the forest classifier is an a-posteriori lesion
probability map with a value between 0 and 1 for each voxel and class. In the
multi-class case, the class with the highest probability is assigned to each voxel.
For the binary case, a threshold value t can be defined to counter over- or under-
segmentation effects. Finally, the crisp segmentation results can be furthermore
processed with morphological operations, e.g. to close holes in the segmentation
or reduce the dominance of certain labels.

2.2 Features for Brain Lesion Segmentations

Brain lesions differ strongly in shape, location, homogeneity and intensities and
even for a single pathology, the lesion appearance can vary greatly [16]. It is
therefore often difficult to develop task specific features.

We present a set of features chosen to model a human observers discriminative
criteria and, instead of trying to capture the characteristics of a single pathology,
concentrate on enabling a general distinction between healthy and pathological
tissue. In other words, we concentrate on the least common denominators: the
fact that we look at a brain, even if in a, to different extents, degenerated state.

Figures 2, 3 and 4 show examples of a range of brain lesions for which auto-
matic segmentation would be desirable. Visible differences are largely based on
intensity attributes and most brain lesions show up either hyper- or hypo-intense.
But where the human observer easily assesses the symmetry of the brain and
hence identifies the lesion as outlier, the computer would have a hard time com-
paring the right areas and making the necessary simplifications at different levels
of the process. Instead, the classifier has to be directly provided with the neces-
sary information.

Others tasks the human brain is especially good at is clustering, generaliz-
ing and edge detection. Some of above examples barely exhibit an edge when
observed at close range, but an observer would still be able to outline the lesion
roughly, based on vague criteria such as ‘togetherness’, ‘shape’ and ‘consistency’,
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despite the obvious fact that the lesions can hardly be called homogeneous, of
consistent shape or strongly connected.

Keeping these observations in mind, we selected the following features. Many
of them are kept imprecise on purpose to avoid the danger of overfitting and
to model the human observers simplification abilities. The decision on which
of these have the highest discriminative ability for a given task is left to the
classifier during training.

Intensity. First feature is the voxel’s intensity value. After conducting the pre-
processing steps, this should contain some information about the tissue type
represented by the voxel.

Gaussian. Due to the often low signal-to-noise ratio in MR scans and intensity
inhomogeneities of the tissue types, we furthermore regard each voxel’s value
after a smoothing of the volume with a 3D Gaussian kernel at three sizes: σ =
3, 5, 7 mm. This feature allows for a more robust estimation of the underlying
tissue type than the voxel’s intensity value alone. Furthermore, by using both
of these features, the magnitude of difference to the neighboring voxels can be
used in the decision finding process. The three scales have been selected to allow
for a fine tuning and hence a multi-resolution similar approach where necessary.

Hemispheric Difference. While many brain lesions can affect both hemispheres,
most do not display symmetric properties. Therefore, we extract the hemispheric
difference (in intensities) after a Gaussian smoothing of σ = 1, 3, 5 mm to account
for noise, which supplies a rough measure of deviation from hemispheric symme-
try, a strong criteria of human observers. Using three scales, the rough as well as
the finer details are considered. The computation of the hemispheric difference
feature requires the detection of the sagittal midline, which, while relatively easy
for a human, is no trivial task to a computer. In this work, the central slice of
the sagittal view is taken as a sufficiently close approximation of the sagittal
midline. Note that a direct application to medical data might require a rough
alignment of the cases, i.e. through rigid registration to a template.

Local Histogram. Many brain lesions are largely inhomogeneous in appearance
and incorporate a wide range of intensities that often overlap with healthy tissue
types. As previously proposed in [16], we model the intensity distribution in a
cubical area through a normalized histogram under the assumption, that the
local distribution of intensity values differs between lesioned and healthy brain
tissue. The histogram range is set to the whole image’s intensity range. The
number of bins should be selected large enough to be able to model a large
number of possible distributions while being small enough to not inflate the
feature vector and at least one neighborhood patch size should be selected to fit
smoothly inside the smallest lesions. The neighborhoods considered in this work
were R = 53, 103, 153 mm, the histogram was fixed to 11 bins.

Center Distance. Exploiting the rough symmetry of the brain for another fea-
ture, we extract the 2D euclidean distance to the image center (assumed here
to coincide roughly with the brain’s center of mass) in mm in each dimension.
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Note that this feature is not intensity based, but rather discloses each voxel’s
rough location inside the brain. Thus, skull-near can be treated differently to
periventricular regions, where e.g. hyper-intense bone residues from an imper-
fect skull-stripping are unlikely to occur. This feature is deliberately chosen to
represent the location only roughly, as (a) an exact localization would require
a costly and error-prone inter-subject registration and (b) holds the danger of
learning the explicit location of the training lesions, resulting in poor general-
ization.

2.3 Segmentation Tasks

To evaluate our features, the method participated in three recent medical image
segmentation challenges concerning brain lesions. For each, the organizers pro-
vided a training dataset with associated ground truth expert segmentations and
a task representative testing dataset. The ground truth of the second is not
revealed and the organizers evaluated all participating methods in a fair and
direct comparison of methods. In this section, the three tasks, their image data
and evaluation metrics are described.

ISLES 2015 - SISS. The Sub-acute Ischemic Stroke lesion Segmentation
(SISS) is a sub-task of the overarching Ischemic Stroke LEsion Segmentation
(ISLES) challenge1 concerned with the delineation of stroke lesions in the sub-
acute (here defined as >12 h and <2 weeks) development phase from multi-
spectral MR scans. A summary of the set-up is given in Table 1.

Table 1. Summary of the three evaluation tasks.

SISS SPES BRATS

#cases training 28 30 274

#cases testing 36 20

#raters training 1 1 1-4 (consent), par-
tially automatic

#raters testing 2 1 4 (consent)

#centers training 1 1 Multiple

#centers testing 2 1 Multiple

MR sequences FLAIR, T2, T1,
DWI

T1c, T2, DWI, CBF,
CBV, TTP, Tmax

FLAIR, T2, T1,
T1c

Employed evaluation metrics are the Dice’s coefficient (DC), which denotes
the volume overlap, the average symmetric surface distance (ASSD), denoting
the volume surface distance, and the Hausdorff distance (HD), revealing outliers.
For a detailed definition of these metrics, please refer to the challenge’s web page.
1 http://isles-challenge.org.

http://isles-challenge.org
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ISLES 2015 - SPES. The Stroke Penumbra EStimation (SPES) is another
sub-task of the ISLES challenge. Its goal is the estimation of the penumbra
from multi-spectral MR scans acquired at the acute (<6 h) development phase.
Table 1 also provides a summary of this task.

The employed metrics are the same as for SISS, only the HD has been left
out, as the ground truth segmentations contain voxel-sizes holes.

BRATS 2015. The multimodal BRAin Tumor Segmentation (BRATS)
challenge2 approaches the task of segmenting high- as well as low-grade glioma.
The ground truth consists of four different classes: the edema, the non-enhancing
solid core, the necrotic/cystic core and the enhancing core. In its configuration,
the 2015 version of the challenge was equal to the previous years [17]. The details
of this years set-up are shown in Table 1.

For BRATS, three structures are evaluated: the whole tumor (all 4 labels),
the tumor core (non-enhancing solid core, necrotic/cystic core, enhancing core)
and the active tumor (enhancing core). Employed evaluation metrics were DC,
the positive prediction values (PPV), the sensitivity (SE) and the kappa value.
The exact definitions of these metrics have not been provided by the organizers.

3 Results

This section describes the experimental settings for each task and presents the
results obtained on the testing as well as training sets.

3.1 Results for ISLES 2015 SISS.

Parameter Settings. For the SISS task, N = 1, 000, 000 voxel-wise samples are
extracted from the training cases. The random forest consists of T = 50 trees
trained without limits and Gini impurity is employed as split criteria. At each
node, a subset of

√
F of the F total features are regarded.

Post-processing. The a-posteriori class probabilities produced by the forest are
thresholded at a value of t = 0.4, to counter a slight under-segmentation. Further
post-processing has been the filling of holes in the segmentation, a morphological
closing operation of size 1 and a removal of all unconnected components smaller
than 1000 ml as presumed outliers.

Evaluation. On the day of a challenge, we achieved a respectable sixth place
among the fourteen participants. The results obtained on the testing dataset are
summarized in Table 2 and a visual example is given in Fig. 2.

2 http://braintumorsegmentation.org.

http://braintumorsegmentation.org
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Table 2. SISS account. Some of our segmentation masks were empty or failed com-
pletely to intersect with the ground truth and hence were not taken into acount for the
average values of the ASSD and HD. But the DC has been computed over all 36 cases.

Cases DC [0,1] ASSD (mm) HD (mm)

31/36 0.42 ± 0.33 10.21 ± 9.44 49.17 ± 29.6

(a) (b) (c)

Fig. 2. Exemplary SISS result (training set, case 23): (a) Ground truth on Flair (b)
Segmentation on Flair (c) sequences, from top-left clockwise: T1, T1c, Flair, T2

3.2 Results for ISLES 2015 SPES

Deviation from the Default Approach. The SPES data are of high quality with
a, if at all, then only barely perceptible bias field. We therefore refrained from
applying the bias field correction step in the pre-processing. Preliminary exper-
iments revealed no benefits. Furthermore, we did not apply the intensity range
standardization to the perfusion maps, as these are considered to directly reflect
physical quantities derived from the cerebral blood flow. Finally, we chose to cap
the Tmax sequence at an upper value of 100, as larger values are known to be
of no significance [21].

Parameter Settings. The training settings for SPES are the same as for SISS
above.

Post-processing. The a-posteriori class probabilities produced by the forest are
thresholded at a value of 0.35, to counter a slight under-segmentation. As further
post-processing, all but the largest connected binary component was removed.

Evaluation. In the SPES challenge, we reached the second place of seven partic-
ipants. The results obtained on the testing dataset are summarized in Table 3.
A visual example is displayed in Fig. 3.



Image Features for Brain Lesion Segmentation Using Random Forests 127

Table 3. SPES testing dataset results. ASSD as well as DC has been computed over
all testing cases.

Cases DC [0,1] ASSD (mm)

20/20 0.81 ± 0.09 1.65 ± 1.40

(a) (b) (c)

Fig. 3. Exemplary SPES result (training set, case 16): (a) Ground truth (b) Segmen-
tation (c) sequences, from top-left clockwise: T2, T1c, DWI, TTP, CBF, CBF

3.3 Results for BRATS 2015

Parameter Settings. The training settings for BRATS are the same as for SISS
above, except that we took care to extract a minimum of 500 samples for each
class per case. This had become necessary due to the multi-class problem posed
by BRATS. Note that still an overall number of approximately 1, 000, 000 train-
ing samples is sampled.

Post-processing. For post-processing, the edema was allowed to grow morpho-
logical with a size of 1 into the background and then the inner non-enhancing
solid core to perform similar, but only at the expense of the edema label. This
corresponds roughly to a slight inflation of the non-enhancing solid core and a
subsequent adaptation of the surrounding edema.

Evaluation. Table 4 details the results obtained on the BRATS training dataset,
as the results on the testing dataset have not been made public, yet.

Table 4. BRATS training dataset results. Some of our segmentation masks were empty
and hence did not count into the average values presented here.

Cases DC PPV SE Kappa

comp core enha comp core enha comp core enha

252/274 0.75 0.60 0.56 0.71 0.56 0.59 0.88 0.81 0.64 0.98
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(a) (b) (c)

Fig. 4. Exemplary BRATS result (training set, case brats tcia pat374 0001): (a)
Ground truth on Flair (b) Segmentation on Flair (c) sequences, from top-left clockwise:
T1, T1c, Flair, T2

At the day of the challenge, our methods made the fifth place overall and
the fourth of the completely automatic methods on the testing dataset. A visual
example is displayed in Fig. 4.

4 Discussion and Conclusion

We have introduced a set of image features tailored towards lesion segmentation
in MR brain scans. An evaluation on three public datasets with favorable ranking
in all of them underlines their suitability for a range of tasks. All are implemented
for direct use in the MedPy library [15].

Especially for the SPES task, state-of-the-art results are obtained. For SISS,
the method failed mainly to adapt to the second center cases not represented in
the training dataset. The BRATS results show, that the features are not only
suited to distinguish between healthy and other brain areas, but also different
pathological tissues.

We can conclude that, for seemingly easier tasks like the SPES challenge, the
feature selection is sufficient. But for more complex segmentation problems, such
as posed by BRATS and SISS, more specialized features and/or a combination
with other methods is required to achieve state-of-the-art results. Another option
would be to employ random feature detection methods [27], which work by
generating large amounts of random feature instances under the assumption
that a few might be informative. Nevertheless, we have shown that the presented
feature set constitutes a good base for a wider range of brain lesion segmentation
tasks.

For each application, we determined a different a-posteriori probability map
threshold using the training set. For the testing data they were kept constant.
The differences in ideal thresholds could arise (1) from the unbalanced class
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ratios in the training data and/or (2) from classifier intrinsic tendencies to over-
or undersegment.

For the stroke case, we investigated the information content of the different
sequences in a previous work [16] and found FLAIR to be the most informative
sequence by large. But we furthermore found the decision forests to behave very
robust against uninformative features or sequences, hence we did not investigate
the issue further in this work.

It remains to demonstrate the basic fitness of the features for further tasks,
such as e.g. MS and TBI lesion segmentation.
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11. Krämer, U.M., Solbakk, A.K., Funderud, I., et al.: The role of the lateral prefrontal
cortex in inhibitory motor control. Cortex 49(3), 837–849 (2013)

12. La Mantia, L., Di Pietrantonj, C., Rovaris, M., et al.: Interferons-beta versus glati-
ramer acetate for relapsing-remitting multiple sclerosis. Cochrane Database Syst.
Rev. 7, CD009333 (2014). http://www.ncbi.nlm.nih.gov/pubmed/25062935

13. Lansberg, M.G., Straka, M., Kemp, S., et al.: MRI profile and
response to endovascular reperfusion after stroke (DEFUSE 2): a
prospective cohort study. Lancet. Neurol. 11(10), 860–867 (2012).
http://www.thelancet.com/article/S147444221270203X/fulltext

http://www.ncbi.nlm.nih.gov/pubmed/21602503
http://www.sciencedirect.com/science/article/pii/S2213158215001199
http://www.ncbi.nlm.nih.gov/books/NBK222399/
http://www.ncbi.nlm.nih.gov/pubmed/25062935
http://www.thelancet.com/article/S147444221270203X/fulltext


130 O. Maier et al.

14. Likar, B., Viergever, M.A., Pernus, F.: Retrospective correction of MR intensity
inhomogeneity by information minimization. IEEE Trans. Med. Imag. 20(12),
1398–1410 (2001)

15. Maier, O.: MedPy. https://pypi.python.org/pypi/MedPy. Accessed 29 March 2015
16. Maier, O., Wilms, M., et al.: Extra tree forests for sub-acute ischemic stroke lesion

segmentation in MR sequences. J. Neurosci. Methods 240, 89–100 (2015)
17. Menze, B., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image seg-

mentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024
(2015)

18. Mishra, N.K., Albers, G.W., Christensen, S., et al.: Comparison
of magnetic resonance imaging mismatch criteria to select patients
for endovascular stroke therapy. Stroke 45(5), 1369–1374 (2014).
http://stroke.ahajournals.org/content/45/5/1369.full

19. Mitra, J., Bourgeat, P., Fripp, J., et al.: Lesion segmentation from multimodal MRI
using random forest following ischemic stroke. Neuroimage 98, 324–335 (2014)

20. Nyul, L., Udupa, J., Zhang, X.: New variants of a method of MRI scale standard-
ization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000)

21. Olivot, J.M., Mlynash, M., Thijs, V.N., et al.: Optimal Tmax threshold for
predicting penumbral tissue in acute stroke. Stroke 40(2), 469–475 (2009).
http://stroke.ahajournals.org/content/40/2/469.abstract

22. Pedregosa, F., Varoquaux, G., et al.: Scikit-learn: machine learning in Python. J.
Mach. Learn. Res. 12, 2825–2830 (2011)

23. Polman, C.H., Reingold, S.C., Banwell, B., et al.: Diagnostic criteria for
multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neu-
rol. 69(2), 292–302 (2011). http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=3084507&tool=pmcentrez&rendertype=abstract

24. Rekik, I., Allassonniere, S., Carpenter, T.K., Wardlaw, J.M.: Medical image analy-
sis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: segmenta-
tion, prediction and insights into dynamic evolution simulation models. A critical
appraisal. Neuroimage Clin. 1(1), 164–178 (2012)

25. Seghier, M.L., Ramlackhansingh, A., Crinion, J., Leff, A.P., Price, C.J.: Lesion
identification using unified segmentation-normalisation models and fuzzy cluster-
ing. Neuroimage 41(4–3), 1253–1266 (2008)

26. Wilke, M., de Haan, B., Juenger, H., Karnath, H.O.: Manual, semi-automated, and
automated delineation of chronic brain lesions: a comparison of methods. Neuroim-
age 56(4), 2038–2046 (2011)

27. Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C., Shotton, J.,
Thomas, O.M., Das, T., Jena, R., Price, S.J.: Decision forests for tissue-specific seg-
mentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette,
H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp.
369–376. Springer, Heidelberg (2012)

https://pypi.python.org/pypi/MedPy
http://stroke.ahajournals.org/content/45/5/1369.full
http://stroke.ahajournals.org/content/40/2/469.abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3084507&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3084507&tool=pmcentrez&rendertype=abstract


Deep Convolutional Neural Networks
for the Segmentation of Gliomas

in Multi-sequence MRI

Sérgio Pereira1,2(B), Adriano Pinto1, Victor Alves2, and Carlos A. Silva1

1 CMEMS-UMinho Research Unit, Guimarães, Portugal
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Abstract. In their most aggressive form, the mortality rate of gliomas
is high. Accurate segmentation is important for surgery and treatment
planning, as well as for follow-up evaluation. In this paper, we propose
to segment brain tumors using a Deep Convolutional Neural Network.
Neural Networks are known to suffer from overfitting. To address it,
we use Dropout, Leaky Rectifier Linear Units and small convolutional
kernels. To segment the High Grade Gliomas and Low Grade Gliomas
we trained two different architectures, one for each grade. Using the
proposed method it was possible to obtain promising results in the 2015
Multimodal Brain Tumor Segmentation (BraTS) data set, as well as the
second position in the on-site challenge.

Keywords: Magnetic Resonance Imaging · Brain tumor · Glioma · Seg-
mentation · Deep learning · Deep Convolutional Neural Network

1 Introduction

Gliomas are brain tumors originated from the glial cells, and can be divided into
Low Grade Gliomas (LGG) and High Grade Gliomas (HGG). Although the former
are less aggressive, the mortality rate of the later is high [4,19]. In fact, the most
aggressive gliomas are called Glioblastoma Multiforme, with most patients not
surviving more than fourteen months, on average, even when under treatment [29].
The accurate segmentation of the tumor and its sub-regions is important for treat-
ment and surgery planning, but also for follow-up evaluation [4,19].

Over the years, several approaches were proposed for brain tumor seg-
mentation [4,19]. Some probabilistic methods explicitly model the underlying
data [9,12,20,23]. In these approaches, besides the model for the tissue intensi-
ties, it is possible to include priors on the neighborhood through Markov Random
Field models [20], estimate a tumor atlas at segmentation time [9,12,20] and take
advantage of biomechanical tumor growth models [9,12]. Agn et al. [1] used a
generative method based on Gaussian Mixture Models and probabilistic atlases,
extended with a prior on the tumor shape learned by convolutional Restricted
Boltzmann Machines.
c© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 131–143, 2016.
DOI: 10.1007/978-3-319-30858-6 12
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Other approaches learn a model directly from the data in a supervised
way [3,14,17,22,27,30]. In their core, all of these supervised methods have clas-
sifiers that learn how to classify each individual voxel into a tissue type, which
may result in isolated voxels, or small clusters, misclassified inside another tissue;
however, it is possible to regularize the segmentation by taking the neighborhood
into account using Conditional Random Fields [3,14,17,18]. Among the classi-
fiers, Random Forests obtained some of the most promising results [17,27,30].
Bakas et al. [2] employed a hybrid generative-discriminative approach. The
method is semi-automatic, requiring the user to select some seed points in the
image. These points will be used in a modified version of Glistr [9] to obtain
a first segmentation; then, it is refined with the gradient boosting algorithm.
Lastly, a probabilistic refinement based in intensity statistics is used to obtain
the final segmentation.

All the previous supervised methods require the computation of hand-crafted
features, which may be difficult to design, or require specialized knowledge on
the problem. On the other hand, Deep Learning methods automatically extract
features [13]. In Convolutional Neural Networks (CNNs), a set of filters is opti-
mized and convolved with the input image to compute certain characteristics; so,
CNNs can deal with the raw data directly. Those filters represent weights of the
neural network. Since the filters are convolved over the features, the weights are
shared across neural units in the resulting feature maps. In this way, the num-
ber of weights in these networks is lower than in neural networks constituted
by only fully-connected (FC) layers, making them less prone to overfitting [13].
Overfitting can be a severe problem in neural networks; so, Dropout appears as
a regularization method that removes nodes of the network according to some
probability in each training step, thus enforcing all nodes to learn good fea-
tures [25]. Some methods employing CNN for brain tumor segmentation were
already proposed [8,10,15,28]. Havaei et al. [10] used a complex architecture of
parallel branches and two cascaded CNNs; training of the network was accom-
plished in two stages: first with balanced classes and, then, a refinement of the
last layer was accomplished using a number of samples of each class closer to
the observed in brain tumors. Lyksborg et al. [15] trained a CNN in each of
the three orthogonal planes of the Magnetic Resonance Imaging (MRI) images,
using them as an ensemble of networks for segmentation. Dvořák and Menze [8]
used CNNs for structured predictions.

Inspired by Simonyan and Zisserman [24], we developed CNN architectures
using small 3×3 kernels. In this way, we can have more convolutional layers, with
the opportunity to apply more non-linear transformations of the data. Addition-
ally, we use data augmentation to increase the amount of training data and Leaky
Rectifier Linear Units (LReLU) as non-linear activation function. This approach
and architecture obtained the second position in the 2015 BraTS challenge.

2 Materials and Methods

The processing pipeline has three main stages: pre-processing, classification
through CNNs and post-processing; Fig. 1 presents an overview of the proposed
method and interactions between the Training and Testing stages.
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Fig. 1. Overview of the processing pipeline. During training, we artificially augment
the data, but at test time we use just the original version of patches.

2.1 Data

BraTS 2015 [11,19] includes two data sets: Training and Challenge. The Train-
ing data set comprises 220 acquisitions from patients with HGG and 54 from
patients with LGG. Four MRI sequences are available for each patient: T1-,
T1- post contrast (T1c), T2- and FLAIR-weighted. In this data set, the man-
ual segmentations are publicly available. In the Challenge data set, both the
manual segmentations and tumor grade are unknown. This set contains 53 sub-
jects with the same MRI sequences as the Training set. All images were already
rigidly aligned with the T1c and skull stripped; the resolution was guaranteed
to be coherent among all MRI sequences and patients by interpolation of the
sequences with thickest slices to 1 mm × 1 mm × 1 mm voxels.

2.2 Method

Given the differences between HGG and LGG, a model was trained for each
grade. Thus, when segmenting a data set where the tumor grade is unknown, we
require the user to visually inspect the images and identify the grade beforehand.
After this procedure, the remaining pipeline is automatic, without requiring
further intervention of the user, for example, to select parameters, seed points
or regions of interest.

Pre-processing. The bias field in each MRI sequence was corrected using the
N4ITK method [26]. This procedure was similar for all sequences, using 20, 20,
20 and 10 iterations, a shrink factor of 2 and a B-spline fitting distance of 200.
After that, the intensities of each individual MRI sequence were normalized [21].
The method for this normalization procedure learns a standardized histogram
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with a set of intensity landmarks from the Training set, then, the intensities
between two landmarks are linearly transformed to fit in the same landmarks of
the standardized histogram; we selected 12 matching landmarks both in LGG
and HGG. Finally, the patches are extracted in the axial slices and are normalized
to have zero mean and unit variance in each sequence; the mean and variance
are calculated for in each sequence using all training patches.

In brain tumor images the classes are highly imbalanced. There are much
more samples of normal tissue than tumor tissue; additionally, among the tumor
classes there are also classes more common than others, for example, edema
represents a bigger volume than necrosis, which may even not exist in some
patients. To cope with this, around 40 % of our training samples are extracted
from normal tissue, while the remaining 60 % corresponds to brain tumor samples
with approximately balanced numbers of samples across classes. However, since
some classes are rare, the number of training samples of some tissues must be
reduced to keep the classes balanced; so, during training each patch is rotated
on the fly (in a parallel process) by 90, 180 and 270 to artificially augment the
training data; at test time the patches are not rotated and we classify just the
central voxel.

Convolutional Neural Network. In convolutional layers of CNNs the features
are extracted by convolving a set of weights, organized as kernels, with the input.
These weights are optimized during training to enhance different features of the
images. The computation of the ith feature map in layer l (F l

i ) is defined as

F l
i = f

⎛
⎝bl

i +
∑

j

W l
i,j ∗X l−1

j

⎞
⎠ (1)

where f denotes the activation function, b represents the bias, j indexes the
input channel, W denotes the kernels and X l−1 the output of the previous layer.

The architectures of the CNNs were developed following [24] and are described
in Table 1; several variations were experimented, but these were found to obtain
better results in the validation set. By using small kernels, we can stack more lay-
ers and have a deeper architecture, while maintaining the same effective receptive
field of bigger kernels. For example, two layers with 3 × 3 filters have the same
receptive field of one layer with 5 × 5 kernels, but we have fewer weights to train
and we can apply two non-linear transformations to the data. We trained a deeper
architecture for HGG than for LGG; adding more layers to the LGG architecture
did not improve results, possibly because of the nature of LGG, such as its lower
contrast in the core, when compared to HGG. The input consists in 33 × 33 axial
patches in each of the 4 MRI sequences. Max-pooling consists in downsampling
the features maps by only keeping the maximum inside a neighborhood of units in
the feature maps; in this way, the computational load of the next layers decrease
and small irrelevant details can be discarded. However, segmentation must also
detect fine details in the image, thus, in our architectures, max-pooling is per-
formed with some overlapping of the receptive fields, to keep important details
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Table 1. Architecture of the CNN for HGG (left) and LGG (right). All non-linearities
were LReLU, with the exception of the last FC layer, where softmax was used.

Input: 33 X 33 X 4
Layer Receptive Field Stride # of feat. maps/FC units
Conv. 3X3 1X1 64
Conv. 3X3 1X1 64
Conv. 3X3 1X1 64

Max-Pool. 3X3 2X2 -
Conv. 3X3 1X1 128
Conv. 3X3 1X1 128
Conv. 3X3 1X1 128

Max-Pool. 3X3 2X2 -
FC - - 256
FC - - 256
FC - - 5

Input: 33 X 33 X 4
Layer Receptive Field Stride # of feat. maps/FC units
Conv. 3X3 1X1 64
Conv. 3X3 1X1 64

Max-Pool. 3X3 2X2 -
Conv. 3X3 1X1 128
Conv. 3X3 1X1 128

Max-Pool. 3X3 2X2 -
FC - - 256
FC - - 256
FC - - 5

for segmentation. In all the FC layers we use Dropout with p = 0.5 as regulariza-
tion, in order to reduce overfitting. Besides preventing nodes to co-adapt to each
other, Dropout works as an extreme case of bagging and ensemble of networks,
since in each mini-batch there are different nodes exposed to a small and different
portion of the training data [25]. LReLU was the activation function in almost all
layers, expressed as

f(x) = max (0, x) + α min (0, x) (2)

where α denotes the leakyness parameter defined as α = 1
3 . Contrasting with

ReLU, which imposes a constant 0 in the negative part of the function, LReLU
has a small negative slope in that part of the function. This is useful for training,
since imposing a constant forces the back-propagated gradient to become 0 in
the negative values [16]. The loss function was defined as the Categorical Cross-
entropy

H = −
∑

j∈voxels

∑
k∈classes

cj,k log(ĉj,k) (3)

where ĉ denotes the probabilistic predictions (after the softmax activation func-
tion) and c denotes the target. Training is accomplished by optimizing the
loss function through Stochastic Gradient Descent using Nesterov’s Momen-
tum with momentum coefficient of 0.9. The learning rate ε was initialized with
ε = 0.003 and linearly decreased after each epoch during the first 25 epochs until
ε = 0.00003. All convolutional layers operate over padded inputs to maintain its
sizes in the output.

The CNNs were implemented using Theano [5] and Lasagne [7].

Post-processing. A morphological filter was applied to impose volumetric con-
strains. Consequently, the clusters are identified and we remove those with less
than 10,000 voxels in HGG and 3,000 voxels in LGG.
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2.3 Evaluation

Although we segment each image into five classes (normal tissue, necrosis,
edema, non-enhancing tumor and enhancing tumor), the evaluation appraises
three tumor regions: Enhancing tumor, Core (necrosis + non-enhancing tumor
+ enhancing tumor) and the Complete tumor (all tumor classes). To evaluate the
segmentations, the following metrics were computed: Dice Similarity Coefficient
(DSC), Positive Predictive Value (PPV), Sensitivity and Robust Hausdorff Dis-
tance. The DSC [6] measures the overlap between the manual and the automatic
segmentation. It is defined as,

DSC =
2TP

FP + 2TP + FN
, (4)

where TP, FP and FN denote the numbers of true positive, false positive and
false negative detections, respectively. PPV represents the proportion of detected
positive results that are really positive and is defined as,

PPV =
TP

TP + FP
. (5)

Sensitivity measures the proportion of positive detections that are correctly iden-
tified as such and is useful to evaluate the number of true positive and false
negative detections, being defined as

Sensitivity =
TP

TP + FN
. (6)

The metrics provided by the organizers for the Challenge set were DSC
and robust Hausdorff Distance. The Hausdorff Distance measures the distance
between the surface of computed (∂P ) and manual (∂T ) segmentation, as

Haus(∂P, ∂T ) = max{ sup
p∈∂P

inf
t∈∂T

d (p, t) , sup
t∈∂T

inf
p∈∂P

d (t, p)} (7)

In the robust version of this measure, instead of calculating the maximum dis-
tance between the surface of the computed and manual segmentation, it is taken
into account the 95 % quantile.

3 Results and Discussion

Some segmentation examples obtained in the Training data set are illustrated in
Fig. 2, where we can observe the necrosis, edema, non-enhanced and enhanced
tumor classes; quantitative results in the same set are presented in Table 2 and
Fig. 3. These results were obtained by 2-fold cross-validation and 3-fold cross-
validation in HGG and LGG, respectively. Observing Table 2, metrics in the
Core and Enhanced regions of LGG are lower than in HGG, which may be due
to the lower contrast of the former. In fact, the contrast in the Core region
is lower in LGG [19] than in HGG. Additionally, although brain tumors are
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very heterogeneous, LGG tend to be smaller than HGG, with less Core tissues,
as observed from the first and third rows of Fig. 2b. Another issue with LGG
is the smaller number of training patients, when compared to HGG. From the
boxplots in Fig. 3, we can observe the higher dispersion in the Core region of LGG
compared to HGG; in the enhanced tumor in LGG the boxplots range almost the
full scale of the metrics, possibly because some of these tumors do not possess
enhancing tumor. However, the results for the Complete region are similar in

(a)

(b)

Fig. 2. Segmentation examples on the training data set from (a) HGG and (b) LGG.
From left to right: T1, T1c, FLAIR, T2, manual segmentation and obtained segmen-
tation. Colors in the segmentations represent: blue - necrosis, green - edema, yellow -
non-enhanced tumor, red - enhanced tumor (Color figure online).
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LGG and HGG, with similar dispersion as observed in the boxplots. There are
some outliers in Fig. 3, mainly in HGG, which may be due to the high variability
of brain tumors and to the bigger amount of patients with HGG. Following
the results in Table 2, in Fig. 2 the boundaries of the complete tumor seem well
defined, both in LGG and HGG. However, from the second and third rows in

Table 2. Results (mean) obtained with BraTS 2015 training data set.

DSC PPV Sensitivity

Complete Core Enhanced Complete Core Enhanced Complete Core Enhanced

LGG 0.86 0.64 0.40 0.86 0.67 0.39 0.88 0.71 0.51

HGG 0.87 0.75 0.75 0.89 0.76 0.80 0.86 0.79 0.75

LGG + HGG 0.87 0.73 0.68 0.89 0.74 0.72 0.86 0.77 0.70

(a)

(b)

Fig. 3. Boxplot of the results in each of the evaluated brain tumor regions using the
Training data set in (a) HGG and (b) LGG; black dots represent outliers
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Fig. 2b it seems that we are over-segmenting the Core classes in LGG; neverthe-
less, the second example looks particularly difficult with a big portion of tumor
Core tissues in a very heterogeneous distribution, sharp shapes and details.

Figure 4 presents segmentation examples obtained in the Challenge data set,
while Table 3 and Fig. 5 present the quantitative results. In this case, all subjects

Fig. 4. Segmentation examples on the challenge data set. From left to right: T1, T1c,
FLAIR, T2 and obtained segmentation. Colors in the segmentations represent: blue -
necrosis, green - edema, yellow - non-enhanced tumor, red - enhanced tumor (Color
figure online).
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Table 3. Results (mean) using the challenge data set of BraTS 2015.

DSC Robust Hausdorff

Complete Core Enh. Complete Core Enh.

0.78 0.65 0.75 15.83 26.54 6.99

Fig. 5. Boxplots of DSC and Robust Hausdorff Distance obtained using the challenge
data set of BraTS 2015.

in each grade of the Training data set were used for training the CNN, with
the exception of six validation patients in each grade. To train the CNNs we
extracted around 4,000,000 training patches of HGG and 1,800,000 of LGG, and
we used mini-batches of 128 training samples. However, the number of training
patches was 4 times bigger due to the data augmentation. Observing Fig. 4, the
segmentations seem coherent with the expected tumor tissues, for example, the
enhanced tumor portions appear delineated following the enhancing parts in
T1c. Also, the complete tumor appears to be well delineated, when comparing
with the FLAIR and T2 sequences, where the edema is hyperintense.

The training stage of each CNN took around one week. However, the entire
processing pipeline takes approximately 8 min to segment each patient, using
GPU processing on a Intel Core i7 3.5 GHz CPU, 32 GB of RAM, with a Nvidia
Geforce GTX 980 computer running Ubuntu 14.04 OS.

4 Conclusions and Future Work

In this paper, we presented a CNN to segment brain tumors in MRI. Exclud-
ing when the user needs to identify the tumor grade, all steps in the process-
ing pipeline are automatic. Although simple, this architecture shows promising
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results, with space for further developments, especially in the Core region and
segmentation of LGG; in the Challenge data set the proposed method was ranked
in the second position. As future work, we want to make a totally grade inde-
pendent method, possibly through a joint LGG/HGG training or an automatic
grade identification procedure before segmentation.
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Abstract. We present an approach for segmenting low- and high-grade
gliomas in multimodal magnetic resonance imaging volumes. The pro-
posed approach is based on a hybrid generative-discriminative model.
Firstly, a generative approach based on an Expectation-Maximization
framework that incorporates a glioma growth model is used to segment
the brain scans into tumor, as well as healthy tissue labels. Secondly,
a gradient boosting multi-class classification scheme is used to refine
tumor labels based on information from multiple patients. Lastly, a prob-
abilistic Bayesian strategy is employed to further refine and finalize the
tumor segmentation based on patient-specific intensity statistics from
the multiple modalities. We evaluated our approach in 186 cases during
the training phase of the BRAin Tumor Segmentation (BRATS) 2015
challenge and report promising results. During the testing phase, the
algorithm was additionally evaluated in 53 unseen cases, achieving the
best performance among the competing methods.

Keywords: Segmentation · Brain tumor · Glioma · Multimodal MRI ·
BRATS challenge · Gradient boosting · Expectation maximization ·
Brain tumor growth model · Probabilistic model

1 Introduction

Gliomas comprise a group of primary central nervous system (CNS) tumors of
neuroglial cells (e.g., astrocytes and oligodendrocytes) that have different degrees
of aggressiveness. They are mainly divided into low- and high-grade gliomas
(LGGs and HGGs) according to their progression rate and histopathology. LGGs
and HGGs exhibit distinct pathophysiological phenotypes and are subject to dif-
ferent treatment options. LGGs are less common than HGGs, constitute approx-
imately 20 % of CNS glial tumors, and almost all of them eventually progress to
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-30858-6 13
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HGGs [15]. HGGs are rapidly progressing malignancies, divided based on their
histopathologic features into anaplastic gliomas and glioblastomas (GBMs) [21].

Gliomas consist of various parts, each of which shows a different imaging phe-
notype in multimodal magnetic resonance imaging (MRI). Typically, the core of
HGGs consists of enhancing, non-enhancing and necrotic parts, whereas the
core of LGGs does not necessarily include an enhancing part. Another critical
feature, for both understanding and treating gliomas, is the peritumoral edema-
tous region. Edema occurs from infiltrating tumor cells, as well as a biological
response to the angiogenic and vascular permeability factors released by the
spatially adjacent tumor cells [1].

Quantification of the various parts of gliomas, in multimodal MRI, has an
important role in treatment decisions, planning, as well as monitoring in longi-
tudinal studies. The accurate segmentation of these regions is required to allow
this quantification. However, tumor segmentation is extremely challenging due
to the tumor regions being defined through intensity changes relative to the
surrounding normal tissue, and such intensity information being disseminated
across various modalities for each region. Additional factors that contribute to
the difficulty of brain tumor segmentation task is the motion of the patient dur-
ing the examination, as well as the magnetic field inhomogeneities. Hence, the
manual annotation of such boundaries is time-consuming, prone to misinterpre-
tation, human error and observer bias [3], with intra- and inter-rater variability
up to 20 % and 28 %, respectively [16]. Computer-aided segmentation of brain
tumor images would thus be an important advancement. Towards this end, we
present a computer-aided segmentation method that aims to accurately segment
such tumors and eventually allow for their quantification.

The remainder of this paper is organized as follows: Sect. 2 details the pro-
vided data, while Sect. 3 presents the proposed segmentation strategy. The exper-
imental validation setting is described in Sect. 4 along with the obtained results.
Finally, Sect. 5 concludes the paper with a short discussion and potential future
research directions.

2 Materials

The data used in this study comprise 186 preoperative multimodal MRI scans
of patients with gliomas (54 LGGs and 132 HGGs) that were provided as the
training set for the multimodal BRATS 2015 challenge, from the Virtual Skeleton
Database (VSD) [12]. Specifically, these data are a combination of the training
set (10 LGGs and 20 HGGs) used in the BRATS 2013 challenge [17], as well as
44 LGG and 112 HGG scans provided from the National Institutes of Health
(NIH) Cancer Imaging Archive (TCIA). The data of each patient consists of
native and contrast-enhanced (CE) T1-weighted, as well as T2-weighted and
T2 Fluid-attenuated inversion recovery (FLAIR) MRI volumes. The volumes
of the various modalities were, co-registered to the same anatomical template
and interpolated to 1 mm3 voxel resolution. In addition to the training set, 53
multimodal volumetric images were provided as the testing set for the challenge,
comprising both preoperative and after initial therapy scans.
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Finally, ground truth (GT) segmentations for the training set were also
provided. Specifically, the data from BRATS 2013 were manually annotated,
whereas data from TCIA were automatically annotated by fusing the approved
by experts results of the segmentation algorithms that ranked high in the BRATS
2012 and 2013 challenges [17]. The GT segmentations comprise the enhancing
part of the tumor (ET), the tumor core (TC), which is described by the union of
necrotic, non-enhancing and enhancing parts of the tumor, and the whole tumor
(WT), which is the union of the TC and the peritumoral edematous region. Note
that the testing sets have been segmented manually by one to four rates, but
the GT segmentations were not provided to the participating teams, allowing
for their evaluation only by the challenge organizers.

3 Methods

The provided skull-stripped and co-registered MRI volumes were initially
smoothed using a low-level image processing method, namely Smallest Univalue
Segment Assimilating Nucleus (SUSAN) [20], to reduce intensity noise in regions
of uniform intensity profile. The intensity histograms of all modalities of all
patients were then matched to the corresponding modality of a single reference
patient.

A modified version of the GLioma Image SegmenTation and Registration
(GLISTR) software [10] was subsequently used to delineate the boundaries of
healthy tissues (i.e., white and gray matter, cerebrospinal fluid, vessels and
cerebellum), as well as tumor tissues (i.e., edema, necrosis, non-enhancing and
enhancing parts of the tumor). Although GLISTR was inspired by a sequential
approach of segmentation of the input brain scans followed by the registration
of the outcome to a given healthy atlas [8], it was originally proposed in [9,10]
as a tool that jointly performs segmentation and registration, but handles only
scans with solitary HGGs. It was then conceptually improved in [14] to tar-
get broader brain tumor appearances, including multifocal masses and complex
shapes with heterogeneous textures (e.g., LGGs), enabling it to also partici-
pate in the BRATS 2014 challenge [13]. The version of GLISTR used here, was
modified in terms of using multiple seed-points for each brain tissue label, in
order to model the exact intensity distribution (i.e., mean and variance) of each,
whereas [14] uses a single seed-point for each label, assuming it is representative
of each label’s mean intensity value, and the variance is described by a fixed value
for all labels. Note that both previous and current versions of GLISTR do not
depend on the coordinates of the initialization seed-points, but on the intensity
value of the corresponding voxel on each modality. Therefore, even if differ-
ent seed-points are initialized across two independent segmentation attempts,
GLISTR output segmentation results should be identical, if the intensity distri-
butions modeled during these attempts are the same. The whole framework of
GLISTR is based on a probabilistic generative model that relies on Expectation-
Maximizaton (EM), to recursively refine the estimates of the posteriors for all
tissue labels, the deformable mapping to the atlas, and the parameters of the
incorporated brain tumor growth model [11].
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This modified version of GLISTR requires as input a single seed-point and
a radius for each apparent tumor, as well as multiple seed-points for each brain
tissue label. These seed-points were initialized using BrainTumorViewer1, which
has been primarily developed for this purpose. Given the single seed-point and
the radius inputs, the center and the bulk volume of each tumor are approxi-
mated by a sphere (Fig. 1). The parametric model of the sphere is used to initiate
the tumor growth model for each apparent tumor. This growth model is used to
modify the healthy atlas into one with tumor and edema tissues matching the
input scans, whilst it approximates the deformation occurred to the surround-
ing brain tissues, due to the effect of the tumors’ mass. A tumor shape prior is
also estimated separately, by a random-walk-based generative model, which uses
multiple tumor seed-points as initial foreground cues. This tumor shape prior is
systemically incorporated into the EM framework via an empirical Bayes model,
as described in [14]. Furthermore, a minimum of three seed-points are initialized
for each brain tissue label, with the intention of capturing the intensity varia-
tion of each tissue label, and modeling each label’s intensity distribution. This
provides a better initialization to the EM framework, resulting to more accurate
delineation of all tissue labels, when compared to [14] that uses a single seed-
point for each label. The output of GLISTR is a posterior probability map for
each tissue label, as well as a label map, which is a very good initial segmentation
of all different tissues within a patient’s brain.

Fig. 1. Example of using a single seed-point and a radius to approximate the center
and the bulk volume of a tumor by a sphere. The figures illustrate (from left to right)
the axial, coronal and sagittal view of the same patient.

A machine-learning approach was then used to refine GLISTR results by
utilizing information across multiple patients. Specifically, the gradient boost-
ing algorithm [5] is employed for voxel-level multi-label classification. Gradient
boosting is an ensemble method that produces a prediction model by combining
weak learners in a stage-wise fashion. It generalizes other boosting techniques by
allowing the optimization of an arbitrary differentiable loss function. We used
1 Available on: https://www.cbica.upenn.edu/sbia/software/braintumorviewer/.

https://www.cbica.upenn.edu/sbia/software/braintumorviewer/
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the Python package scikit-learn [18] for the implementation, choosing deviance
as the loss function. At each iteration, a weak learner, specifically a decision
tree of maximum depth 3, was added to the decision function, approximating
the current negative gradient of the objective. Randomness was introduced when
constructing each tree [6]. Each decision tree was fit to a sub-sample of the train-
ing set, with the sampling rate set equal to 0.6. The split was also determined
stochastically by sampling a subset of features at each node, with the number
of sampled features set equal to the square root of the total number of features.
The algorithm was terminated after 100 such iterations.

The features used for training our model consist of five components; image
intensity, image derivative, geodesic information, texture features, and the
GLISTR posterior probability maps. The intensity component comprises the
raw intensity value of each voxel (I(vi)), as well as their differences among all
four modalities (i.e., T1, T1-CE, T2, T2-FLAIR). The image derivative compo-
nent comprises the Laplacian of Gaussian and the image gradient magnitude.
Note that prior to calculating any intensity-based feature, intensity normaliza-
tion was performed based on the median intensity value of the GLISTR seg-
mented cerebrospinal fluid. The geodesic information at voxel vi was given by
the geodesic distance from the seed-point used in GLISTR as the tumor center,
at voxel vs. Specifically, the geodesic distance between vi and vs was defined as
minγ

∫
γ

P (γ(s))ds, where γ is a path connecting vi to vs. Similar to the app-
roach taken in [7], we set the weight P at each voxel to be proportional to its
gradient magnitude, and the optimization was solved using the fast marching
method [4,19]. Furthermore, the texture features describe the first and second
order texture statistics computed from a gray-level co-occurrence matrix. Specif-
ically, the first order statistics comprise the mean and variance of the intensities
from each modality within a radius of 2 voxels for each voxel. For the second
order statistics, the image volumes were firstly normalized to 64 different gray
levels, and then a bounding box of 5-by-5 pixels was used for all the pixels of
each image slice. Subsequently, a graylevel co-occurrence matrix was filled with
the intensity values within a radius of 2 pixels for all eight main directions (i.e.,
{0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}) to extract the energy, entropy, dis-
similarity, homogeneity (i.e., inverse difference moment of order 2), and inverse
difference moment of order 1. It should also be mentioned that our model was
trained using both LGG and HGG training samples simultaneously using a
54-fold cross-validation setting (given that 54 LGGs were present in the training
data, i.e., allowing for using a single LGG within each fold). The cross-validation
setting is necessary in order to avoid over-fitting.

Finally, a patient-wise refinement was performed by assessing the local inten-
sity distribution of the current segmentation labels and updating their spatial
configuration based on a probabilistic model, inspired by [2]. Firstly, the intensity
distribution of voxels with GLISTR posterior probability equal to 1 for the tissue
classes of white matter, edema, necrosis, non-enhancing and enhancing tumor,
were populated separately. Note that in the current segmentation goal, there is
no distinction between the non-enhancing and the necrotic parts of the tumor.
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A normalization to the histograms of pair-wise distributions was then
applied. The class-conditional probability densities (Pr(I(vi)|Class1) and
Pr(I(vi)|Class2)) were modeled by fitting distinct Gaussian models, using Max-
imum Likelihood Estimation to find the mean and standard deviation for each
class. There are three pair-wise distributions considered here; the edema voxels
opposed to the white matter voxels in the T2-FLAIR volume, the ET voxels
opposed to the edema voxels in the T1-CE volume, and the ET voxels opposed
to the union of the necrosis and the non-enhancing tumor in the T1-CE volume.
In all cases, the former intensity population is expected to have much higher
(i.e., brighter) values. Hence, voxels of each class with small spatial proximity
(namely 3 voxels) to the opposing tissue class were evaluated based on their
intensity. Specifically, the intensity I(vi) of each of these voxels was assessed
and Pr(I(vi)|Class1) was compared with Pr(I(vi)|Class2). The voxel vi was
then classified into a tissue class according to the larger of the two conditional
probabilities. This is equivalent to a classification based on Bayes’ Theorem with
equal priors for the two classes, i.e., Pr(Class1) = Pr(Class2) = 0.5.

Note that our challenge winning methodology has been made publicly avail-
able on the Online Image Processing Portal (IPP)2 of the Center for Biomedical
Image Computing and Analytics (CBICA), of the University of Pennsylvania.
CBICA’s IPP allows users to perform their data analysis using the integrated
algorithms, without any software installation, whilst also using CBICA’s High
Performance Computing resources.

4 Experiments and Results

In order to assess the segmentation performance of our method, we evaluated
the overlap between the proposed tumor labels and the GT in three regions, i.e.,
WT, TC and ET, as suggested in [17]. Figure 2 showcases example segmenta-
tion results along with the respective GT segmentations for eight patients (four
HGGs and four LGGs). These correspond to the two most and least successful
segmentation results for each glioma grade. We observe high agreement between
the generated results and the provided labels. We note that the highest overlap is
observed for edema, while there is some disagreement between the segmentations
of the enhancing and non-enhancing parts of the tumor.

To further appraise the performance of the proposed method, we quantita-
tively validated the per-voxel overlap between respective regions, in the training
set, using the DICE coefficient (see Fig. 3 and Table 1). This metric takes val-
ues between 0 and 1, with higher values corresponding to increased overlap.
Moreover, aiming to understand fully the obtained results, we stratified them
based on the labeling protocol of the GT segmentation. In particular, data with
manually annotated GT (i.e., BRATS 2013 data) was evaluated separately from
data with automatically defined GT (i.e., TCIA data). The reason behind this
distinction is twofold. First, only manual segmentation can be considered as
gold standard, thus allowing us to evaluate the potential of our approach when
2 Available on: https://ipp.cbica.upenn.edu/.

https://ipp.cbica.upenn.edu/
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(a) Most successful segmentation results.

(b) Least successful segmentation results.

Fig. 2. Examples for four LGG and four HGG patients. Green, red and blue masks
denote the edema, the enhancing tumor and the union of the necrotic and non-
enhancing parts of the tumor, respectively (Color figure online).
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targeting an interactive clinical work-flow. Second, results validated using auto-
matically defined GT should be interpreted with caution because of the inher-
ently introduced bias towards the employed automated methods, which also
influences visually inspecting experts [3]. As a consequence, our method may
be negatively impacted since it may learn to reproduce the systematic mistakes
of the provided annotations. Furthermore, since LGGs are characterized by a
distinct pathophysiological phenotype (i.e., lack of enhancing tumor part), we
also divided the obtained results in terms of the tumors’ grade (i.e., LGG and
HGG). This allows the performance assessment of the proposed approach on the
distinct imaging phenotype of each grade separately.

Fig. 3. Distributions of the DICE score across patients for each step (G: GLISTR, GB:
gradient boosting, P: proposed) of the proposed method, each tissue label and different
groupings of data. The black cross and the red line inside each box denote the mean
and median values, respectively (Color figure online).

Figure 3 reports the distributions of the cross-validated DICE score across
patients of the training set, for each step of the proposed method and for each
tissue label (WT, TC and ET) while Table 1 reports the respective mean and
median values. The results are presented following the previously described strat-
ifications. Figure 3 shows a clear step-wise improvement in both the mean and
median values of all tissue labels when considering the complete set of data, the
automatically annotated, the LGGs and the HGGs. On the contrary, we observe
a step-wise deterioration of both the mean and median values for the TC label



152 S. Bakas et al.

when assessing the manually annotated subset of the data (see Table 1 for the
exact values). This is probably the effect of learning systematically mislabeled
voxels present in the automatically generated GT annotations (see mislabeled
ET in GT of the second HGG in Fig. 2(a)). Furthermore, we note the segmenta-
tion results for the ET label to vary significantly between LGGs and HGGs, with
the former showing lower and less consistent results. This seems to be the effect
of training our learning model using both classes simultaneously, when LGGs
typically show a different pathophysiological phenotype marked by the lack of
an enhancing part. Nevertheless, the segmentation of the WT label in the LGGs
is comparable to this of the HGGs.

Table 1. Mean and median values of the DICE score for each step of the proposed
method, each tissue label and different groupings of data.

Data Method Dice score (mean) Dice score (median)

WT TC ET WT TC ET

Complete training set (n=186) GLISTR 83.7% 74.2% 58.6% 86.4% 81.6% 71.6%

GLISTR+GB 87.9% 76.5% 67.6% 89.9% 83.3% 80.9%

Proposed 88.4% 77.4% 68.2% 90.3% 83.7% 82%

Automatically annotated (n=156) GLISTR 83.1% 73.2% 60.1% 85.8% 81.6% 71.6%

GLISTR+GB 87.9% 76.8% 70.5% 89.9% 83.5% 82.6%

Proposed 88.5% 77.7% 71% 90.3% 83.7% 82.8%

Manually annotated (n=30) GLISTR 86.7% 79.2% 52.9% 89.2% 83.6% 71.3%

GLISTR+GB 88.3% 74.8% 56.7% 90.8% 83.2% 72.6%

Proposed 87.6% 76.1% 58.1% 90.5% 83.4% 75.7%

All HGGs (n=132) GLISTR 84.7% 80.8% 72.2% 87.3% 85.3% 76.2%

GLISTR+GB 89.1% 82.3% 80.5% 91% 86.7% 85.7%

Proposed 89.6% 83.2% 82% 91% 87.2% 86.5%

All LGGs (n=54) GLISTR 81.1% 58.1% 25.8% 82.8% 67.3% 12.8%

GLISTR+GB 85.2% 62.4% 37.3% 87.2% 68.6% 36.9%

Proposed 85.4% 63.2% 35.9% 86.9% 70.7% 37.3%

Lastly, the hereby proposed method was also quantitatively evaluated during
the testing phase of the BRATS 2015 challenge along other 12 participating
teams, using the DICE score and the robust Hausdorff distance (95 % quantile),
similar to [17]. Each team had only 48 hours for producing their segmentation
labels, from the time the testing set was made available, until the submission
of the results to VSD. The limited time of the testing phase was considered
essential to minimize the chance of optimizing the proposed algorithms on the
given data. According to the results presented during the challenge, our semi-
automatic approach performed best when compared to the other competing
methods.

5 Discussion

We presented an approach that combines generative and discriminative meth-
ods towards providing a reliable and highly accurate segmentation of LGGs and
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HGGs in multimodal MRI volumes. Our proposed approach is built upon the
brain segmentation results provided by a modified version of GLISTR. GLISTR
segments the brain into tumor and healthy tissue labels by means of a generative
model encompassing a tumor growth model and a probabilistic atlas of healthy
individuals. GLISTR tumor labels are subsequently refined taking into account
population-wide tumor label appearance statistics that were learned by employ-
ing a gradient boosting multi-class classifier. The final results are produced by
adapting the segmentation labels based on patient-specific label intensity distri-
butions from the multiple modalities.

Our approach was able to deliver high quality tumor segmentation results,
eventually performing best among the competing methods in BRATS 2015
challenge, by significantly improving GLISTR results [13] through the adopted
post-processing strategies. This improvement was evident for both manually and
automatically segmented data, as well as for both LGGs and HGGs. The only
case where the post-processing resulted in a decrease of the performance is for
the TC label when considering only the manually segmented data. This could
be probably attributed to the fact that the supervised gradient boosting model
learned consistent errors present in the automatically generated segmentations
and propagated them when refining GLISTR results. While pooling information
for more patients seems to be benefiting the learning algorithm, it also introduces
a bias towards the more numerous automatically generated data. Accounting
for this bias by weighting accordingly manually and automatically segmented
samples could possible allow for harnessing the additional information without
compromising quality. Moreover, the proposed approach performed best in the
WT label, which is clinically considered of the highest importance since it allows
for: (i) assessment and evaluation of the heterogeneity of the peritumoral edema-
tous region [1], (ii) estimates of diffuse tumor infiltration, rather than a binary
tumor/no-tumor classification, and (iii) guidance to spatially-precise treatment
decisions.

The proposed approach segmented the whole tumor and the tumor core with
high accuracy for both LGGs and HGGs. However, the segmentation results for
the enhancing tumor varied importantly between the two classes of tumors, with
the performance of our method in the case of LGGs being significantly lower and
less consistent. This is due to the fact that LGGs are characterized by a distinct
pathophysiological phenotype that is often marked by the lack of an enhancing
part, hence not having the same imaging phenotype with the HGGs. In addition,
the segmentation of the enhancing tumor could be further improved considering
that gliomas can be distinguished into two distinct imaging phenotypes, which
are not necessarily consistent with their clinical grade (i.e., LGG/HGG). These
distinct imaging signatures could be possibly exploited in a machine learning
framework that considers separately radiologically defined HGGs and LGGs, i.e.,
tumors with and without a distinctive enhancing part. By modeling separately
these distinct imaging phenotypes, it is possible to capture better the imaging
heterogeneity and improve label prediction.
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Abstract. In this work, we investigated the potential of a recently
proposed parameter learning algorithm for Conditional Random Fields
(CRFs). Parameters of a pairwise CRF are estimated via a stochastic
subgradient descent of a max-margin learning problem. We compared
the performance of our brain tumor segmentation method using para-
meter learning to a version using hand-tuned parameters. Preliminary
results on a subset of the BRATS2015 training set show that parameter
learning leads to comparable or even improved performance. In addition,
we also performed experiments to study the impact of the composition
of training data on the final segmentation performance. We found that
models trained on mixed data sets achieve reasonable performance com-
pared to models trained on stratified data.

Keywords: Brain tumor segmentation · Structured learning · Decision
forest · Conditional random field

1 Introduction

The diagnosis and treatment of brain tumor patients requires the interplay of
different disciplines such as neuroradiology, neurooncology (radiation therapy)
and neurosurgery. All of these different disciplines rely on accurate and repro-
ducible measurements of tumor size. Assessment of tumor response to therapy
is standardized (RANO [1]) and employs usually bi-dimensional measures for
estimating tumor size. Several limitations of bi-dimensional measures have been
exposed in the past, e.g., a high sensitivity to imaging quality [2] or the inad-
equacy in assessing residual enhancing tumor burden after surgery [3]. Conse-
quently, clinicians desire a volumetric analysis of the tumor. This is commonly
achieved via manually segmenting the tumor. Subsequently, information about
the volume of a tumor and its position relative to neighboring possibly eloquent
brain areas can be obtained. However, manual segmentation is a time-consuming
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procedure and prone to subjectivity. In contrast, fully-automatic segmentation
methods perform segmentation of a brain tumor within a fraction of the usual
amount of time and provide objective and reproducible measurements. Further-
more, it has been shown in clinical studies that fully-automatic segmentation
methods can generate segmentations comparable to human raters in terms of
spatial overlap/volume [4] and association to patient survival [5].

The development of new brain tumor segmentation methods has been fos-
tered through the MICCAI Brain Tumor Segmentation (BRATS) Challenge [6],
which was held for the first time during MICCAI 2012. The majority of the best
performing methods use techniques from machine learning in order to realize
brain tumor segmentation. The segmentation problem is usually posed as a clas-
sification task. Machine learning-based methods utilize information extracted
from a set of training images. Recently, it has been shown that a more directed
use of the training data can lead to improved performance [7]. Furthermore,
several previously published segmentation methods rely on the use of structured
prediction including approaches such as Markov or Conditional Random Fields
(CRFs) (e.g., [8,9]). However, parameters for those models are often hand-tuned
rather than estimated from training data. Recently, an efficient method for para-
meter learning in CRFs applicable to volumetric imaging data was proposed
[11]. The approach relies on linearizing the CRF energy function and posing the
problem of parameter learning as a maximum margin learning problem [12,13].
Efficient learning is implemented via optimization of a quadratic program with
a stochastic subgradient descent algorithm.

In this article, we propose a modification of our previous segmentation
method [9,10] employing the learning algorithm of [11]. A comparison between
CRF-based brain tumor tissue segmentation using parameter learning and seg-
mentation using hand-tuned parameters is drawn. In addition, we investigate
the impact of the composition of training data on the final segmentation perfor-
mance when pre- and (immediate) postoperative images as well as images from
low- and high-grade glioma are available. The remainder of the paper is orga-
nized as follows. We first introduce in Sect. 2 a set of preliminaries necessary to
understand the proposed fully-automatic segmentation algorithm. Subsequently,
we present our segmentation framework and describe the employed parameter
learning method. In Sect. 4, we present experimental results on the composition
of training data on a separate data set and for the proposed parameter learning
method on the BRATS2015 data set. Finally, we discuss our findings, limitations
and propose future work in Sect. 5.

2 Preliminaries

Glioma. Glioma can be categorized into low- and high-grade glioma depending
on their degree of malignancy. A glioma can be compartmentalized into four dif-
ferent parts: necrosis, edema, contrast-enhancing and non-enhancing tumor. We
refer to such a compartmentalization as labeling. A labeling is acquired through
segmentation. The automatic segmentation of these four different tissues is of
primary interest in the present work.
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Structural MRI. Our approach relies on four different MRI sequences that
are routinely used in clinical acquisiton protocols, namely T1-, T1 post-contrast-
, T2-, FLAIR-weighted images. We assume that these images are co-registered
and organized as a vector image, where every voxel contains the four different
MR intensity values. We refer to this image as X =

{
x(i)

}
i∈V

, where voxel i

is represented by a feature vector x(i) ∈ R
4 and V denotes the set of all voxels

in X. The corresponding labeling of X is denoted by Y =
{
y(i)

}
i∈V

with y(i)

being a scalar tissue label (e.g., 1 = necrosis, 2 = edema, etc.).

Classification. We pose the problem of brain tumor segmentation as a struc-
tured classification problem (structured prediction). Thus, we seek a hypothesis
(classifier) H that relates an image X to a corresponding tissue label map Y (i.e.
H(X) : X → Y ). We consider seven possible tissue classes: three unaffected (gray
matter, white matter, csf) and four tumor tissues (necrosis, edema, enhancing
and non-enhancing tumor). The seven different labels are contained in the set
L. Based on a given fully-labeled training set S =

{(
X(i), Y (i)

)
: i = 1, ...,m

}
,

we estimate H (supervised learning). All possible labelings for an image X are
contained in the set Y, i.e., Y ∈ Y.

Conditional Random Field. We are given a graph G = (V,E), where V
denotes the set of nodes and E the set of edges. Furthermore, a labeling Y
is indexed by V . A pair (X,Y ) is a Conditional random field (CRF) iff. the
random variables y(i) obey the Markov property with respect to the graph G
when conditioned on X. Consequently, a CRF models a parametrized conditional
probability

p (Y |X,w) =
1

Z(X,w)
exp (−E(X,Y,w)) (1)

where Z(X,w) is the partition function. The energy E(X,Y,w) depends linearly
on the unknown parameters w. In general, given the parameter vector w, a CRF
can predict the labeling Y of a given input image X by minimizing the energy,
i.e., Y � = H(X) = arg minY ∈Y E(X,Y,w).

Structural Risk Minimization. We define Δ : Y × Y −→ R+ to be a loss
function that is used to specify the cost of predicting Ỹ = H(X) when the
correct labeling is Y . Estimation of a good hypothesis H can then be achieved
by the minimization of the regularized empirical risk [14]:

m∑
n=1

Δ(Y (n),H(X(n))) + R(H) (2)

with R(H) being the regularizer. Optimization of Eq. (2) is complicated by the
piece-wise constant term Δ(Y (n),H(X(n))). However, one can resort to the min-
imization of a convex upper bound to the loss (surrogate loss function).
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3 Methods

Our current segmentation method (proposed in [9]) encompasses a preprocessing,
a feature extraction step followed by a voxel-wise classification and a spatial
regularization. The features try to capture visual cues of appearance and image
context relevant for discriminating the different tissue classes. Classification is
performed by a decision forest. Spatial regularization is formulated as an energy-
minimization problem of a CRF. The hand-tuned CRF is described in more detail
in [10]. A schematic overview of the method is shown in Fig. 1. In the remainder
of this paper, we present a modification of the spatial regularization used so far.

Classification 
(Decision Forest) Feature extraction 

Multi-sequence MR 
image Regularization (CRF) 

Segmentation 

Fig. 1. Overview of segmentation pipeline.

3.1 Feature Extraction

For every voxel i a number of different features are extracted which are stacked
in a feature vector f (i). The extracted features can be grouped in two different
groups: appearance- and context-sensitive features. The former try to capture
contrast information and include voxel-wise intensity values and differences, first-
order texture features and gradient texture features. The latter aim at capturing
spatial context information and include atlas-normalized coordinates, symmetric
intensity differences (where the midsagittal plane serves as symmetry axis) and
ray features. In the end, we obtain a 237-dimensional feature vector. A more
detailed description of the different features can be found in [9].

3.2 Decision Forest

After feature extraction, a decision forest classifier [15] is used to perform a
voxel-wise tissue label classification. We employ the information gain as split
criterion and axis-aligned weak learner for performing the splits. The pre-
diction model stored in the leaf nodes corresponds to the histogram of class
labels. The final prediction for a given voxel i of the decision forest is obtained
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via the Maximum-A-Posteriori rule, i.e., ỹ(i) = arg maxy p(y(i)|f (i)), where
p(y(i)|f (i)) = 1

T

∑T
t=1 pt(y(i)|f (i)). Our implementation is an adaptation of the

Sherwood library [16]. The probability distribution p(y|f) is used in order to
define the unary potentials of the conditional random field.

3.3 Energy Function

We employ an energy function associated with a pairwise CRF:

E(X,Y,w) =
∑
i∈V

Di(x(i), y(i)) +
∑

(i,j)∈E

Bi,j(x(i), y(i),x(j), y(j)). (3)

The unary potentials Di describe the affinity of a voxel with a particular
tissue class whereas the pairwise potentials Bi,j model the coherence between
neighboring voxels. They are both expressible as an inner product between the
parameter vector w and a feature map ψi or ψi,j , respectively [11]. For a given
feature vector f (i), we can define the unary feature map

ψi =
[
I(y(i) = 1)(− log(p(y(i) = 1|f (i)))), · · · , I(y(i) = 7)(− log(p(y(i) = 7|f (i))))

]T
(4)

by using the indicator function I (returns a value of 1 if the argument is true).
The posterior probability p(y(i)|f (i)) is output by the decision forest classifier
(cf. Sect. 3.2). Consequently, the cost of assigning label y to voxel i is smaller
the more confident the prediction of the decision forest is. The pairwise feature
map is given by

ψi,j =
[
I(y(i) = a, y(i) = b)(1 − I(y(i) = y(j))) exp

(
−

∥∥∥x(i) − x(j)
∥∥∥

∞

)]
(a,b)∈L2

(5)

which is defined for all possible label pairs in L. The term 1 − I(y(i) = y(j))
establishes a Potts-like model. The exponential term penalizes large intensity
discontinuities between neighboring voxels. We use the �∞-norm based on the
fact that the transitions between different tumor tissues show up more prominent
in particular sequences, whereas in other sequences they do not. Potentials can
now be expressed as an inner product between parameter vector and feature
map, i.e., 〈w, ψ〉. Furthermore, let ΨD =

∑
i∈V ψi and ΨB =

∑
(i,j)∈E ψi,j .

Given the parameter vector w =
[
(wD)T , (wB)T

]T , the energy function can
then be rewritten as E(X,Y,w) =

〈
wD,ΨD

〉
+

〈
wB ,ΨB

〉
.

3.4 Parameter Learning

For estimating the parameter vector w, we use the recently proposed method
by Lucchi et al. [11] which builds on the max-margin formulation for parameter
learning [13]. Essentially, learning is formulated within the framework of struc-
tural risk minimization and is posed as a quadratic program with soft margin
constraints. We aim to identify w via
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w� = arg min
w

m∑
n=1

�(X(n), Y (n),w) +
1

2C
‖w‖2 (6)

where � is defined to be the hinge loss:

�(Y (n), Y �,w) = [E(X(n), Y (n),w) + Δ(Y (n), Y �) − E(X(n), Y �,w)]+. (7)

The most violated constraint of all possible labelings Y � is obtained via loss-
augmented inference [17], i.e., Y � = arg minY ∈Y(E(X,Y,w) − Δ(Y (n), Y )). The
objective function in Eq. (6) can be minimized via stochastic subgradient descent
in which iteratively a training example

(
X(n), Y (n)

)
is chosen, the subgradient

with respect to this example computed and the weight vector updated accord-
ingly (see Algorithm 1). The objective function for a single training example(
X(n), Y (n)

)
is then defined as f(w, n) = �

(
Y (n), Y �,w

)
+ 1

2C ‖w‖2. The task-
specific loss is defined as Δ

(
Y (n), Y

)
=

∑
i∈V I

(
y(n),(i) �= y(i)

)
and measures

the dissimilarity between a labeling Y and its ground truth Y (n). In contrast to
[18], the method of Lucchi et al. aims at an increased reliability in the computa-
tion of the subgradient by the use of working sets of constraints An. For every
iteration, loss-augmented inference is performed to obtain a current estimate of
the labeling Y � = arg minY ∈Y

(
E(X,Y,w) − Δ

(
Y (n), Y

))
(step 4). The set An′

contains all labelings (constraints) Y which are violated (i.e., �(Y, Y (n),w) > 0)
(step 7). The subgradient is then computed as an average subgradient over all
violated constraints (step 8).

Algorithm 1. Subgradient Method with Working Sets [11]

1: Training data S =
{

(X(i), Y (i)) : i = 1, ..., m
}

, β := 1,w(1) := 0, t := 1

2: while (t < T ) do
3: Pick randomly an example (X(n), Y (n)) from S
4: Y � = arg minY ∈Y(E(X, Y,w) − Δ(Y (n), Y ))
5: An := An ∪ {Y �}
6: An′

:=
{

Y ∈ An : �(Y, Y (n),w(t)) > 0
}

7: η(t) := β
t

8: g(t) := 1

An′
∑

Y ∈An′
(
ΨD(Y (n)) + ΨB(Y (n)) − (ΨD(Y ) + ΨB(Y )

)
+ 1

C
w
)

9: w(t+1) := P
[
w(t) − η(t)g(t)

]

10: t := t + 1
11: end while
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For performing loss-augmented inference, we employed the Fast-PD algorithm
proposed by Komodakis and Tziritas [19]. Fast-PD requires Bi,j(·, ·) ≥ 0.1 The
update of the weights (step 9) can potentially violate this constraint. Thus, we
apply a projection P to ensure the compatibility of the weights w with Fast-PD.

4 Results

4.1 Composition of Training Data

Pre- and Immediate Postoperative Images. This experiment was per-
formed previous to the BRATS2015 challenge. However, it influenced the way
we used the given training data to build our model. The aim was to investigate
the impact of changing the composition of the training data on the final per-
formance of our (baseline) model. In contrast to the BRATS2013 data set, the
BRATS2015 data set contains longitudinal imaging data. Hence, we decided to
investigate the combined use of pre- and postoperative imaging data to perform
segmentation in postoperative MR images. The experiment was performed on a
separate data set of 24 patients retrieved retrospectively at the Inselspital, Uni-
versity Hospital Bern. The imaging data encompassed for each patient pre- and
immediate (acquired within 72 hours after surgery) postoperative MR images
(including T1-, T1 post-contrast-, T2- and FLAIR-weighted images). Except for
the FLAIR-images, all of the MR sequence were acquired with isotropic reso-
lution, whereas the FLAIR-images showed a resolution of 1 mm×1 mm×3 mm.
Evaluated performance metrics were Dice-coefficient and absolute volume error
in [mm3]. We performed a 6-fold cross-validation. Four training data compo-
sitions were formed: only preoperative images (20 images, PRE), only postop-
erative images (20 images, POST), equal amount of randomly chosen pre- and
postoperative images (2×10 images, PREPOST-rand) and equal amount of pre-
and postoperative images from the same patients (2 × 10 images, PREPOST-
same). The results in terms of Dice-coefficient and absolute volume error are
shown in Figs. 2 and 3, respectively. The Dice-coefficients for enhancing tumor
are rather small due to the fact that residuals in immediate postoperative images
are very small making overlap measures overly sensitive.

Low- and High-Grade Glioma. We performed a second experiment similar
to the previous one, in which we studied the influence of the composition of the
training data for segmenting high-grade glioma when data of low-grade glioma
patients is available. We randomly split the 20 high-grade glioma cases of the
BRATS2013 training set in two equal subsets (10 cases each). We used one of
the subsets as testing and the other as training set. For the training set, we
added 10 low-grade glioma cases of the BRATS2013 training set. We ended up
with three different compositions: 10 high-grade glioma (HGG), 10 low-grade
glioma (LGG), both sets combined (HGG-LGG). We evaluated the performance

1 Fast-PD requires Bi,j to define a semi-metric.
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Fig. 2. Results in terms of Dice-coefficient (mean values). Segmentation of complete
tumor (cyan), segmentation of tumor core (magenta) and segmentation of enhancing
tumor (green) (Color figure online).

Fig. 3. Results in terms of absolute volume error (mean values). Segmentation of com-
plete tumor (cyan), segmentation of tumor core (magenta) and segmentation of enhanc-
ing tumor (green) (Color figure online).

in terms of Dice coefficient and absolute volume error on the remaining 10 high-
grade cases. The results for the different training set compositions are shown in
Figs. 4 and 5, respectively.

4.2 Parameter Learning

We evaluated our method using parameter learning via a 5-fold cross-validation
on a subset of the BRATS2015 training data, encompassing 20 high-grade glioma
cases (part of the former BRATS2013 training set). The performance of the
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Fig. 4. Results in terms of Dice-coefficient (mean values). Segmentation of complete
tumor (cyan), segmentation of tumor core (magenta) and segmentation of enhancing
tumor (green) (Color figure online).

Fig. 5. Results in terms of absolute volume error (mean values). Segmentation of com-
plete tumor (cyan), segmentation of tumor core (magenta) and segmentation of enhanc-
ing tumor (green) (Color figure online).

presented method was compared against our previous approach using hand-
tuned CRF parameters (baseline). Quantitative results are presented in Table 1.

4.3 Performance on BRATS2015 Testing Set

The BRATS2015 testing set encompassed 53 patient cases including both low-
and high-grade glioma as well as pre- and postoperative images. We aimed at
having a fully-automatic segmentation pipeline and thus did not separate the
testing set into different sub-categories (e.g., low- and high-grade glioma). Based
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Table 1. Results of evaluation on subset of BRATS2015 training set. Performance
measures are given as (median, range= max-min). Left tuple: Results for all 20 cases.
Right tuple: Results after removal of outlier “brats 2013 pat0012 1”.

Region Dice coefficient Absolute volume error [mm3]

Complete tumor (CRF+Learning) (0.887, 0.35)/(0.885, 0.35) (10276, 41871)/(11078, 41257)

Complete tumor (CRF Baseline) (0.888, 0.353)/(0.886, 0.353) (9029, 42199)/(9029, 42001)

Tumor core (CRF+Learning) (0.784, 0.912)/(0.793, 0.538) (6504, 29505)/(6472, 29505)

Tumor core (CRF Baseline) (0.789, 0.915)/(0.79, 0.58) (6057, 32954)(6017, 32954)

Enhancing tumor (CRF+Learning) (0.811, 0.918)/(0.812, 0.827) (2784, 29875)/(2825, 29875)

Enhancing tumor (CRF Baseline) (0.767, 0.942)/(0.768, 0.852) (2485, 36986)/(2041, 36986)

on our experience from the experiments in Sect. 4.1, we decided to train a model
on a mixed subset (n = 65) of the BRATS2015 training set containing low-
(∼ 1

3 , n = 20) and high-grade glioma (∼ 2
3 of the selected data, n = 45). The

results were automatically evaluated on the Virtual Skeleton Database (VSD,
https://www.smir.ch/). The performance of the proposed method using para-
meter learning in terms of Dice-coefficient is 0.83 (complete tumor), 0.69 (tumor
core) and 0.63 (enhancing tumor).

5 Discussion and Future Work

The work at hand focused on two different aspects: The influence of the com-
position of training data and the impact of parameter learning in CRFs on the
final segmentation performance. We found that in the context of postoperative
segmentation and segmentation including low- and high-grade glioma cases a
reasonable performance can be achieved with models trained on mixed data
sets. In case of the postoperative segmentation task, it emerged that the best
performance can be achieved by training only on postoperative images. Inter-
estingly, for the case of segmenting (preoperative) high-grade glioma cases with
a model trained on a data set including also low-grade glioma the complete
tumor segmentation improved. A possible explanation for this finding is the
fact that for both low- and high-grade glioma the complete outline is mainly
defined by its T2-hyperintensity visible in T2- and FLAIR-weighted sequences.
Consequently, the model profited from the additional 10 low-grade cases which
convey information also relevant for segmenting the complete tumor in high-
grade glioma. Regarding parameter learning, our preliminary results indicate
that learning CRF parameters from data instead of hand-tuning them can lead
to comparable or even improved performance. We observed that wrongly labeled
non-enhancing tumor was correctly classified as enhancing tumor after parame-
ter learning, which led to the aforementioned performance increase. The main
limitation of our implementation is the fact that we performed CRF learning as
well as inference slice-wise instead over the complete volume image. The reason
for this simplification was to lower the memory consumption.

https://www.smir.ch/
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In the future, it would be certainly interesting to investigate more elaborate
approaches to effectively use the available training data (as e.g., in [7]). Fur-
thermore, we plan to investigate task-specific loss functions for CRF parameter
learning as well as CRFs with a higher connectivity.

Acknowledgments. This project has received funding from the European Unions
Seventh Framework Programme for research, technological development and demon-
stration under grant agreement No. 600841.
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Abstract. In this paper, we present a fully automated generative
method for brain tumor segmentation in multi-modal magnetic reso-
nance images. The method is based on the type of generative model often
used for segmenting healthy brain tissues, where tissues are modeled
by Gaussian mixture models combined with a spatial atlas-based tissue
prior. We extend this basic model with a tumor prior, which uses convo-
lutional restricted Boltzmann machines (cRBMs) to model the shape of
both tumor core and complete tumor, which includes edema and core.
The cRBMs are trained on expert segmentations of training images, with-
out the use of the intensity information in the training images. Exper-
iments on public benchmark data of patients suffering from low- and
high-grade gliomas show that the method performs well compared to
current state-of-the-art methods, while not being tied to any specific
imaging protocol.

1 Introduction

Brain tumor segmentation from multi-modal magnetic resonance (MR) images
is of high value in radiotherapy planning. Automatic tumor segmentation is chal-
lenging since tumor location, shape and appearance vary greatly across patients.
Moreover, brain tumor images often exhibit significant intensity inhomogeneity
as well as large intensity variations between subjects, particularly when they are
acquired with different scanners or at different imaging facilities.

Most current state-of-the-art methods in brain tumor segmentation use a
discriminative approach, which exploits the specific intensity contrast informa-
tion of annotated training images, e.g., [1–3]. This may hinder their applicability
to images acquired at different centers, because the intensity contrast depends

c© Springer International Publishing Switzerland 2016
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on the scanner and the imaging protocol that has been used. Many discrimina-
tive methods have been based on the random forest (RF) classification scheme,
which predicts segmentation labels from user-engineered image features. One
such a method is the winner of the 2013 brain tumor segmentation (BRATS)
challenge [4], developed by Tustison et al. [1]. Another large group of discrimi-
native methods are based on deep convolutional neural networks (CNNs) that
are capable of automatically learning features from image intensity information.
CNNs have recently proved successful in many segmentation tasks. At the 2015
BRATS challenge, two such methods achieved a high segmentation accuracy:
Havaei et al. [2] developed a two-way architecture of CNNs that captures both
local details and larger contexts; whereas Pereira et al. [3] trained one CNN
for high-grade gliomas and another for low-grade gliomas, which proved useful
because of the differences between these two types of tumors. However, the latter
method requires the user to manually select one of the CNNs.

In contrast to these discriminative methods, Kwon et al. [5] developed a suc-
cessful semi-automatic generative method, which does not use intensity informa-
tion from training images. This method, however, requires the user to manually
assign tumor seed points and radii to initialize the tumor growth model used
in the method. For the 2015 BRATS challenge, the same group extended a ver-
sion of this generative method with a discriminative post-processing step using
a gradient boosting multi-class classification scheme followed by a patient-wise
refinement step, which increased the segmentation accuracy [6]. Some fully auto-
mated generative approaches have previously been proposed, such as [7,8], but
with generally lower segmentation accuracy.

In this paper we propose a fully automated generative method that achieves
segmentation accuracy comparable to state-of-the-art discriminative methods
while being contrast-adaptive. To achieve this, we incorporate a prior on tumor
shape into an atlas-based probabilistic model for healthy tissue segmentation.
The prior models tumor shape by convolutional restricted Boltzmann machines
(cRBMs), which are higher-order Markov random fields (MRFs) capable of mod-
eling more complex interactions than traditionally used first-order MRFs. The
features of the cRBMs are learned automatically from expert segmentations
of training data without the use of the intensity information corresponding to
these segmentations. This allows the model to adapt to varying intensity con-
trasts during the segmentation phase. Experiments on the test data sets of the
2013 and 2015 BRATS challenges show that the method compares well to the
current state-of-the-art.

2 Generative Modeling Framework

Let D = (d1, ...,dI) denote the multi-contrast MR data of a subject, where
I is the number of voxels and di contains the (log-transformed) intensities at
voxel i. We aim to segment each voxel i into either one of K healthy tissue
labels li ∈ {1, ...,K} or tumor tissue zi ∈ {0, 1}, and within tumor tissue into
either edema or core yi ∈ {0, 1}. We also aim to segment the voxels in the
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core that are enhanced in T1c (see [4] for a description of the tumor tissue
labels). For this purpose we build a generative model that describes the image
formation process, illustrated in Fig. 1. We then use this model to obtain a
fully automated segmentation algorithm by focusing on the posterior of the
segmentation variables given the data:

p(l, z,y|D) ∝ p(D|l, z,y)p(l)p(z,y) with (1)

p(D|l, z,y) =
∫

θ

p(D|l, z,y,θ)p(θ)dθ,

where l = (l1, ..., lI), z = (z1, ..., zI) and y = (y1, ..., yI); and θ contains free
model parameters. The model consists of the likelihood function p(D|l, z,y,θ),
which links labels to MR intensities; and the priors p(l), p(z,y) and p(θ).

Fig. 1. Graphical representation of the model. The atlas-based prior πl models healthy
tissue labels l. The complete tumor label z and core label y are connected to the hidden
units of their RBM models H and G, respectively. The labels l, z and y jointly predict
the multi-contrast data D according to the model parameters θ. Shading indicates
observed variables.

For the likelihood p(D|l, z,y,θ), we use Gaussian mixture models (GMMs)
to model the relationships between tissue labels and image intensities. Further-
more, we model bias fields corrupting the MR scans as linear combinations of
spatially smooth basis functions added to the scans [9]. Specifically, we define
the likelihood as

p(D|l, z,y,θ) =
∏
i

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pi(di|θli ,C) if zi = 0 and yi = 0, (healthy)
pi(di|θe,C) if zi = 1 and yi = 0, (edema)
pi(di|θc,C) if zi = 1 and yi = 1, (core)
(yi = 1 and zi = 0 prohibited by prior, see Eq. 11)

, (2)
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where θx denotes the parameters of the GMM connected to tissue x and
C = (c1, ..., cN ), where cn denotes the parameters of the bias field model for
MR contrast n. All GMM and bias field parameters are collected in θ. We define
a Gaussian mixture model, with Gx Gaussian components, as pi(di|θx,C) =∑Gx

g=1 γxgN (di − CTφi|μxg,Σxg), where subscript g denotes a Gaussian com-
ponent within the Gaussian mixture model; N (·) denotes a normal distribution;
and the parameters γxg, μxg and Σxg are the weight, mean and covariance of
the corresponding Gaussian. Furthermore, φi evaluates the basis functions of
the bias field model at voxel i. We assume that one of the Gaussian components
of the core will correspond to the enhanced parts of the core.

For the healthy tissue prior p(l), we use a probabilistic affine atlas computed
from segmented healthy subjects [10], defined as p(l) =

∏
i π

i
li
. In the ith voxel,

πi
WM, πi

GM, πi
CSF and πi

BG denote the prior probability for white matter (WM),
gray matter (GM), cerebrospinal fluid (CSF) and background (BG) respectively.
Note that the atlas does not include a vessel label, i.e., vessels are not directly han-
dled by the model. However, they do not typically affect the final tumor segmenta-
tion due to their small size. The affine registration of the atlas is often insufficient
for capturing the displacement of healthy tissues seen in many tumor patients due
to the so-called mass effect of tumors. We therefore add an extra healthy label
OTHER to the atlas with a constant prior probability πi

OTHER = 0.1, to put some
probability mass in otherwise unexpected places. We then re-normalize the prob-
ability maps to ensure that they sum to one.

For the prior p(θ) on the distribution parameters, we use uniform priors on
C and most mean vectors. However, we found it beneficial to use a prior with a
linear constraint for edema and WM. We model these two tissues with just one
Gaussian component each, and define a prior over their mean vectors as

p(μe,μWM ) =

{
∝ 1 if μe,FLAIR ≥ α μWM,FLAIR

0 otherwise
, (3)

to encode our prior knowledge that edema appears brighter than WM in FLAIR.
Here, the scalar α defines the limit of how close μe,FLAIR can be to μWM,FLAIR.

For each GMM’s mixture weights, collected in vector γx, we use the conjugate
prior

p(γx) = Dir(γx|β), (4)

which is Dirichlet distributed [11, Ch. 3.4]. Each element of β is set to 1000 to
discourage the removal of Gaussian components. For each GMM’s covariances,
we use the conjugate prior

p(Σxg) = W−1(Σxg | v0
xgΣ0, v0

xg), (5)

which is inverse-Wishart distributed [11, Ch. 4.6]. The matrix Σ0 is our prior
belief of the covariance structure. We set off-diagonal elements in Σ0 to zero and
diagonal elements to the variances of the intensities in the whole brain divided
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by the number of Gaussians in the full model. The scalar v0
xg defines the strength

of the prior. As healthy tissues are rather well-defined, we set v0
xg to zero for the

healthy Gaussians to obtain uniform priors. For the tumor Gaussians, we set v0
xg

to 20 % of their estimated volumes (cf. Sect. 3.1 for details).
Finally, for p(z,y) we use a convolutional RBM model, defined below.

2.1 Tumor Prior

We model tumor shape by RBMs, which are higher-order MRFs that are capable
of modeling higher-order interactions. An RBM is a graphical model with a set
of visible units and a set of hidden units, where connections exist between the
two sets but not between the units within each set. This restriction facilitates
inference with the model. To allow for more efficient inference over large images
without a predefined size, we use convolutional RBMs (cRBMs), where the con-
nection weights are shared among all locations [12]; see Fig. 2 for an example.
In particular, for modeling tumor label z we use a binary cRBM of the form
p(z) =

∑
H p(z,H), with p(z,H) ∝ e−E(z,H) and the energy term

E(z,H) = −
∑
k

hk • (wk ∗ z) −
∑
k

bk
∑
j

hkj − a
∑
i

zi, (6)

where • denotes element-wise product followed by summation and ∗ denotes
convolution. Here the model is defined in 1D to avoid cluttered equations; it is
trivial to extend it to 3D images. Each hidden group hk ∈ H is connected to
the visible units in z with a convolutional filter wk, which models interactions
between the hidden and visible units, effectively detecting specific features in z.
Furthermore, each hidden group has a bias bk and visible units have a bias a,
encouraging units to be enabled or disabled.

Fig. 2. A small 1D example of a cRBM. Visible units in z are connected to hidden units
in a hidden group hk through a convolutional filter wk of size 3. The first illustration
shows the model from the hidden layer’s perspective. The second shows the model from
the visible layer’s perspective, where w̃k is a mirror-reversed version of the filter. Note
that boundary units in the visible layer are set to 0.

We train a cRBM for the complete tumor label z, where we learn the filters
and bias terms from expert segmentations of the complete tumor obtained from
training data. This is done by stochastic gradient ascent with the contrastive
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divergence (CD) approximation of the log-likelihood gradients with one block-
Gibbs sampling step (persistent CD was also tried as an alternative to standard
CD, but yielded inferior results in our experiments) [13]. We use the so-called
enhanced gradient together with the CD approximation to obtain more distinct
filters [14]. Due to the structure of the cRBM model, the conditional distributions
needed for block-Gibbs sampling are easily obtained as p(z|H) =

∏
i p(zi|H) and

p(H|z) =
∏

k

∏
j p(hkj |z), where

p(zi = 1|H) = σ((
∑
k

w̃k ∗ hk)i + a) (7)

and p(hkj = 1|z) = σ((wk ∗ z)j + bk). (8)

Here, σ(t) = 1/(1 + e−t) and tilde denotes a mirror-reversal of the filter in each
direction. Similarly, we train a cRBM for the tumor core label y, with conditional
distributions

p(yi = 1|G) = σ((
∑
k

ũk ∗ gk)i + c) (9)

and p(gkj = 1|y) = σ((uk ∗ y)j + dk), (10)

where G denotes the hidden units connected to y; u the filters; and c and d the
bias terms. After the training phase we combine the two cRBMs to form the
joint tumor shape prior:

p(z,y) =
∑
H,G

p(z,y,H,G) (11)

with p(z,y,H,G) ∝ e−E(z,H)−E(y,G)−∑i f(zi,yi),

which models both edema and core simultaneously. Here, f(zi, yi) = ∞ if zi = 0
and yi = 1, and otherwise 0, restricting tumor core to only exist within the
complete tumor.

2.2 Inference

Exact inference of p(l, z,y|D) requires an intractable integration over all possible
combinations of model parameters. Moreover, even if the model parameters were
known the model does not factorize over the voxels, as the cRBM introduces non-
local dependencies between them. Therefore, we resort to Markov chain Monte
Carlo sampling (MCMC) to generate samples of l, z and y from p(l, z,y|D), and
perform a voxel-wise majority voting across the collected samples to obtain the
final segmentation. In particular, we generate samples of l, z,y,H,G and θ by
block-Gibbs sampling from the distribution p(l, z,y,H,G,θ|D), and ignore the
samples of H,G and θ as they are of no interest to us.

Block-Gibbs sampling is straightforward to implement as each of the con-
ditional distributions factorizes over its components: the labels l, z and y are
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sampled simultaneously from the conditional distribution p(l, z,y|D,H,G,θ),
for each voxel independently:

p(li, zi, yi|di,H,G, θ)∝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pi(di|θli ,C) p(zi = 0|H) p(yi = 0|G) πi
li

if zi � 0, yi � 0
pi(di|θe,C) p(zi = 1|H) p(yi = 0|G) πi

li
if zi � 1, yi � 0

pi(di|θc,C) p(zi = 1|H) p(yi = 1|G) πi
li

if zi � 1, yi � 1
0 if zi � 0, yi � 1

.

The hidden layers H and G are sampled from the conditional distributions
p(H|z) and p(G|y), given by Eqs. (8) and (10). For the GMM parameters, we
iteratively assign voxels to individual GMM components and sample the parame-
ters accordingly ([11, p. 840]). We use rejection sampling to satisfy the constraint
of Eq. (3). Note that we could also easily sample from the bias field model, since
its conditional distribution is a multi-variate Gaussian. However, this was not
implemented. Instead, we use the point estimates of the bias field model para-
meters C obtained with the initialization algorithm described below.

We initialize the MCMC sampler with the maximum a posteriori segmenta-
tion obtained with a generalized expectation-maximization algorithm (GEM) [9].
Since we are only interested in a good parameter initialization at this stage, we
temporarily replace the combined cRBM’s energy with a simple energy of the
form: −∑

i[li �= BG](zi log w +(1− zi) log(1−w)), where w represents the prob-
ability of a voxel to be tumor. This reduces the model to the same form as in [9]
(with the addition of p(μe,μWM )). We set w to the average fraction of tumor tis-
sue within brain tissue in the training data. At this stage we simply use uniform
priors on all covariance matrices.

3 Experiments

We demonstrate the performance of our method on the data of the BRATS
brain tumor segmentation challenges. The data sets include high- and low-
grade gliomas and consist of four MR-sequences: FLAIR, T2, T1 and contrast-
enchanced T1 (T1c). The data are publicly available at the virtual skeleton
online platform [15]. Previous to the release of the data sets, all data were skull-
stripped and resampled to 1 mm isotropic resolution and the four MR-sequences
of each subject were co-registered.

To learn the parameters of the cRBM model, we used the expert segmen-
tations of the BRATS 2013 training data, consisting of 20 high-grade gliomas
(HGGs) and 10 low-grade gliomas (LGGs). To internally test our method, we
used the 2015 training data with available ground truth segmentations. This
data set contains 200 HGGs and 44 LGGs (we excluded the subset of BRATS
2013 training subjects). We then tested the method on two independent test data
sets from 2013: the data set used in the 2013 on-site challenge with 10 HGGs,
and the leaderboard data set with 25 subjects used for an off-site evaluation
including both HGGs and LGGs [4]. Furthermore, we participated in the 2015
challenge where the test data set consisted of 53 subjects, including both HGGs
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and LGGs. Note that the ground truth segmentations and tumor grades of the
test data sets were not publicly available. Instead, we evaluated our method and
compared to other methods by uploading segmentations to the online platform.

3.1 Implementation

We used 40 filters of size (7× 7× 7) for each cRBM, corresponding to 40 hidden
groups. Each cRBM was trained with 9600 gradient steps of size 0.1. A subset
of 10 training examples was used to compute the gradient at each step. As the
training data set is small, we augmented it by flipping the tumor segmentations
in 8 different directions. Furthermore, to reduce the number of parameters to
be estimated, we let each element in an cRBM filter model two neighboring
elements in z or y, i.e., a filter of size 7 will span over 14 visible units.

We registered the healthy tissue atlas by an affine transformation and log-
transformed the MR intensities, to account for the additive bias field model [9].
The number of components in each GMM was chosen as follows: we represented
the core label y with one Gaussian during GEM initialization, and three during
MCMC: one for enhanced core and two for unenhanced core. Before starting the
MCMC procedure, the unenhanced core Gaussians were initialized by randomly
setting yi = 1 to a fraction of the voxels with zi = 1 and yi = 0 in the GEM
segmentation. The fraction was chosen so that the total fraction of core within
the complete tumor equaled the average fraction in the training data set. All
other labels were represented by one Gaussian each, except CSF and BG that
were represented by two Gaussians each.

The healthy tissues’ GMM parameters were initialized based on the atlas,
except for the label OTHER’s mean values which were initialized as the 30th
percentile of the brain intensities in each MR-contrast. For tumor tissue, we
used the knowledge that edema is always brighter than healthy tissue in FLAIR
and T2, and additionally that enhanced core is brighter than any other label in
T1c. We therefore initialized the mean values to the percentiles {90, 70, 50, 50}
and {90, 70, 50, 95} in FLAIR, T2, T1 and T1c for edema and core respectively.
When validating the method, we found that this initialization is adequate in
most cases, i.e., the algorithm is able to adapt to the intensity distribution of
a subject. However, the method might fail if e.g., the intensity distribution of
tumor tissue is not sufficiently different from healthy tissue due to a bias field.

Due to the large size variation of tumors, we found it necessary to individu-
alize the bias term a connected to z in Eq. (7) to better represent the tumor to
be segmented. We therefore added log

(
pzs(1−pzt)
pzt(1−pzs)

)
to a, where pzs denotes the

fraction of tumor within the GEM-segmented brain and pzt denotes the average
tumor size in the data used to train the cRBM. We did the same for the bias
term connected to y in Eq. (9), matching it with the average fraction of core
within complete tumor in the training data set.

As discussed previously for the Gaussians modeling tumor tissue, we set the
strength of the covariance priors (v0

xg in Eq. 6) to 20 % of the number of voxels
belonging to each Gaussian in the initial segmentation. However, due to the large
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changes of tumor size during sampling, we found it necessary to re-estimate v0
xg

to 20 % of the volumes in the updated segmentations during sampling. Note that
this is non-standard and a more proper use of the priors is left for future work.

Finally, we estimated the limit parameter α (in Eq. 3) to 1.08 by estimating
the means on the BRATS 2013 training subjects using the described GEM, but
with tumor labels fixed to the ground truth, and subsequently building statistics
of the FLAIR mean values in edema and WM.

All computations were done on a i7-5930K CPU and a GeForce GTX Titan
Black GPU in MATLAB 2014b. The training phase of each cRBM took around
3 days on the GPU. The full segmentation algorithm takes approximately 30 min
per subject, including atlas registration (CPU), GEM-initialization (CPU) and
sampling (GPU). The sampling is the most time consuming part, taking 25 min
on average, mainly due to the many convolutions that are involved. We gener-
ated 15 samples after a burn-in period of 200 samples and obtained the final
segmentation by majority voting on these 15 samples.

3.2 Results

In Table 1, we compare our method on the three test data sets described in
the beginning of this section to the five state-of-the-art methods discussed in the
introduction. The evaluated labels are the complete tumor (which includes tumor
core and edema), the core region of the tumor, as well as the enhancing regions
within the core. Our method performed comparably well on complete tumor and
core, but not as well on enhanced core. When comparing average Dice scores in
the 2015 challenge, out of 13 participants we ranked 2nd for complete tumor,
1st for core and 6th for enhanced core. The lower performance on enhanced core

Fig. 3. (a) Box plot of Dice scores, 2015 challenge. Circles show mean values, central
lines show medians, edges of boxes show the 25th and 75th percentiles, and outliers
are marked with ‘+’. (b) 5 learned cRBM filters for complete tumor.
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Fig. 4. Slices of five exemplary subjects, 2015 training data. The last subject has a
low-grade tumor and the rest high-grade tumors. From top to bottom: MR-contrasts:
FLAIR, T1, T1c and T2; ground-truth segmentation; initial GEM-segmentation; and
final segmentation. Healthy labels are in blue to cyan, edema is in lilac and core is in
different shades of yellow (Color figure online).
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Table 1. Average Dice scores (%) for the BRATS test data sets [15].

Data set: 2013 Challenge 2013 Leaderboard 2015 Challenge

Comp Core Enh Comp Core Enh Comp Core Enh

Our method 87 82 70 83 71 54 81 68 65

Random forest method [1] 87 78 74 79 65 53 – – –

Two-way CNN method [2] 88 78 73 81 67 55 79 62 72

Grade-specific CNN method [3] 88 83 77 84 72 62 78 65 75

Generative method [5] 88 83 72 86 79 59 – – –

Generative-Discriminative [6] – – – – – – 82 59 74

Fig. 5. Slices of two failed segmentations, 2015 test data. From left to right: MR-
contrasts, initial GEM segmentation and final segmentation. Dice scores (%) of com-
plete tumor, core and enhanced core: (54, 12, 18) and (36, 87, 0).

is not surprising, as we base this segmentation on a single Gaussian intensity
distribution without any spatial prior to separate it from the rest of the core.

Figure 3a shows a box plot of the resulting Dice scores for the test data of
the 2015 challenge. We can see that the method on average performs well on
complete tumor and core, but with a considerable amount of more or less failed
segmentations. It performs substantially worse on the enhanced core. Figure 3b
shows five of the automatically learned filters of the complete tumor cRBM.

A few example segmentations by the proposed method are shown in Fig. 4,
together with initial GEM-segmentations, the ground truth segmentations and
the MR data. Here we can see that the method is capable of capturing varying
tumor shapes, removing many false positives from the initial segmentation (e.g.,
vessels) and recovering when a large part of the core initially has been labeled as
healthy tissue. However, the rather localized shape model does have limitations,
e.g., it has difficulties to remove sizable ventricular CSF flow artifacts and it
tends to oversmooth the tumor border. Furthermore, the intensity difference
between edema and core is not always clear; the last subject has a typical low-
grade tumor appearance, where this difference is almost non-existent.
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Figure 5 shows two failed subjects. In the first subject, large parts of the
core exhibit a similar intensity distribution to GM, mainly due to a bias field
in FLAIR combined with low enhancement in T1c. The interaction between the
strong edge detecting cRBM filters and the smooth affine healthy atlas is not
ideal in this case. For the second subject, a large part of non-tumor tissue is
better explained by the intensity distribution of tumor than the healthy labels.

4 Discussion

In this paper, we have proposed a fully automated generative method for brain
tumor segmentation, with a tumor prior that uses convolutional restricted Boltz-
mann machines to model tumor shape. We have shown that the method’s perfor-
mance compares well to current state-of-the-art methods on public benchmark
data sets. Moreover, it is not tied to any specific imaging protocol as the optimal
parameters of the tumor model are estimated only from expert segmentations of
annotated training images, without using intensity information.

Described here is a work in progress with many potential paths of improve-
ment still to be explored. The structure of healthy tissues could probably be
better explained by a deformable atlas. Furthermore, it was observed that the
proposed sampling method only explores a small part of the total space of pos-
sible configurations. This is due to the Gibbs sampling framework and the fairly
strong edge detecting filters obtained by training the cRBM model, which result
in a slow mixing of the MCMC chain. Although the method is effective in the
sense that just a few sampling steps are needed to produce competitive seg-
mentations, it could be more efficient and less dependent on initialization when
using a better sampling framework. Future work will involve further experimen-
tation with different filter configurations and deformable atlases, exploration of
more efficient sampling frameworks and simultaneous segmentation of important
healthy structures for radiotherapy.
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Abstract. Accurate Segmentation of Gliomas from Magnetic Reso-
nance Images (MRI) is required for treatment planning and monitor-
ing disease progression. As manual segmentation is time consuming, an
automated method can be useful, especially in large clinical studies. Since
Gliomas have variable shape and texture, automated segmentation is a
challenging task and a number of techniques based on machine learning
algorithms have been proposed. In the recent past, deep learning meth-
ods have been tested on various image processing tasks and found to
outperform state of the art techniques. In our work, we consider stacked
denoising autoencoder (SDAE), a deep neural network that reconstructs
its input. We trained a three layer SDAE where the input layer was a
concatenation of fixed size 3D patches (11× 11× 3 voxels/neurons) from
multiple MRI sequences. The 2nd, 3rd and 4th layers had 3000, 1000 and
500 neurons respectively. Two different networks were trained one with
high grade glioma (HGG) data and other with a combination of high
grade and low grade gliomas (LGG). Each network was trained with 35
patients for pre-training and 21 patients for fine tuning. The predictions
from the two networks were combined based on maximum posterior prob-
ability. For HGG data, the whole tumor dice score was .81, tumor core
was .68 and active tumor was .64 (n = 220 patients). For LGG data, the
whole tumor dice score was .72, tumor core was .42 and active tumor
was .29 (n = 54 patients).

Keywords: Gliomas · MRI · SDAE · Unsupervised learning ·
Supervised learning

1 Introduction

Gliomas affect the glial cells in the brain and are the most common brain tumors.
Based on their severity, Gliomas can be classified as either HGG or LGG, with
most low grade Gliomas progressing to high grade malignancy. The treatment
regimen in clinical practice as outlined in [18] may consist of chemotherapy, radi-
ation therapy and surgery with treatment monitoring and progression done by
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multi-sequence MRI. Tumor volumes obtained from segmentation of MR images
are used as a marker of disease progression and the segmentation itself can be
used for treatment planning for e.g. surgical planning and radiation therapy.
For large clinical trials, automated segmentation of Gliomas from MR images is
desirable but is a challenging task due to its complex shapes, diffuse boundaries
and heterogeneous intensity distribution within the tumor. Further difficulties
arise due to multi foci tumor and non-standard pixel values of MR images, which
can vary depending the scanner and scan center. To facilitate automated seg-
mentation, the tumor is divided into 4 major regions; Edema, Necrotic core,
enhancing and non-enhancing tumor regions, which takes into account the het-
erogeneity of tumor tissue. These regions are identified by inspecting multiple
MR imaging sequences, namely T1, T1c, T2 and FLAIR. For instance, T1 and
T1c together can be used to detect contrast enhancing regions, while FLAIR
and T2 can be used for delineating edema. An expert radiologist would have to
consider all the four sequences together to identify each region. Thus, an auto-
matic segmentation tool would improve processing time and provide consistent
quantification of tumor progression.

In this paper, we describe our entry in the BRATS 2015 challenge using
Stacked Denosing Autoencoders. The paper is further divided as: Related work in
Sect. 2, Autoencoders and Stacked Denosing Autoencoders in Sect. 3, Materials
and Methods in Sect. 4, Results and Discussion in Sect. 5.

2 Related Work

Techniques used for Automatic segmentation of Gliomas can be broadly classified
as generative or discriminative [14]. Generative techniques make use of prior
spatial information of each tissue in the brain obtained using an atlas. The atlas
itself is derived from normal brain images and comprises of Gray matter, White
Matter and CSF. However, patients with Glioma, apart from the aforementioned
structures, have an additional structure i.e. tumor and its constituents. The
test data is registered to the atlas and each voxel in the image is assigned as
Gray Matter, White Matter or CSF with a certain probability. Tumor and its
constituents are also assigned as normal tissue but with a small probability.
Following this, outlier voxels are further analyzed to obtain the segmented tumor
volume. In a typical approach, techniques based on active contours are used to
figure regions with probability values below a certain threshold [10,15]. Aligning
the atlas with data having large lesions or resection cavities is challenging as
the presence of the large lesions can alter the structure of brain considerably.
Overall, Generative techniques exhibit good generalisation on unseen data.

Discriminative techniques learn intensity based features to differentiate
between lesion and normal tissues. Discriminative techniques require large
amount of training data to learn features for voxel classification. Over the past
few years, the best performing techniques in the BRATS challenge have been
Convolutional Networks (CNN’s) [3,19,23] and Random Forests [4,6,11]. Ran-
dom Forests require hand-crafted low level features, such as edge filters, differ-
ence between sequences, mean or median over a small neighbourhood etc. The
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final results of the algorithm is dependent heavily on these hand-crafted features.
Techniques such as CNNs and SDAEs automatically learn high order features
like edges, texture and patterns present in the images to differentiate between
lesion and normal tissue. Since discriminative techniques makes use of intensity
based features, it is required that test images have the same intensity range as
that of the training data.

Our entry, SDAE, has shown promising results in digit recognition and nat-
ural image classification tasks [5,22]. The use of SDAE for medical image analysis
has been limited. It has been used in organ detection [17] and for characterizing
the skin from OCT images [16]. A variant of Autoencoder has been used for
detecting various stages of dementia [12].

3 Autoencoder

Autoencoders are fully connected neural networks that are trained to recon-
struct the given input. The traditional autoencoder consists of an encoder and
a decoder. The encoder (Fig. 1a) is basically an affine mapping followed by a
non-linearity f that takes the input to its hidden representation. The encoding
function g is given by (Eq. 1), where x is the input, f is the non linearity applied,
W , b are parameters of the affine mapping referred to as weights and biases.

g = f(W ∗ x + b) (1)

The decoder (Fig. 1b) maps the hidden representation back to an estimate of the
input x. The decoder function is again a composition of affine mapping and a
squashing non-linearity. The decoding function g′ is given by (Eq. 2), where f is
the non linearity applied, W ′, b′ are weights and biases connecting the hidden
and the output layer.

g′ = f(W ′ ∗ g + b′) (2)

The parameters to be determined are the weights and biases; W , b, b′ and W ′.
For real valued inputs, parameter estimation is done by minimizing the least
square error (Eq. 3) between the actual input and the reconstructed input.

Loss = (x − g′)2 (3)

The reconstruction is not exact but the intuition is that the hidden represen-
tation is a higher level representation of the original data that allows one to
complete ’missing data’ in the input. The cost function is trivially optimized by
learning the identity transform and without additional constraints, no useful rep-
resentation will be learnt. The often used approach is to learn the undercomplete
representation where the dimensionality of data is reduced or the over-complete
but sparse representation. Both of these constraints help in learning useful repre-
sentations of data. Traditional autoencoders can be stacked to form deep neural
networks as shown in Fig. 1f.

In addition to these techniques Vincent et al. [21] proposed the denoising
autoencoder (DAE) where the representation is learnt by denoising the partially
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(a) Encoder in Au-
toencoder

(b) Decoder in Autoen-
coder

(c) Pretraining First Layer

(d) Input for
Second Layer

(e) Pretraining Second
Layer

(f) Deep Autoencoder

Fig. 1. Traditional autoencoder

corrupted input. The representation learnt by the DAE is expected to be robust
to noisy input and since the training itself involves denoising, significant features
of the data will be captured by the representation.

The input is corrupted either by Gaussian, masking or salt and pepper noise.
In masking noise, a small fraction of neurons in the input are set to zero, while
Gaussian noise corrupts all the neurons in the input layer. The input is cor-
rupted by (Eq. 4) where C is the function applied on the input x to generate the
corrupted input x′.

x′ = C(x) (4)

The encoding function g is then given by (Eq. 5) as:

g = f(W ∗ x′ + b) (5)
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The decoding function g′ is then given by (Eq. 6) :

g′ = f(W ′ ∗ g + b′) (6)

The parameters W , b, W ′ and b′ are estimated by minimising the loss equation
(Eq. 7).

Loss = (x − g′)2 (7)

DAEs can also be stacked to form deep neural networks (SDAE) and the
training proceeds layer by layer (Figs. 2 and 1d-e). Briefly, the learned representa-
tion from the first layer is used as input to the second layer and the representation
itself is estimated by using uncorrupted inputs. This process of learning layer-
wise representation is referred to as pre-training and has been shown to improve
the generalization performance of deep neural networks. The stacked DAEs have
the added advantage that no data labels are necessary for the pre-training. Once
the pre-training is complete, the uppermost layer of learnt representation can be
used as input to a generic classifier or a MLP. In this stage, labeled data is used
to further train or ’fine tune’ the network to improve prediction performance.

For a segmentation task, individual voxels in the image have to be labeled.
It is not feasible to provide the entire patient volume as input to the encoder
because of the dimensionality of the data, equal to the number of voxels in the
image. Consequently, training and testing are done using small patches extracted
from the images (2D and 3D), with class labels corresponding to the center pixel
of the patch. The number of input neurons to the SDAE is then equal to the
number of voxels in each patch times the number of MR sequences.

The advantage of using SDAE lies in pre-training which can be done using
unlabeled data. One can expect the repository of medical images to grow man-
ifold in the future, apart from unlabeled images currently available. It would

(a) Corruption of Input us-
ing Masking Noise

(b) Pretraining a Layer us-
ing Corrupted Input

(c) FineTuning of SDAE

Fig. 2. Denosing autoencoder
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not be feasible for expert radiologists to label pixels in every image for training
machine learning algorithms and since images would be obtained from differ-
ent centers, a large inter-rater variability can be expected. In this situation, an
auto-encoder based deep network can be pre-trained using unlabeled or partially
labeled images, with a smaller number of expert segmented images for the fine-
tuning step. In our work, we use SDAEs that are pre-trained and fine tuned
using a small subset of the training data made available for the challenge.

4 Materials and Methods

4.1 Pre-processing

Patient image dataset made available for BRATS 2015 was minimally pre-
processed as described in [19,20]. The pre-processing includes histogram match-
ing all the images to a reference image and dividing each sequence by the
mean value of the brain and removing outliers. The above steps ensures that
the dynamic range of all sequences falls within the same range. Representative
results of pre-processing are shown in Fig. 3.

3D Patches from the preprocessed volumes were extracted and used as input
to the network. Since the Gliomas occupy a small volume (<2 %) [7] of the brain,
the number of patches corresponding to the tumor regions is significantly lower
compared to patches from healthy tissue, leading to class imbalance (Table 1).
The severity of the class imbalance was reduced by extracting patches only from
in and around the tumor.

Table 1. Amount of class imbalance

Labels Percentage

Normal 98

Necrotic .18

Edema 1.10

Non Enhancing Tumor .12

Enhancing Tumor .38

4.2 Details and Architecture of Network Used

We made use of 2 different SDAEs. One network was trained with HGG data,
while other network was trained with a combination of HGG and LGG data.
Apart from the data used, the architecture and all other hyper-parameters of
both networks were the same. The network training proceeds in two stages,
pre-training and fine tuning described in the next two sections.

PreTraining: The network was pre-trained with 35 patients. 3D patches were
extracted from all four sequences and concatenated to form the input layer of
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Fig. 3. (a-d) Raw images, (d-f) Normalised images, (i-l) Area from where patches are
extracted.

the SDAE. The size of patch was 11*11*3 voxels with a fixed overlap between
patches. We experimented with various other patch sizes like 7× 7× 7, 5× 5× 5,
3× 3× 3 and 2D patch sizes like 11× 11, 9× 9, 21× 21, 15× 15, 13× 13, for a
range of over-complete and under-complete architectures, with varying levels of
masking noise and the prediction performance on a limited data set was used
to decide the optimal architecture. As pre-training is completely unsupervised,
labels associated with patches were never used other than to determine pixel
coordinates for extracting patches. To ensure that network learns features from
all classes, the network was pre-trained with equal number of patches from each
class.

Masking noise of 10 % was added to each layer. Sigmoid activation function
was used for encoding while linear activation function was used for decoding.
The loss function used was mean squared error. L2 regularization was added to
the cost function to prevent over-fitting. The pre-training was optimized using
RmsProp [8] with annealing learning rate.
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FineTuning: The network was fine tuned trained with 21 patients and vali-
dated on 10 patients. The label associated to a patch was based on the label of
the center pixel of the 3D patch. As mentioned earlier, there were 5 labels, nor-
mal tissue, necrotic region, enhancing tumor, non-enhancing tumor and edema.
For fine tuning, no class balance was done in order to match the occurrence of
classes in the test images. The ratio of the number of patches from different tis-
sue classes; Normal:Necrotic:Edema:Non-Enhancing:Enhancing was 81:1:12:2:4

In the fine tuning stage, a softmax decision layer was added to the network.
The Negative log likelihood cost function with L1 and L2 regularization and mis-
classification penalties was optimized using Stochastic Gradient Descent with
annealing learning rate. Dropouts [9] were added to the network to prevent over-
fitting. The various hyper-parameters used in this stage are given in Table 2.

Table 2. Masking noise and dropouts

Architecture 1452 3000 1000 500 5

Masking Noise 0.1 0.1 0.1 0 0

Dropouts 0 0 0.3 0.3 0

4.3 Testing

During testing, the patches from the images were passed to both the networks.
The softmax layer in the network assigns posterior probabilities to the center
pixel in a patch (Eq. 8). The posterior probabilities from both the networks are
compared, and the patch is assigned the label which has highest probability
value (Eq. 11).

P (y = c|X) =
eX

TWc∑k=K
k=1 eXTWk

(8)

Output1 = [C0 : p0, C1 : p1, C2 : p2, C3 : p3, C4 : p4] (9)

Output2 = [C0 : q0, C1 : q1, C2 : p2, C3 : q3, C4 : q4] (10)

Final label = argmax[p0, p1, p2, p3, p4, q0, q1, q2, q3, q4] (11)

In Eqs. 9 and 10, Output1 corresponds to the output from the first
network, while Output2 corresponds output from the second Network.
C0,C1,C2,C3,C4 stands for class 0, class1, class2, class3, class4 respectively while
p0,p1,p2,p3,q0,q1,q2,q3,q4 are the probability assigned to the class.
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4.4 Post Processing

Post Processing helps in reducing the number of false positives in the Image. It
was found that large number of false positives were generated at the ventricles,
cerebellum and brain stem. The likelihood of occurrence of Gliomas in cerebellum
and brain stem is very minimal [13]. The post processing pipeline comprises of,

– Multiplying the predicted output with ventricles, cerebellum and brain-stem
masks.

– Connected Component Analysis
– Discard connected components lesser than a size threshold.

The masks were obtained through Atropos segmentation [4]. Figure 4 shows the
how the post processing helps in reducing the False positives.

(a) Raw Pre-
diction

(b) Con-
nected Com-
ponents

(c) After Post
Processing

(d) Associ-
ated Ground
Truth

Fig. 4. Post processing

5 Results and Discussion

Our network performs better on High grade Glioma than on Low Grade. Table 3
gives performance of the current network on HGG and LGG. For evaluating the
prediction performance, dice scores and other metrics were calculated for whole
tumor, active tumor (enhancing tumor) and the tumor core consisting of the
necrotic core, non-enhancing tumor and enhancing tumor. The network achieves
a mean whole tumor dice score of 81.52%±14.07%, mean active tumor dice score
of 64.36% ± 23.33% and a mean tumor core dice score of 68.00% ± 21.61% on
HGG data. While on LGG data, network achieves a mean whole tumor dice score
of 72.02% ± 21.0%, mean active tumor dice score of 29.00% ± 26.%and a mean
tumor core dice score of 42.00%±22.10%. The dice scores were calculated using
Advanced Normalisation Toolkit software [1]. It takes approximately 30 min per
patient to complete the pipeline (pre-processing, generation of mask, prediction
and post processing).

For tumor core and active tumor classification tasks on HGG data, the algo-
rithm performed below par for certain patients, for example, patient ID 374
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Table 3. Performance on entire BRATS data

TYPE Whole Tumor Tumor Core Active Tumor

Dice STD Dice STD Dice STD

HGG .81 .14 .68 .21 .64 .23

LGG .72 .21 .42 .22 .29 .26

shown in Fig. 5(a-b). A possible explanation for such a result would be that
the amount of pixels corresponding to enhancing tumor were very low, hence,
missing out on them would have a huge impact on the mean active and tumor
core dice scores. Similarly in some of ground truth supplied in the training data,
small blobs of non enhancing tumor are surrounded by edema. The algorithm
classifies these small blobs as edema (Fig. 5(j)), since the neighbouring pixels
falls under edema category. The above explained misclassification also leads to
lowered dice scores associated with tumor core and active tumor. In LGG, the
volume of Non Enhancing Tumor is more than Enhancing Tumor. In some cases,
the network classified most of the Non enhancing tumor patches as either edema
or Enhancing Tumor, Fig. 5(e-h). This misclassification leads to poor prediction
performance in tumor core and active tumor classification on LGG data. We
have also shown some of the best predictions in Fig. 5(i-t)

5.1 Discussion

Image pre-processing and data imbalance are two of the factors that have a major
influence on the prediction performance. In our case, image pre-processing leads
to saturation in several sequence resulting in large false positive predictions. As
stated in [7], we found data imbalance to be the another major issue as the
ratio of necrotic core and non-enhancing tumor voxels was lower than that of
edema. We implemented a penalty in the cost function for the respective classes
and found the mean dice scores to improve. However, there were a few patients
where the dice scores have dropped and we are currently working on determining
appropriate penalties for misclassification (Table 4).

Table 4. Sensitivity and Specificity

Metric Whole Tumor Tumor Core Active Tumor

Sensitivity 0.79 0.66 0.74

Specificity 0.84 0.71 0.53

The network architecture i.e. the number of input neurons or patch size,
number of hidden layers and the number of neurons in the hidden layers, were
determined empirically by experimenting with various configurations and choos-
ing the best network based on the prediction performance on a limited data set.
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Fig. 5. (a) and (b) - Worst Performing image, as amount of enhancing tumor is low. (c)
and (d) - Presence of blobs of Non-Enhancing Tumor. (e)-(f) - Misclassification of Non
Enhancing Tumor as Edema or Enhancing Tumor in LGG. (g)-(h) - Performance of
network on LGG. (i)-(l)-Performance on HGG data. (m)-(t)- Best performing Images
(Dice>.85) For all Images, Orange - Edema, Yellow- Non Enhancing Tumor, White -
Enhancing Tumor, Red - Necrotic core (Color figure online)
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The network was trained by considering the label of the center pixel of the patch
and prediction proceeds the same way. The neighborhood label information is
not considered during training or prediction leading to errors in the boundaries
of the individual tumor regions and also to wrong predictions in tumor regions
that are only a few voxels in size. We plan to explore different post-processing
schemes to consider neighborhood label information and refine the prediction.

The problems of the right choice of network architecture and patch size can be
overcome by doing a more thorough empirical study. The conventional option
would be to train several networks with different architectures & patch sizes
and combining the predictions. In our case we had trained two networks and
primarily focused on predicting High Grade Gliomas. The first network trained
using HGG gave poor results when predicting LGG data, so we trained a second
network with a mixture of LGG & HGG data and got a boost in performance.
Efforts were made to train a network with same architecture using LGG data
but the network did poorly on the test data when compared to the network
trained on a combination of HGG and LGG data. Both the networks were trained
and validated on a relatively small subset of data due the memory/hardware
constraints.

The SDAE, as mentioned earlier, can be pre-trained using both labeled and
unlabeled data making it very useful in scenarios where large amounts of ground
truths are not available or are not feasible. The performance of the technique
on the BRATS2015 challenge data set is satisfactory given the relatively small
number of patients used to train the network.

Our programs were written on Python using Theano package [2] and were
run on K20 and GTX-980 GPUs.

6 Conclusion

In this paper, we present a fully automatic method to segment brain tumor using
Stacked Denoising Autoencoder. The algorithm achieves a mean whole tumor
dice score of 81.52% ± 14.07% and 72.02% ± 21.0% on HGG and LGG data
respectively, which is comparable to the top scores reported in BRATS 2014 and
the standard deviations are comparable to the inter-rater variability in manual
segmentation. There is still scope for improvement by implementing sparsity,
data augmentation and deeper architectures.
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ramanian for allowing us to use their computing resource in their respective labs.
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Abstract. We consider the problem of fully automatic brain focal
pathology segmentation, in MR images containing low and high grade
gliomas and ischemic stroke lesion. We propose a Convolutional Neural
Network (CNN) approach which is amongst the top performing meth-
ods while also being extremely computationally efficient, a balance that
existing methods have struggled to achieve. Our CNN is trained directly
on the image modalities and thus learns a feature representation directly
from the data. We propose a cascaded architecture with two pathways:
one which focuses on small details in gliomas and one on the larger con-
text. We also propose a two-phase patch-wise training procedure allow-
ing us to train models in a few hours. Fully exploiting the convolutional
nature of our model also allows us to segment a complete brain image
in 25 s to 3 min. Experimental results on BRain Tumor Segmentation
challenges (BRATS’13, BRATS’15) and Ischemic Stroke Lesion Segmen-
tation challenge (ISLES’15) reveal that our approach is among the most
accurate in the literature, while also being computationally very efficient.

1 Introduction

The goal of brain focal pathology segmentation is to identify areas of the brain
whose texture and/or intensity configuration deviates from normal tissues. We
consider two pathologies namely gliomas and ischemic stroke lesions. Segmenta-
tion methods typically look for the pathologic area by exploiting several magnetic
resonance imaging (MRI) modalities, such as T1, T2, T1 post-contract (T1C)
and Flair.

Recently, Convolutional Neural Networks (CNNs) have proven particularly
successful in many computer vision applications. For instance, the so-called
AlexNet architecture [10] was the first to establish CNNs as the de facto state-of-
the-art methodology for object recognition in natural images. The main appeal of
convolutional networks is the ability of extracting a deep hierarchy of increasingly
complex features. In terms of image segmentation, Ciresan et al. [4] exploblack
deep CNNs using a fairly standard architecture which yielded impressive results
for Neuronal Membrane segmentation in Electron Microscopy Images. Other
work has exploblack alternatives to standard CNN architectures and training
c© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 195–208, 2016.
DOI: 10.1007/978-3-319-30858-6 17
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procedures [9] for segmentation. However, the potential of CNNs for tumor and
lesion segmentation is currently poorly understood, and has only been the sub-
ject of preliminary investigations [5,12,13].

In this paper, we propose one of the top performing CNN architectures
for brain focal pathology segmentation. We report results on the MICCAI
BRATS’13, BRATS’15 and ISLES’15 challenge datasets [1] and confirm that
our approach is among the fastest and most accurate ones currently available.
The work presented here is built on our previous work [8]. In this work we extend
the experiments on larger datasets (i.e. BRATS’15 and ISLES’15).

2 Convolutional Neural Network Architecture

We approach the problem of brain focal pathology segmentation by solving it
slice by slice, from the axial view. Let X be one such 2D image (slice), where
each pixel is associated with multiple channels, one for each image modality. We
treat the problem of segmentation as predicting the label of the center pixel of all
overlapping patches. The problem is thus converted into an image classification
problem.

In the context of this work, we tested a large number of CNN architectures.
Figure 1 (top) shows our base model which we refer to as TwoPathCNN. As
can be seen, our method uses a two-pathway architecture in which each pathway
is responsible for learning about either the local details or the larger context of
tissue appearances (e.g. whether or not it is close to salient regions of the brain
like the skull or the CSF. The pathways are joined by concatenating their feature
maps immediately before the output layer. Finally, a prediction of the class label
is made by stacking a final output layer, which is fully convolutional to the last
convolutional hidden layer. The number of feature maps in this layer matches
the number of class labels and uses the so-called softmax non-linearity.

Since CNNs perform pixel classification without taking into account the local
dependencies of labels, one can model label dependencies by considering the
pixel-wise probability estimates of an initial CNN as additional input to a second
CNN, forming a cascaded architecture. This is illustrated in Fig. 1 (bottom)
which we refer to as InputCascadeCNN.

2.1 Efficient Two-Phase, Patch-Wise Training

By interpreting the output of our CNN as a model for the distribution over
segmentation labels, a natural training criteria is to maximize the probability
of all labels in our training set or, equivalently, to minimize the negative log-
probability − log p(Y|X) =

∑
ij − log p(Yij |X) for each labeled brain where Y

is the preticted label field and X is the input image. To do this, we follow a sto-
chastic gradient descent approach by repeatedly selecting labels Yij at a random
subset of positions (i.e. patches) within each brain, computing the average neg-
ative log-probabilities for this mini-batch of positions and performing a gradient
descent step on the CNNs parameters.
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Fig. 1. Our implemented models. Top: TwoPathCNN model, where the input
patch goes through two streams; a local stream and a global stream. Bot-
tom:InputCascadeCNN model, where the outputs of the first TwoPathCNN is con-
catenated with the inputs of the second TwoPathCNN.

Care must be taken however to ensure efficient training. Since the distribution
of labels is very imbalanced (e.g. most of the brain is healthy and even within
the non-healthy classes, the number of voxels belonging to each non-healthy sub-
classes varies a lot) selecting patches from the true distribution would cause the
model to be overwhelmed by healthy patches. It is well known that neural net-
work training algorithms such as stochastic gradient descent perform poorly in
cases of strong class imbalances. To avoid these issues, we initially construct our
training dataset such that all labels are equiprobable (equal number of patches
from each class). This is what we call the first training phase. Then, in a sec-
ond phase, we account for the unbalanced nature of the data and re-train only
the output layer (i.e. keeping the kernels of all other layers fixed) with a more
representative distribution over the labels. Using this approach, we were able to
train the TwoPathCNN and InputCascadeCNN models in 6 h and 12 h on
Nvidia TITAN black GPU respectively.
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2.2 Fast Test-Time Segmentation as Extended Convolution

For any method to be practical, it is imperative that execution at test time (i.e.
the segmentation of a complete brain) be fast. The naive approach of extracting
each patch and sequentially building a segmentation is, however, very slow and
wasteful.

We can accelerate computations by exploiting the convolutional nature of our
method and leveraging efficient convolution libraries. The trick is to consider the
fully connected output layer as the special case of a convolutional layer, whose
kernels match the spatial size of the last convolutional hidden layer, when fed a
single patch (as illustrated in Fig. 1). Then, by feeding as input the full image
X, convolutions at all layers can be extended to obtain all label probabilities
p(Yij |X) for the entire image. Exploiting convolutions in this way, we were able to
segment complete brains (i.e. all slices) in approximately 25 s for TwoPathCNN
and 3 min for InputCascadeCNN. This is 45 times faster than if we were to
make independent per pixel predictions.

3 Implementation Details

Our implementation is based on Pylearn2 which supports GPUs and can greatly
accelerate the execution of deep learning algorithms [6].

To test the ability of CNNs to learn useful features from scratch, we employed
only minimal pre-processing. We truncate the 1 % highest and lowest intensities,
as done in [11] and applied N4ITK bias correction [3]. These choices were found
to work best in our experiments. The input data was normalized within each
input channel, by subtracting the channel mean and dividing by its standard
deviation.

The hyper-parameters (kernel and pooling size for each layer) of the model are
illustrated in Fig. 1. Dropout, momentum and weight decay is used as described
in [7]. The learning rate α is decreased by a factor γ = 10−1 at every epoch. The
initial learning rate was set to α = 0.005. The models are trained about 70 to
100 epochs before being stopped by the early stopping criteria.

A post-processing method based on connected components was also imple-
mented to remove flat blobs which might appear in the predictions due to bright
corners of the brains close to the skull.

4 Experiments and Results

We conducted our experiments on BRATS13, BRATS15, sub-acute ischemic
stroke lesion segmentation (SISS) and acute stroke outcome/penumbra esti-
mation (SPES) datasets. BRATS is a challenge on brain tumor segmentation
while SISS and SPES are datasets for the Ischemic Stroke Lesion Segmentation
(ISLES) challenge. Both BRATS and ISLES are in conjunction with Brain Lesion
workshop as part of the Medical Image Computing and Computer-Assisted
Intervention (MICCAI’15) conference. In the following we briefly describe these
datasets.
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T1C Flair
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Fig. 2. Four MRI modalities used as input channels to our CNN model as well as the
ground truth labels: � edema, � enhanced tumor, � necrosis, � non-enhanced tumor
(Color figure online).

4.1 Datasets

BRATS’13 contains 20 brains with high grade and 10 brains with low grade
gliomas for training and 10 brains with high grade gliomas for testing. For
each brain, there exists 4 modalities, namely T1,T1 post-contract (T1C), T2
and Flair. These modalities are co-registeblack to the T1 post-contrast image,
skull stripped, and interpolated to 1 mm isotropic resolution. The training brains
come with a hand-labeled ground truth of 5 segmentation labels, namely healthy,
necrosis, edema, non-enhancing tumor and enhancing tumor. Figure 2 shows an
example of the data as well as the ground truth.

BRATS’15 contains 220 brains with high grade and 54 brains with low grade
gliomas for training and 53 brains with mixed high and low grade gliomas for
testing. Similar to BRATS’13, each brain from the training data comes with
a 5 class segmentation ground truth. BRATS’15 contains the training data of
2013. The ground truth for the rest of the training brains is generated by a
voted average of segmented results of the top performing methods in BRATS’13
and BRATS’12. Some of these automatically generated ground truths have been
refined manually by a user. For evaluation purposes the tumor regions in both
BRATS challenges are categorized as follows: the complete (including all four
tumor subclasses), the core (including all tumor subclasses except “edema”)
and the enhancing (comprising the “enhanced tumor” subclass). The evalua-
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T1 Flair DWI T2 GT

Fig. 3. Four SISS MRI modalities used as input channels to our CNN model as well
as ground truth (GT).

CBF DWI Tmax TTP

GTCBVT1CT2

Fig. 4. Seven SPES MRI modalities used as input channels to the CNN model as well
as ground truth (GT).

tion measures consist of the Dice measure (which is identical to the F score),
Specificity and Sensitivity [11].

SISS contains 28 brains with four modalities namely: Flair, Diffusion
Weighted Image (DWI) and T1. Figure 3 shows an example of this dataset.
The challenge dataset consists of 36 subjects. The evaluation measures used for
the ranking were the Dice’s coefficient, the Average symmetric surface distance,
and the Hausdorf distance.

SPES dataset contains 30 brains with 7 modalities namely: CBF (Cerebral
blood flow), CBV (cerebral blood volume), DWI (diffusion weighted images),
T1c, T2, Tmax and TTP (time to peak). The challenge data set contains 20
subjects. Both datasets provide pixel-accurate level ground truth of the abnormal
areas (2 class segmentation).

Since ground truth segmentations are not available for the challenge data
(i.e. test data), a quantitative evaluation is only possible through the online
evaluation system [2] (Fig. 4).
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Fig. 5. Brats’15 challenge results. Dice score and Hausdorff distance are presented
for the three tumor categories. Since the results of the challenge are not yet publicly
available, we are unable to disclose the name of the participants. The semi-automatic
methods are highlighted in gray. In each sub-figure, the methods are ranked based on
the mean value which is shown in black.

4.2 Results on BRATS

According to our validation set, on the BRATS datasets, InputCascadeCNN*
performed superior to TwoPathCNN*. Table 1 shows how this architecture
compares to the currently published state-of-the-art methods on BRATS13
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Table 1. Comparison of our implemented architectures with the state-of-the-art meth-
ods on the BRATS-2013 test set as presented in [11].

Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

InputCascadeCNN 0.88 0.79 0.73 0.89 0.79 0.68 0.87 0.79 0.80
Tustison 0.87 0.78 0.74 0.85 0.74 0.69 0.89 0.88 0.83
Meier 0.82 0.73 0.69 0.76 0.78 0.71 0.92 0.72 0.73
Reza 0.83 0.72 0.72 0.82 0.81 0.70 0.86 0.69 0.76
Zhao 0.84 0.70 0.65 0.80 0.67 0.65 0.89 0.79 0.70

Cordier 0.84 0.68 0.65 0.88 0.63 0.68 0.81 0.82 0.66
Festa 0.72 0.66 0.67 0.77 0.77 0.70 0.72 0.60 0.70
Doyle 0.71 0.46 0.52 0.66 0.38 0.58 0.87 0.70 0.55

dataset. The table shows that InputCascadeCNN out performs Tustison et
al. [11], the winner of the BRATS’13 challenge and is ranked first in the table.

Figure 6 shows visual segmentations produced by our model on our validation
set taken from BRATS’13 trainset. It is important to note that the model has
not been trained on these subjects and thus it provides for a fair evaluation of
the models performance. The larger receptive field in the two-pathway method
allows the model to have more contextual information of the tumor and thus
yields better segmentations. Also, with its two pathways, the model is flexible
enough to recognize the fine details of the tumor as opposed to making very
smooth segmentation as in the one path method. By allowing for a second phase
training and learning from the true class distribution, the model corrects most of
the miss-classifications produced in the first phase. Cascading CNNs also helps
the model to refine its predictions by introducing label dependencies.

This model was the basis of our experiments for BRATS’15. From the 274
subjects from the BRATS’15 training set, we used 174 to train our models. This
decision was made by visually inspecting each subject. From the 174 we took
56 subjects with high quality of ground truths as validation set. A 7 fold cross
validation was made. For each fold, 8 subjects were used as validation set. At
prediction time, a voted average of these models was made for each subject in the
challenge dataset. The results of the challenge is presented in Fig. 5. Since these
results are not yet publicly available, we refrain from disclosing the name of the
participants. In this figure the semi-automatic methods are highlighted in gray.
As seen from the figure, our method ranks either first or second on Complete
tumor and tumor Core categories and gets competitive results on active tumor
category. Our method has also less outliers than most other approaches.

4.3 Results on ISLES

For the ISLES challenge, TwoPathCNN seemed to outperform InputCas-
cadeCNN. Tables 2 and 3 show the results on the training data obtained from
the virtualskeleton webpage on both SISS and SPES datasets and how we com-
pare with other methods applied on these datasets. As one can see, our method
(TwoPathCNN*) is well in front the other methods. On the training data, our
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Fig. 6. Results obtained by our model on BRATS’13 dataset shown from top to down
in Axial, Coronal and Sagittal views.
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Table 2. Results on the SISS training dataset showing how our method compares with
other methods.

Method ASSD Dice Hausdorff Distance Precision Recall
average std average std average std average std average std

TwoPathCNN* 8.92 19.23 0.69 0.30 31.75 28.52 0.72 0.31 0.67 0.31
mh1 6.77 13.17 0.63 0.23 36.16 36.46 0.68 0.24 0.64 0.26

jessa1 11.59 18.34 0.45 0.24 39.23 30.70 0.52 0.26 0.51 0.31
mq2 10.30 11.11 0.54 0.26 82.78 23.95 0.67 0.33 0.50 0.25
eo1 12.36 12.30 0.36 0.25 56.94 40.98 0.65 0.41 0.35 0.21
cj1 56.77 79.90 0.48 0.38 76.88 81.77 0.57 0.43 0.44 0.37
ta1 12.18 22.59 0.50 0.31 43.21 30.50 0.61 0.34 0.55 0.33
bd1 9.36 13.85 0.57 0.28 53.88 34.58 0.58 0.33 0.68 0.21

Table 3. Results on the SPES training dataset showing how our method compares
with other methods.

Method ASSD Dice Hausdorff Distance Precision Recall
average std average std average std average std average std

TwoPathCNN* 1.76 0.94 0.85 0.08 23.28 14.13 0.83 0.11 0.88 0.08
haect1 3.51 2.13 0.78 0.08 46.31 25.17 0.78 0.11 0.80 0.12
mckir1 1.42 1.01 0.85 0.06 30.71 18.91 0.84 0.10 0.87 0.07
robbd1 2.03 1.35 0.82 0.07 44.29 27.59 0.81 0.14 0.85 0.07

Table 4. Results on the ISLES valid datasets.

Method ASSD Dice Hausdorff Distance

average std average std average std

SISS 8.23 13.15 0.59 0.27 45.80 29.23

SPES 2.55 1.47 0.77 0.12 29.87 16.71

Table 5. Results on the SISS challenge datasets.

Method ASSD Dice Hausdorff Distance
average std average std average std

kamnk1 7.87 12.63 0.59 0.31 39.61 30.68
fengc1 8.13 15.15 0.55 0.30 25.02 22.02
halmh1 14.61 20.17 0.47 0.32 46.26 34.81
chenl2 13.33 11.95 0.44 0.30 72.61 25.51
muscj1 13.56 13.65 0.43 0.32 64.22 28.79
rezas1 11.90 20.50 0.43 0.28 46.38 29.32
robbd1 14.22 14.41 0.43 0.30 62.58 30.61
maieo1 17.36 20.29 0.42 0.33 53.90 30.15

mahmq2 13.96 13.77 0.40 0.27 71.25 17.02
haect1 17.36 19.27 0.37 0.33 63.59 31.68

TwoPathCNN* 18.74 20.64 0.35 0.31 55.99 35.09
goetm2 15.97 15.07 0.34 0.29 60.37 31.14
jessa3 17.15 21.96 0.33 0.26 47.46 32.36
doyls2 19.66 23.23 0.30 0.34 52.01 31.86
wangc2 31.88 25.88 0.17 0.26 60.38 29.38
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Table 6. Results on the SPES challenge datasets.

Method ASSD Dice Hausdorff Distance
average std average std average std

mckir1 1.65 1.40 0.82 0.08 29.02 16.29
maieo1 1.36 0.74 0.81 0.09 23.62 12.99
robbd1 2.77 3.27 0.78 0.09 40.27 25.10
fengc1 2.29 1.76 0.76 0.09 30.65 16.49
kelle1 2.44 1.93 0.73 0.13 28.79 16.39
haect1 5.18 6.13 0.67 0.24 42.29 19.42

TwoPathCNN* 5.53 7.59 0.54 0.26 36.10 19.41

approach provides the best score on 4 of the 5 metrics on the SISS dataset, and
on 3 of the 5 metrics on the SPES dataset. Overall, we are ranked either first
or second on each metric. Let us underline the fact that since the Hausdorff
distances of our method (31.75 and 23.28) is significantly lower than the ones
obtained by the other methods, we may conclude that our approach has a higher
precision rate compablack to other methods. Table 4 shows the results on the
validation set. It is important to note that there is no training performed on this
data and thus is can be a fair estimate of how the model is expected to perform
on an unseen data set like the challenge data.

Figure 7 shows visual segmentation maps produced by our model on subjects
from the validation sets of both SISS and SPES datasets. The first two rows
show segmentation results on SPES dataset and the two bottom rows show
segmentation results on SISS dataset. It takes on average 25 s to produce a
segmentation result.

Although performing well on validation set, the model did not perform well
on challenge data from these datasets. Tables 5 and 6 show the challenge results
for these two datasets. As seen from this table, our method does not rank well
compared to other methods. We strongly believe this is due in part to high degree
of variation in the challenge data compared to the training data. The challenge
data contains a high degree of noise, which is different from the training set. In
addition, the challenge data contains subjects with very small lesions. The final
evaluation is an average over all subject which does not take into account the
size of the lesion and equal weight is given to subjects with large lesions and
subjects with small lesions. This way of evaluation would significantly penalize
a method if it fails to recognize small lesions or if small lesions are removed due
to post-processing. In our case our post-processing did not account for small
lesions. We aim to improve our results by having a better post-processing step.
For the SPES dataset we get a good score on our validation set which indicates
the model does not overfit to the training data. After fixing the implementation
defect in our pre-processing script our results improve significantly and is now
second best in terms of the Hausdorff distance and third best in terms of the
ASSD. The updated results are presented in Table 7.



206 M. Havaei et al.
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Fig. 7. Results obtained by our model on SPES (top row) and SISS (bottom row)
datasets. The subjects are chosen from the validation set.
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Table 7. Results on the SPES challenge datasets, with corrected pre-processing.

Method ASSD Dice Hausdorff Distance
average std average std average std

mckir1 1.65 1.40 0.82 0.08 29.02 16.29
maieo1 1.36 0.74 0.81 0.09 23.62 12.99
robbd1 2.77 3.27 0.78 0.09 40.27 25.10

TwoPathCNN* 2.24 0.79 0.76 0.10 24.16 12.62
fengc1 2.29 1.76 0.76 0.09 30.65 16.49
kelle1 2.44 1.93 0.73 0.13 28.79 16.39
haect1 5.18 6.13 0.67 0.24 42.29 19.42

5 Conclusion

In this paper, we proposed a focal brain pathology segmentation method based
on deep convolutional neural networks. In BRATS challenges our method is
among the most accurate methods available, while being computationally very
efficient. The high performance is achieved with the help of a novel two-pathway
architecture (which can model both the local details and global context) as well
as modeling local label dependencies by stacking two CNNs. As for the lesion
segmentation, our approach yielded competitive results on the SPES dataset
but didn’t perform as well on the SISS dataset. We think that one underlying
factor for inferior performance compablack with BRATS is the comparatively
lower amount of training data available. It also appears that the underlying
distribution of the challenge data may be different from the training distribution.
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Ischemic Stroke Lesion Image
Segmentation



ISLES Introduction

Ischemic Stroke Lesion Segmentation (ISLES) is a medical image processing
challenge1 aiming to provide a platform for a fair and direct comparison of methods for
ischemic stroke lesion segmentation from multi-spectral MRI images. A public dataset
of diverse ischemic stroke cases and a suitable automatic evaluation procedure was
made available. Researchers working in the field can download the data, apply their
methods and then upload the results for an automatic on-line evaluation. A continu-
ously updated table allows to directly compare each algorithms against all other
submission.

The challenge comprises of two distinct sub-challenge:

SISS: Sub-acute ischemic stroke lesion segmentation
SPES: Acute stroke perfusion lesion estimation

This third part of the volume contains contributions to the ISLES opening event held at
the International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI) on October the 5th 2015. The articles describe the methods of
14 teams who submitted to SISS and another 7 who submitted to SPES in detail.

For the ranking table of the participating methods and further information, see the
official homepage http://www.isles-challenge.org. The data repository, evaluation
system and ongoing rankings are hosted at https://www.smir.ch/ISLES/Start2015.

We sincerely hope that our contribution promotes the development of new methods in
and general visibility of the clinically important field of stroke lesion segmentation.

January 2016 Oskar Maier
Mauricio Reyes

Björn Menze
Heinz Handels

1 A comprehensive collection of medical image processing challenges: http://grand-challenge.org.

http://www.isles-challenge.org
https://www.smir.ch/ISLES/Start2015
http://grand-challenge.org
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Abstract. Automated methods for segmentation of ischemic stroke
lesions could significantly reduce the workload of radiologists and speed
up the beginning of patient treatment. In this paper, we present a method
for subacute ischemic stroke lesion segmentation from multispectral mag-
netic resonance images (MRI). The method involves classification of vox-
els with a Random Forest algorithm and subsequent classification refine-
ment with contextual clustering. In addition, we utilize the training data
to build statistical group-specific templates and use them for calculation
of individual voxel-wise differences from the global mean. Our method
achieved a Dice coefficient of 0.61 for the leave-one-out cross-validated
training data and 0.47 for the testing data of the ISLES challenge 2015.

1 Introduction

Ischemic stroke is the most common neurological disorder in industrial coun-
tries and a major cause of both human suffering and economical loss. Stroke is
usually diagnosed in the acute phase using computed tomography (CT) and in
many cases also using magnetic resonance imaging (MRI). While CT remains
the mainstay of stroke diagnosis due to its high availability, MRI is more sensi-
tive in detection of very early acute brain ischemia as well as ischemic changes
in infratentorial brain. Both acute and subacute lesions can be seen with dif-
fusion weighted (DWI) MRI. As the tissue ischemia progresses to the stage of
infarction signal changes in T1-weighted images, T2-weighted and fluid attenu-
ated inversion recovery (FLAIR) images appear. The temporal sequence of this
signal evolution forms the basis of determining the stage of pathological tissue
changes and choice of therapeutic strategy.

In order to predict the patient’s outcome and plan appropriate treatment,
it is important to accurately define the stage, location and extent of the
ischemic lesion. Spatial extent of ischemic changes have been shown to corre-
late with clinical outcome and a scoring system for CT has been introduced [1].
c© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 211–221, 2016.
DOI: 10.1007/978-3-319-30858-6 18
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However, manual segmentation of the lesioned area from healthy brain tissue
is time-consuming. Ischemic stroke is a common incidence and due to this, all
cases of stroke are not always reviewed by expert radiologists and especially
small lesions could go undetected. Automated segmentation methods could offer
aid in lesion detection and most importantly, reduce the time spent on manual
segmentations. Quick and robust lesion segmentation would be of importance
especially when used as diagnostic aid in acute cases, when treatment decisions
must be done within minutes. Automated methods could facilitate large scale
studies where manual segmentation approach is very soon overwhelmed by the
amount of lesions to be segmented.

Several automated segmentation methods have been proposed [2,3], but none
of the presented methods has yet reached accuracy equal to the professional radi-
ologists’ manual segmentations, which leaves room for improvement. Ischemic
Stroke Lesion Segmentation (ISLES) challenge is devoted to the development
of an automated lesion segmentation method. In this paper, we present an app-
roach for segmentation of stroke lesions from multispectral MR images as part of
the ISLES sub-acute ischemic stroke lesion segmentation (SISS) challenge 2015.

2 Materials and Methods

The proposed method is a combination of Random Forest classification and sub-
sequent contextual clustering. Contextual clustering is based on a Markov ran-
dom fields (MRF) prior and iterated conditional modes (ICM, [7]) algorithm, and
it was previously used for analysis of detection of activated regions in functional
magnetic resonance imaging (fMRI) [8]. Furthermore, we generate statistical
template images utilizing the healthy brain tissue of all patients on the training
dataset. The template images are used for calculation of individual voxel-wise
differences from the global mean. An overview of the method is presented in
Figs. 1 and 2.

Fig. 1. Overview of the classifier training process.
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Fig. 2. Overview of the segmentation process for the test data.

2.1 Statistical Template

In order to enable voxel-wise comparisons across subjects, all T1, T2, FLAIR
and DWI volumes, as well as the volumes containing manual segmentations,
were warped to a common template space. The template was generated by
the Advanced Normalization Tools (ANTs) software version 2.1.0rc3 [4] using
buildtemplateparallel script, greedy SyN transformation model, cross-correlation
similarity metric, 30 × 90 × 20 iterations and the T1 images of the training
dataset. All T1 images were deformed to this template with ANTs software
using Affine transformation model for rigid registration and SyN transforma-
tion model for warping. The detailed parameters are given in Appendix. This
defined a transformation which was applied to T2, FLAIR, DWI and manually
segmented volumes. All MR images were masked with a volume containing only
in-brain voxels to minimize the effect of background to the automatic segmen-
tation of ischemic stroke lesion volumes.

Images in the common template space representing mean and standard devi-
ation (std) of voxel intensities over subjects were calculated voxel-by-voxel, sep-
arately for T1, T2, FLAIR and DWI images. The mean images are shown in
Fig. 3. We call these images statistical templates from now on. Note that the
lesion voxels were not included in the calculation of average and std. Because
most subjects in the training dataset had lesions in the left hemisphere, there
were fewer voxels contributing to the mean and std on the left; as a result, the
left hemisphere appeared slightly distorted in the template images. In order to
compensate for this left-right bias, average images of left and right hemisphere
were calculated. Furthermore, the images were smoothed with a 3D Gaussian
kernel (FWHM 3 mm) to decrease the effect of registration inaccuracies.

2.2 Random Forest Classification Algorithm

The initial segmentation was predicted with an ensemble learning method. A set
of features was derived from the training data and fed to a Random Forest [5]
classification algorithm implemented in Scikit-learn version 0.16.dev [6]. The
Random Forest algorithm combines classification results from a number of deci-
sion trees. Several trees are constructed and fitted to the data during training
phase, using a random subset of features to train each tree. The final classifica-
tion is the mode of the classes obtained from all individual trees. Random Forest
classification greatly reduces overfitting, which is a common problem for simple
decision tree classifiers [5].
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Fig. 3. Statistical templates representing the mean of (a) T1, (b) T2, (c) FLAIR, and
(d) DWI images.

In the training phase, the performance of the classifier was tested and opti-
mized with leave-one-out cross-validation, in which one subject from the training
dataset was used for testing and the rest for training the classifier, and the pro-
cedure was repeated for all subjects. In the testing phase, the trained classifier
was applied to a different dataset. The classifier returned both the binary classi-
fications (lesion/non-lesion) and probabilities in range 0–1 that a voxel belonged
to the lesion area.

2.3 Classifier Training

Sixteen features were extracted from the MR images for subsequent classifica-
tion. Z-score normalized voxel intensities of T1, T2, FLAIR and DWI images
constituted features 1–4. Features 5–8 represented the voxelwise Z-score devi-
ations from global average images, calculated separately for each sequence by
subtracting the global mean and dividing with the global std. The purpose of
these features was to find regions showing large deviations from the normal brain,
which likely indicates presence of a lesion. Features 9–12 were voxel intensities
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obtained by smoothing the original images with a 3D Gaussian kernel (FWHM
3 mm), thus including information from the local neighborhood of each voxel.
Smoothing was expected to improve classification since it may reduce the effect of
registration inaccuracies. Features 13–16 represented local asymmetry, obtained
by comparing voxel intensities on one hemisphere to the corresponding voxel
intensities on the other hemisphere. The motivation for calculating local asym-
metry was the fact that lesions rarely occur symmetrically on both hemispheres.
As the transformed images were left-right symmetric, the asymmetry measure
could be calculated simply by subtracting the original smoothed image from the
left-right -mirrored smoothed image.

In order to decrease computational time and avoid classifier overfitting, we
only collected the aforementioned features from a randomly selected subset of
voxels. The maximum number of lesion voxels sampled from each subject was
set to 300, and the ratio of lesion and non-lesion voxels per subject was kept
constant, such that twice as many voxels were sampled from non-lesion area as
from lesion area. Thus, if the lesion extended over 300 voxels, we sampled 300
lesion and 600 non-lesion voxels, and if the lesion size n was smaller that 300
voxels, n lesion and 2n non-lesion voxels were sampled. In order to investigate
whether increasing n improves the results, we also tested n = 400 and n = 500
and calculated the quality of segmentations obtained with these sample sizes.

For the Random Forest classifier, the training set was resampled to train a
total of 300 decision trees. 4 features were used to obtain the best split at each
individual node. The quality of each split was described by Gini impurity [5].
The trees were grown unlimitedly, i.e. until each leaf contained only samples of
a single class. All parameters and default values used by Scikit-learn’s Random
Forest classification algorithm are listed in Appendix.

2.4 Contextual Clustering

The segmentation results obtained with the Random Forest classifier were fur-
ther improved with contextual clustering (CC). The basic assumption in con-
textual clustering is that neighboring voxels tend to belong to the same class.
Furthermore, it is assumed that the intensity distribution of background voxels
(in present case, non-lesion voxels) is transformed to be standard normal. In the
derivation, the intensity distribution of object (lesion) voxels is modeled to be
normal too, but experiments have shown that this is not required in practice.

The MRF model takes the neighborhood of a voxel into account by stating
that the prior probability distribution for a voxel label is defined conditionally
on the labels of the neighboring voxels. The optimal image segmentation is thus
achieved by maximizing the a posteriori probability globally. The ICM algorithm
is used to find local maximum a posteriori probabilities by utilizing Bayes’ rule
and MRF prior. The initial classification is obtained such that the class proba-
bility is maximized for each voxel separately, and the classification is updated to
maximize the conditional probability at each voxel, given the class of the voxel
and the classes of the neighboring voxels. The algorithm converges when the
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classification no longer changes. Oscillation between two states is also possible
in our implementation based on synchronous updating.

The CC algorithm modified for this study consisted of the following steps:

1. Fit a gamma distribution to all nonzero voxels of the lesion probability
map given by the Random Forest classifier. Fitting is done using MATLABs
(R2015a) function fitdist with default parameters.

2. Transform the probability map values to standard normal distribution by
calculating the inverse normal distribution function (MATLAB function
norminv) from the cumulative distribution function (MATLAB function cdf )
of gamma distribution. This gives image N with voxel values ri.

3. Define the parameter T for contextual clustering [8] using the fitted gamma
distribution: T = −norminv(cdf(gamma,D)), where gamma is the fitted
gamma distribution, and D some threshold. Decision parameter T is used
to tune sensitivity and specificity in contextual clustering like thresholds in
thresholding. In this study we used empirically chosen D = 0.6, which gave
reasonable sensitivity and specificity with the training data.

4. Apply the CC rule (1) to all voxels ri belonging to image N :

ri +
β

T
[ui(1) − 13]

{
<T → ki = 1
≥T → ki = 0

(1)

where neighborhood weight coefficient β = T 2/6 and ui(1) is the number of
neighboring voxels (26 connectivity) belonging to class 1 (lesion). The CC
rule is repeated iteratively until none of the voxel labels changes anymore.

5. Repeat steps 1–4 with only the voxels classified as non-lesion in the first run
of CC.

Finally, all automatically segmented images were transformed back to each
subject’s native space using inverse transformation and nearest neighbor interpo-
lation. After transformation it was possible to compare the automatic segmenta-
tions with the manual lesion segmentations. The classification accuracy was eval-
uated with the script provided at ISLES web page (http://www.isles-challenge.
org), including measurements for Dice coefficient, average symmetric surface
distance (ASSD), Hausdorff distance, precision and recall. For comparison, we
calculated these metrics also for the segmentations obtained with only the Ran-
dom Forest classification and probability map thresholding at 0.5, 0.7 and 0.8.

2.5 Testing Phase

The test data was spatially normalized to the common template generated from
the training data. We used the parameters listed in Appendix, but without the
lesion images (–x option). After that, the trained Random Forest classifier and
contextual clustering were applied to the test data. The classifier was trained
using all patients from the training dataset.

http://www.isles-challenge.org
http://www.isles-challenge.org
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Fig. 4. ASSD, Dice coefficient, Hausdorff distance, precision and recall for each patient
in the training dataset.

3 Results

3.1 Training Data

The results for the training data were obtained using leave-one-out cross-
validation. Our method achieved a Dice coefficient of 0.61 and ASSD of 6.44.
Increasing the sample number n from 300 to 400 or 500 did not significantly
improve the results. In fact, the average Dice coefficient, precision and recall
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Table 1. Summary of training data results. The first three rows represent results
obtained with RF classifier and probability thresholding. The last three rows represent
results obtained with RF + CC and different sample sizes.

Method ASSD Dice Hausdorff Precision Recall

Mean Std Mean Std Mean Std Mean Std Mean Std

RF, thr 0.5 16.13 12.77 0.38 0.30 98.31 17.70 0.33 0.31 0.74 0.17

RF, thr 0.7 10.74 11.42 0.47 0.29 94.65 18.67 0.46 0.33 0.64 0.19

RF, thr 0.8 11.16 12.86 0.49 0.27 91.36 20.23 0.54 0.34 0.57 0.21

RF + CC, n = 300 6.44 12.93 0.61 0.24 30.96 29.40 0.68 0.26 0.58 0.25

RF + CC, n = 400 4.49 12.36 0.59 0.27 27.76 23.45 0.67 0.31 0.57 0.31

RF + CC, n = 500 4.50 12.27 0.59 0.27 27.72 22.70 0.66 0.32 0.56 0.28

slightly decreased with the larger sample size, because in several cases no lesion
voxels were detected. Using the RF classifier and manual thresholding instead
of contextual clustering decreased the quality of segmentations as well. The
probability maps were thresholded at 0.5, 0.7 and 0.8. Out of these, threshold

Fig. 5. For a single patient from the training dataset: (a) predicted lesion, (b) ground
truth lesion, (c) predicted and ground truth lesions overlaid, and (d) lesion probability
image given by the Random Forest classifier.
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0.8 yielded the best results, although the differences were not significant. The
summary of all results is shown in Table 1. The results for individual patients,
obtained with RF + CC and n = 300, are shown in Fig. 4. The corresponding
segmentation results for a single patient are illustrated in Fig. 5.

3.2 Testing Data

A summary of the testing data results is presented in Table 2.

Table 2. Summary of testing data results.

Method ASSD Dice Hausdorff Precision Recall

Mean Std Mean Std Mean Std Mean Std Mean Std

RF + CC, n = 300 14.61 20.17 0.47 0.32 46.26 34.81 0.47 0.34 0.56 0.33

4 Discussion

In this paper, we proposed an approach for sub-acute ischemic stroke lesion seg-
mentation. Our method was able to detect lesions with a good accuracy in most
patients of the training dataset. It was also ranked as the third best method
in the ISLES challenge 2015, implying that the method’s generalizability to
an unknown dataset was reasonable as well. Contextual clustering significantly
improved the initial results obtained with Random Forest classifier and prob-
ability thresholding. The total computation time of our method was roughly
3–5 min per patient, which is sufficient for a clinical application even in case of
acute patients, when data processing needs to be very quick. Fast computation is
one of the benefits of Random Forest classifiers compared to e.g. neural networks.
In clinical context this means the ability to quickly train the classifier again as
new data becomes available. This was our main motivation for using Random
Forest instead of neural networks or deep learning in the current approach.

Despite the fitness of our approach compared to most of the proposed meth-
ods in the ISLES challenge, significant improvements are needed before the seg-
mentation algorithm can be developed into a fully functional clinical software.
Our method mostly failed to detect very small lesions, especially when located
in subcortical regions. A likely reason for this result is that contextual clus-
tering considers the close neighborhood of voxel in classification. Since small
lesions can comprise only a few voxels, they are easily misclassified according to
the surrounding healthy tissue. In future, the neighborhood weight coefficient
of CC algorithm should be optimized such that it would not completely discard
the small lesions. The effect of other CC parameters on segmentation accuracy
should be more carefully evaluated as well.

We sampled at most n = 300 voxels from lesion and 2n voxels from non-
lesion areas of each patient in the training data. The main reason for sample
size limitation was to speed up computation, and our results also show that
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increasing the number of samples did not improve the segmentation results.
When the sample size was increased, no lesion voxels were detected in several
patients. This probably happened due to overfitting; more voxels were collected
from large lesions, and therefore the features of large lesions contributed more
to the classification than features of small lesions. It would be beneficial to
collect more data from patients having small lesions in order to improve the
generalizability of the classifier.

In further development of the method, we should also account for the vary-
ing image quality. First, both the intensity inhomogeneity (bias field) and the
susceptibility artefact present in many DWI images should be corrected. This
would probably improve the detection of frontal lesions, since the intensity bias
and distortions are usually most prominent in frontal areas. Second, the statis-
tical templates must be matched to each dataset separately. We generated the
template images solely based on the ISLES training dataset, which was collected
from a single imaging site. However, in case of multi-site datasets, such as the
ISLES testing data, it would be more appropriate to generate templates for each
site separately, because the scanner properties and imaging parameters may vary
significantly between sites.

In future, the current method could be modified and used for several clin-
ical applications in addition to subacute ischemic stroke. Since acute stroke is
usually diagnosed with CT, it would be relevant to modify and study the cur-
rent method for segmentation of stroke lesions from CT images. Put simply,
this means adjusting the features fed to the Random Forest classifier; instead of
MR image features one should draw a number of features from CT images. The
exact features and their optimal number remain to be investigated. Another pos-
sible clinical application is segmentation of focal cortical dysplasias (FCD), i.e.
malformations of cortical development which are common causes of medically
refractory epilepsy, from multi-spectral MRI. In order to validate the method for
these two applications, training data for both stroke patients’ CT images and
FCD patients’ MR images should be collected and manually labeled.

We are planning to continue the research at HUS Medical Imaging Center
by collecting new clinical data, improving the current method and implementing
the aforementioned new applications.

Appendix

Generation of Templates
The common template was done in two phases. First, the initial template was
formed:

buildtemplateparallel.sh -d 3 -m 1 × 0 × 0 -n 0 -r 1 -t GR -s CC
-o [initial template image] -c 0 -j 1 [T1 images]
After that, the final template was built using the initial template:

buildtemplateparallel.sh -d 3 -m 30 × 90 × 20 -n 0 -r 0 -t GR -s
CC -o [template image] -z [initial template image] -c 0 [T1
images]
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Warping of T1 images to common template was done using antsRegistration
tool and the following parameters:
--metric MI[template image, T1 image,1,32]
--transform affine[0.25] --convergence 10000 × 10000 × 10000 × 10000
× 10000 --shrink factors 5 × 4 × 3 × 2 × 1 --smoothing-sigmas 4 ×
3 × 2 × 1 × 0 --metric CC[template image, T1 image,1,5] --transform
SyN[0.25,3.0,0.0] --convergence 50 × 35 × 15 --shrink factors 3 ×
2 × 1 --smoothing-sigmas 2 × 1 × 0 --use-histogram-matching 1 --x
[lesion image]

Parameters for Random Forest Classifier
Scikit-learn’s function sklearn.ensemble.RandomForestClassifier was used
with the following parameters:

n estimators=300, criterion=’gini’, max depth=None, min samples
split=2, min samples leaf=1, min weight fraction leaf=0.0, max
features=4, max leaf nodes=None, bootstrap=True, oob score=False,
n jobs=1, random state=None, verbose=0, warm start=False,
class weight=None

References

1. Pexman, J.H., Barber, P.A., Hill, M.D., Sevick, R.J., Demchuk, A.M., Hudon, M.E.,
Hu, W.Y., Buchan, A.M.: Use of the Alberta Stroke Program Early CT Score
(ASPECTS) for assessing CT scans in patients with acute stroke. Am. J. Neu-
roradiol. 22(8), 1534–1542 (2001)

2. Maier, O., Wilms, M., von der Gablentz, J., Krämer, U.M., Münte, T.F., Handels,
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Abstract. Stroke is a common cause of sudden death and disability
worldwide. In clinical practice, brain magnetic resonance (MR) scans
are used to assess the stroke lesion presence. In this work, we have
built a fully automatic stroke lesion segmentation system using 3D brain
magnetic resonance (MR) data. The system contains a 3D registration
framework and a 3D multi-random forest model trained from the data
provided by the Ischemic Stroke Lesion Segmentation (ISLES) challenge
of the 18th International Conference on Medical Image Computing and
Computer Assisted Intervention. The preliminary test results show that
the presented system is capable to detect stroke lesion from 3D brain
MRI data.

1 Introduction

Stroke is a common cause of sudden death and disability worldwide. In clini-
cal practice, brain magnetic resonance (MR) scans are used to assess the stroke
lesion presence. A fully automatic random forest based stroke lesion 3D segmen-
tation approach is built. A 3D segmentation framework with backward regis-
tration and forward registration is developed for processing the 3D brain data.
A machine learning model is trained using the training data provided by the
Ischemic Stroke Lesion Segmentation (ISLES) challenge of the 18th International
Conference on Medical Image Computing and Computer Assisted Intervention.
The results section show that the presented system is capable to detect stroke
lesion from 3D brain MRI data. The outline of this paper is as follows. Section 2
presents our proposed method, Sect. 3 demonstrates the evaluation result of our
proposed method and Sect. 4 concludes the paper.

2 Methodology

A fully automatic machine learning based stroke lesion three-dimensions segmen-
tation system is built, which consists of a feature selection method, a multi-level
random forest model and a simple 3D registration approach.

c© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 222–232, 2016.
DOI: 10.1007/978-3-319-30858-6 19
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2.1 Data Preparation

Three-dimensional brain magnetic resonance images are acquired from the VSD
system of the Ischemic Stroke Lesion Segmentation (ISLES) challenge held in
the 18th International Conference on Medical Image Computing and Computer
Assisted Intervention 2015. The challenge organizers provide the four different
kinds of MRI sequences for individual the three-dimensional Brain MR datasets,
as illustrated in Fig. 1.

Fig. 1. Stacks of four kinds of a 3D brain MRI dataset. From left to right: (a)
Fluid-attenuated inversion recovery (FLAIR), (b) T2w TSE, (c) T1w TFE/TSE and
(d) Diffusion MRI (DWI)

In the preliminary tests using the training data, we compare the prediction
results of the proposed system with the ground truth data using four kinds of
MRI sequences, and it is found that the model using the FLAIR MRI datasets
outperforms other models using three other kinds of MRI sequences. Therefore,
we select the FLAIR MRI sequence images to use as the training data.

2.2 Feature Extraction

275 features, which can be categorized into 24 types as shown in Fig. 2, are
extracted for building random forests models. Below, eight types of features are
described in details.

Fig. 2. Features selected for training
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Sobel Filter [1]. To extract six Sobel features for each image, we combine the
Gaussian blur and Sobel filter. We define the parameter sigma of the Gaussian
blur σ = 1, the masks of the Sobel filter Mx and My and the input image I,
and we first process the input image by Gaussian blur which is represented by
the following equation:

Gi = g(Ix, Iy) =
1

2π(2i−1σ)2
exp− I2x+I2y

2(2i−1σ)2 , i = {0, 1, 2, 3, 4, 5}.

After obtaining the images processed by the Gaussian blur Gi, we apply the
Sobel filter to process each Gaussian blur image Gi which is represented by the
following equations:

Mx =

⎛
⎝ −1 0 1

−2 0 2
−1 0 1

⎞
⎠ ,My =

⎛
⎝ −1 −2 −1

0 0 0
1 2 1

⎞
⎠ ,

Six(the Sobel image of the x − coordinate) = Mx ∗ Gi

Siy(the Sobel image of the y − coordinate) = My ∗ Gi,

SFi(the Sobel image) =
√

Six
2 + Siy

2

where ∗ denotes the two-dimensional signal processing convolution operation
and i = {0, 1, 2, 3, 4, 5}.

Hessian [2]. To generate forty eight image features of the Hessian in each input
image, we combine the Gaussian blur and Hessian. We set the parameter
σ of the Gaussian blur to be 1 and first process the input image I by
Gaussian blur which is represented by the following equation:

Gi = g(Ix, Iy) =
1

2π(2i−1σ)2
exp− I2x+I2y

2(2i−1σ)2 , i = {0, 1, 2, 3, 4, 5}.

When obtaining the images processed by the Gaussian blur Gi, we calculate
the Hessian matrix of each Gaussian blur image as the mask HMi. Suppose fi

: R2 → R is function which is taken as input vectors Gix , Giy ∈ R
2 and is

outputting a scalar fi(Gix,Giy) ∈ R. If all second partial derivatives of fi exist
and are continuous over the domain of the function, then the Hessian matrix
HMi of fi is a square 2 × 2 matrix defined as follows:

HMi = f ′′
i (Gix,Giy) =

(
∂2fi

Gi∂x2
∂2fi

Gi∂x·Gi∂y
∂2fi

Gi∂x·Gi∂y
∂2fi

Gi∂y2

)
=

(
Ai Bi

Ci Di

)
,

where Ai =
∂2fi

Gi∂x2 , Bi = Ci =
∂2fi

Gi∂x · Gi∂y
, Di =

∂2fi

Gi∂y2

and i = {0, 1, 2, 3, 4, 5}.
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When we obtain the Hessian matrix HMi of each Gaussian blur image, we apply
the Hessian matrix HMi to calculate the value of the Module, the Trace, the
Determinant, the First Eigenvalue, the Second Eigenvalue, the Orientation, the
Gamma Normalized Square Eigenvalue Difference and the Square of Gamma
Normalized Eigenvalue Difference to become image features, so the number of
total image features of the Hessian are 6×8, is equal to 48,which are generated
using the following equations:

Modulei =
√

Ai
2 + BiCi + Di

2, T racei = Ai + Di, Determinanti = AiDi − CiDi,

Orientationi =
1

2
arccos(4Bi

2 + (Ai − Di)
2),

F irst Eigenvaluei =
Ai + Di

2
+

√
4Bi

2 + (Ai − Di)2

2
,

Second Eigenvaluei =
Ai + Di

2
−
√

4Bi
2 + (Ai − Di)2

2
,

Gamma − Normalized Square Eigenvalue Differencei

= T 4(Ai − Di)
2((Ai − Di)

2 + 4Bi
2),

Square of Gamma − Normalized Eigenvalue Differencei

= T 2((Ai − Di)
2 + 4Bi

2),

where T = 1
3
4 and i = {0, 1, 2, 3, 4, 5}.

Membrane Projection. To generate six image features of the Membrane Pro-
jection in each image, we define the initial mask m which is the 19 × 19 zeros
matrix with the middle column entries set to 1 and the input image I, and obtain
the set of masks M = {m1,m2, ...,m30} by rotating the initial mask m 6 degrees
up to a total rotation of 180 degrees. After obtaining the set of masks M , we
apply the set of masks M to process the input image I using the convolution
operation ∗ that is represented by the following equation:

O = M ∗ I, where the set of the processed images O = {o1, o2, ..., o30}

Then, we calculate the sum of the pixels Osum, the mean of the pixels Omean,
the standard deviation of the pixels Ostd, the median of the pixels Omedian, the
maximum of the pixels Omax and the minimum of the pixels Omin in the set
of processed images O. Each equation can generate thirty processed images,and
we combine these processed images to become one image features. Therefore, we
can obtain six image features.
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Gabor Filter [3]. To generate forty four image features of the Gabor in each
input image, we apply the Fourier transform of the impulse response of the
Gabor filter which is the convolution of the Fourier transform of the harmonic
function and the Fourier transform of the Gaussian function, and define the input
image I, the frequency of the sinusoidal factor f , the orientation of the Fourier
transform θ, the phase offset ψ, the standard deviation of the Gaussian envelope
σ, the spatial aspect ratio γ and the number of the angle n, is represented by
the following equation:

Gaborσ,γ,ψ,f,n(Ix, Iy) = cos(2πfX + ψ) × e− X2+γ2Y 2

2σ2 ,

where X = x cos θ + y sin θ, Y = −x sin θ + y cos θ,

θi = (π ÷ n) × i, ψj = (π ÷ 2) × j, i = {0, 1, 2..., n}, j = {0, 1, 2},

σ = {1.0, 2.0, 4.0}, γ = {0.25, 0.5, 1.0, 2.0}, f = {2.0, 3.0}, n = 10.

Derivatives Filter [4,5]. To generate twenty image features of the Derivatives
in each input image, we combine the Gaussian blur and Derivatives Filter. We
define the parameters sigma of the Gaussian blur σ = 1, the n−derivative filter
n = {2, 3, 4, 5} and the input image I, and we first process the input image
by Gaussian blur which is represented by the following equation:

Gi = g(Ix, Iy) =
1

2π(2i−1σ)2
exp− I2x+I2y

2(2i−1σ)2 , i = {1, 2, 3, 4, 5}.

Then, we apply the n − derivative filter to process the Gi image to generate
twenty image features that is represented by the following equation:

DFn =
d2nGi

GidxnGidyn , where i = {1, 2, 3, 4, 5} and n = {2, 3, 4, 5}.

Laplacian Filter [6,7]. To obtain five image features of the Laplacian in each
input image, we combine the Gaussian blur and Laplacian filter. We define the
parameter sigma of the Gaussian blur σ = 1, the mask of the Laplacian filter M
and the input image I, and we first process the input image by Gaussian
blur which is represented by the following equation:

Gi = g(Ix, Iy) =
1

2π(2i−1σ)2
exp− I2x+I2y

2(2i−1σ)2 , i = {1, 2, 3, 4, 5}.

After obtaining the images processed by the Gaussian blur Gi, we apply the
Laplacian filter to process each Gaussian blur image Gi which is represented by
the following equations:

M =

⎛
⎝ 0 1 0

1 −4 1
0 1 0

⎞
⎠
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LFi(the Laplacian image) = M ∗ Gi,

where∗ denotes the two−dimensional signal processing convolution operation

and i = {1, 2, 3, 4, 5}.

Structure Filter [8,9]. To obtain twenty image features of the Structure Filter
in each three-dimensional brain magnetic resonance imaging image, we apply
the Structure Tensor to analyze the each stack of the three-dimensional brain
magnetic resonance imaging image. Consider an three-dimensional image domain
Ω := (0, d1)×(0, d2)×(0, d3), and make a image I(x) be represented by a bounded
mapping I :→ R. A structure descriptor for applying to three-dimensional space
is given by �Iσ which the gradient of the Gaussian-smoothed version of I are
represented by the following equations:

Gσ(x) :=
1

(2πσ2)
3
2

× exp(−|x|2
2σ2

), Iσ(x, t) := (Gσ ∗ Ĩ(., t))(x).

The standard deviation σ are represented the noise scale and the sign ∗ means
that convolution between Gσ and Ĩ on R and R

3, where Ĩ denotes an extension
of I by mirroring. The �Iσ is unsuitable for detecting parallel structures despite
the fact that it is useful for detecting edges. In order to solve the deficiency,
we may replace �Iσ by its tensor product that is represented by the following
equation:

Junction(�Tσ) := �Iσ

⊗
�Iσ := �Iσ � Iσ

T .

After we have replaced directions by orientations, we can average the orientations
by applying the convolution with the Gaussian Gρ what is represented by the
following equation which the junction matrix is named Structure Tensor:

Junctionσ,ρ(�Iσ) := Gρ ∗ (�Iσ

⊗
�Iσ),

where σ = {1, 2, 4, 8, 16} and ρ = {1, 2}.

Entropy. To obtain twenty image features of the Entropy in each image, we
define the mask which is the circle of radius r around each pixel, calculate the
histogram of the mask which we only select the pixel value H = {31, 63, 127, 255}
and apply the following equation:

Entropyr,H =
∑

p in H

−p ∗ log2(p),

where p is the probability of each mask in the histogram

and r = {1, 2, 4, 8, 16}.

After finishing to describe the equation of the eight higher effective feature
types, we demonstrate them by processing the original images, as being repre-
sented in Fig. 3.
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Fig. 3. The original images are processed by using the filters which can produce lots
of features. The above figures are from left to right: (a) Original image, (b) The fea-
tures are obtained by using the Sobel Filter SF1, (c) The features are obtained by
using the Hessian First Eigenvalue1, (d) The features are obtained by using the
Membrane Projection Omean, (e) The features are obtained by using the Gabor Fil-
ter Gabor2.0,1.0,ψ0,3.0,10, (f) The features are obtained by using the Derivatives Filter
DF2, (g) The features are obtained by using the Laplacian Filter LF1, (h) The features
are obtained by using the Structure Filter Junction1,1(�I1) and (i) The features are
obtained by using the Entropy Entropy1,255.

2.3 Machine Learning Using Multiple Random Forests

After generating the features of the brain magnetic resonance imaging images,
we apply this features of this image, the region of interest class of this image
and the foreground class of this image to be trained using a Random Forests
classifier [10]. Random Forests are an ensemble of tree predictors, and each tree
is built based on the values of a random vector generated independently. The
parameters of the random forest model is present in Table 1.

To deal with the three dimensional data, a multi-random forest model is
developed, and for every five stacks in the Z direction, a random forest model
is built (see Table 2 and Fig. 4). Training each random forest model takes
4.75 h to finish this procedure using the desktop with the CPU processors
Intel Xeon CPU E5 − 2650 2.60 Hz, the 32 GB memory and the operation
system Window 7. In testing, as illustrated in Fig. 5, the system generates prob-
ability maps and takes 0.67 h to finish this procedure using the same equipment.
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Table 1. The parameters designed for the random forests classifier

The maximum depth of the trees to be built 50

The number of trees to be generated 50

The number of features to be applied 275

The random number seed to be applied 1

Table 2. The parameters designed for generating the multiple random forests classifiers

The number of stack images to be used to train one random forests classifier 5

The total number of random forests classifier to be built N/5

N: The maximum number of stack images in the Z direction

2.4 Post-processing Using Three-Dimensional Registration

After obtaining the potential candidates from the random forests models mention
above, we build a three-dimensional registration [11] framework with backward
and forward searching. The three-dimensional registration framework is applied
to generate optimal three-dimensional predictions and removes larger noises. In
Fig. 6, the system finds the largest object among all stacks and uses the stack
with the largest object as the referenced stack T . Then, the system preforms
backward and forward registration to maintain spatial consistency and removes
the objects with no overlap to the detected objects in the neighboring stacks.

Fig. 4. The system flowchart for generating the multiple random forests models.
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Fig. 5. The system flowchart for generating the potential candidates.

Fig. 6. The system flowchart of the three-dimensional registration.

3 Results

3.1 Evaluation of the Training Data

We apply left-one-out cross validation to evaluate the result images, which are
generated from the training data. The evaluation results of a 3D brain sample
are shown in the Fig. 7.

3.2 Evaluation of the Testing Data

We apply the evaluation code provided by the organizers to the testing data.
Three evaluation approaches are utilized, inlcuding the Dice’s Coefficient, the
Average Symmetric Surface Distance and the Hausdorff Distance.

Dice’s Coefficient (DC). Measures the similarity between two images. Con-
sidering two sets of volume voxels X and Y , the equation of the DC value is
given as:

DC =
2 |X ∩ Y |
|X| + |Y | , DC =

{
0, no overlap

1, perfect similarity
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Fig. 7. Eight stacks of the evaluation results on a 3D brain MRI sample.

Average Symmetric Surface Distance (ASSD). Represents the average
distance between the volumes which surface points are averaged over both direc-
tions. Defining two sets of surface points X and Y , the average surface distance
(ASD) is represented the following equation:

ASD(X,Y ) =
∑

x∈X miny∈Y D(x, y)
|X| ,

where D(x, y) is the Euclidean distance between the points x and y.

After we obtain the equation of the average surface distance, we can apply this
equation to calculate the average symmetric surface distance (ASSD) which is
represented the following equation:

ASSD(x, y) =
ASD(x, y) + ASD(y, x)

2
, ASD(x, y) �= ASD(y, x).

Hausdorff Distance (HD). Represents the maximum distance or outlier
between two volumes X and Y when multiple objects are considered. It is rep-
resented the following equation:

HD(x, y) = max
{

max
x∈X

min
y∈Y

D(x, y),max
y∈Y

min
x∈X

D(y, x)
}

.

In the Table 3, our proposed method successfully detect 15 three-dimensional
Brain MR images in the testing data which have 36 three-dimensional Brain
MR images, and the evaluation value of the ASSD, DC and HD are 7.59 ±
6.24 (mm), 0.16 ± 0.26 and 38.54 ± 20.36 (mm).
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Table 3. The evaluation of the result images for the testing data

Data Cases ASSD DC HD

Testing data 15/36 7.59 ± 6.24 (mm) 0.16 ± 0.26 38.54 ± 20.36 (mm)

4 Conclusion

We have presented a fully automatic stroke lesion segmentation system using 3D
brain magnetic resonance (MR) data. The section of the result show that the
presented system is capable to detect stroke lesion from 3D brain MRI data.

Acknowledgments. Authors would like to thank the Ministry of Science and Tech-
nology of Taiwan under Grant No. MOST104-2221-E-011-085 for the financial support.
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Abstract. Accurate segmentation of ischemic lesions is still a challeng-
ing task. In this paper, we propose a framework to extract ischemic
lesions from multi-spectral MR images. In the proposed framework,
MR images of each modality are first segmented into brain tissues and
ischemic lesions by weighting suppressed fuzzy c-means. Preliminary
lesion segmentation results are then fused among all the imaging modali-
ties by majority voting. The fused segmentation results are finally refined
by a three phase level set method. The level set formulation is defined on
multi-spectral images with the capability of dealing with intensity inho-
mogeneities. The proposed framework has been applied to the MICCAI
2015 ISLES challenge. According to the ranking rules of the challenge,
the proposed framework took the second place and the fourth place in
sub-acute lesion segmentation and acute stroke estimation, respectively.

Keywords: Lesion segmentation · Fuzzy c-means · Label fusion · Level
set

1 Introduction

Ischemic stroke generally manifests as a loss of neurological brain function due
to the sudden loss of blood circulation to an area of the brain [15]. It is by far the
most common type of stroke and has become to be the most frequent cause of
permanent disability in adults worldwide and the third leading cause of death in
industrialized countries [17]. Magnetic resonance imaging (MRI) has become the
modality of choice for diagnosing and evaluating ischemic stroke in clinic due
to its excellent soft tissue contrast and multi-spectral imaging capability [11].
As ischemic stroke lesions usually change over time and remote and secondary
changes may also occur in response to the injury, it is therefore necessary to
characterize the injury and changes with different acquisition parameters and
distinctive spectral signatures [4].
c© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 233–245, 2016.
DOI: 10.1007/978-3-319-30858-6 20
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In clinical practice, diffusion weighted imaging (DWI), T1-weighted (T1w)
and T2-weighted (T2w) images, and fluid attenuated inversion recovery (FLAIR)
images are often used to diagnose ischemic stroke, locate the lesions and monitor
their progression [15]. In the acute phase of stroke, DWI is particularly sensitive
to detect the anatomical location and infarcted territory of the lesions and reveal
differentiation of brain tissues with hyperintense signal [5]. The lesions appear
slightly to strongly hyperintense in T2w and FLAIR images for stroke in sub-
acute stage, whereas they are decreasingly hyperintense in DWI images and
hypointense in T1w images [13]. For chronic ischemic stroke, lesions appear as
hyperintense in FLAIR images with some heterogeneity within the lesion due to
ongoing gliosis and demyelination [14]. In contrast, intensities of ischemic lesions
are hypointense in T1w images for stroke in the more chronic phase [9]. Figure 1
shows an example of intensity characteristics of ischemic stroke lesions that are
in the sub-acute phase.

Fig. 1. Intensity characteristics of ischemic stroke lesion in different imaging modalities.
Images come from http://www.isles-challenge.org/.

Above all, early diagnosis of ischemic lesions in multi-spectral magnetic reso-
nance images is particularly important for ischemic stroke prevention and treat-
ment [13]. But it is really challenging for neuro-radiologists to read the images
slice-by-slice [18]. Although lesion segmentation is able to rescue radiologists
from the labor of image reading, manual segmentation is tedious, time consum-
ing, and prone to intraobserver and interobserver variability [11]. Therefore, a
few semi-automatic or automatic segmentation methods have been proposed in
the literature [6,7,11,16]. However, due to varieties of possible shapes and loca-
tions of ischemic lesions, and noise and intensity inhomogeneity in MR images,
segmentation of ischemic lesions is still a challenging task [8].

In this paper, we propose a framework to automatically segment ischemic
stroke lesions in multi-spectral images (e.g. DWI, T1w, T2w, and FLAIR). The
rest of this paper is organized as follows. The proposed framework is described
in Sect. 2. Experimental results and quantitative evaluation are given in Sect. 3.
This paper is finally summarized and discussed in Sect. 4.

http://www.isles-challenge.org/
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2 Method

In this paper, we suppose that the input images of different modalities have
already been rigidly registered in the same coordinate system and non-brain
tissues have already been removed from the images. Lesion segmentation is
then performed by the proposed framework which consists of three major steps:
(1) preliminary segmentation, (2) segmentation fusion, and (3) boundary refine-
ment. More details will be given in the following subsections.

2.1 Preliminary Segmentation of Lesions and Normal Tissues

Given an image Ii from the i-th imaging modality, the image characterizes an
intrinsic physical property of human brain, which ideally takes a specific inten-
sity for each type of brain tissue (white matter (WM), gray matter (GM), and
cerebrospinal fluid (CSF)) and lesion. That is to say, the image Ii approximately
takes distinct constant values ci1, ci2, ..., and ciN for N − 1 brain tissues and
the lesions in disjoint regions Ω1, Ω2, ..., and ΩN , i.e.

Ii(x) ≈ cij for x ∈ Ωj. (1)

where j = 1, 2, ..., N . Note that the variable i takes all integers in the interval
of [1, L] where L is the total number of imaging modalities. It is obvious that
intensities in the set Iij = {Ii(x) : x ∈ Ωj} form a cluster with the cluster
centroid mij ≈ cij . This clustering property indicates that intensities in the
image domain Ω can be classified into N clusters.

To classify these intensities, we define

Fi =
∫

Ω

N∑
j=1

λij ‖ Ii(x) − cij ‖2 uq
ij(x)dx (2)

where ‖ ∗ ‖ is the Euclidean distance between measured intensity Ii(x) and
the cluster centroid cij , q is any real number that is not less than 1, λi1, λi2,
..., λiN are positive weighting coefficients for the N clusters, and uij(x) is the
membership function that indicates whether voxel x belongs to the j-th tissue.
In fact, the smaller parameter λij is, the greater the j-cluster is, and vice versa.

It is obvious that the proposed method, which we call weighting suppressed
fuzzy c-means, is a generalization of the standard fuzzy c-means. Note that the
objective function defined above is the same with standard fuzzy c-means if λi1,
λi2, ..., λiN are all set to be 1. This objective function is minimized when high
membership values are assigned to voxels, intensities of which are close to the
centroid, and low membership values are assigned to the voxels if they are far
from the centroids under the condition

∑N
j=1 uij(x) = 1 where uij(x) ∈ [0, 1].

For convenience, we represent the constants ci1, ci2, ..., and ciN with a vector
ci = (ci1, ci2, ..., ciN ), the member functions ui1, ui2, ..., and uiN with a vector
ui = (ui1, ui2, ..., uiN ). Thus, the vectors ci and ui are the variables of the energy
function Fi, which can therefore be written as Fi(ci,ui).
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Energy minimization of Fi(ci,ui) can be achieved by alternately minimiz-
ing it with respect to each of its variables ci and ui. For fixed ui, we mini-
mize Fi(ci,ui) with respect to ci by resolving ∂Fi(ci,ui)

∂ci
= 0 where 0 is the

constant vector with value 0. It is obvious that Fi(ci,ui) is minimized at
ĉi = (ĉi1, ĉi2, ..., ĉiN ), given by

ĉij =

∫
Ω

Ii(x)uq
ij(x)∫

Ω
uq

ij(x)
(3)

where j = 1, 2, ..., N .
For the case q > 1, it can be shown that Fi(ci,ui) is minimized at ûi(x) =

(ûi1(x), ûi2(x), ..., ûiN (x)) for fixed ci, given by

ûij(x) =

(
λij‖ Ii(x) − cij ‖2) 1

1−q

∑N
k=1 (λik ‖ Ii(x) − cik ‖2) 1

1−q

(4)

where j = 1, 2, ..., N .
For the case q = 1, it can be shown that the minimizer ûi(x) =

(ûi1(x), ûi2(x), ..., ûiN (x)) is given by

ûij(x) =
{

1, j = jmin(x)
0, j �= jmin(x) j = 1, 2, ..., N (5)

where
jmin(x) = argmin

j
(λij ‖ Ii(x) − cij‖2). (6)

In fact, segmentation of WM, GM, CSF, and stroke lesions in this step is per-
formed in an iterative process, which will be described in detail in Sect. 2.4.

2.2 Fusion of Preliminary Segmentation Results of Lesions

Label fusion is one of the most important steps for multi-spectral segmentation
due to its significance in merging useful knowledge of different labels [3]. In the
literature, many efforts have already been devoted to developing effective and
accurate label fusion strategies [2,3,12]. As one of the well known label fusion
strategies, majority voting is much more straightforward and concise [1]. There-
fore, majority voting is used in the proposed framework to fuse segmentation
results of ischemic stroke lesions obtained by the above described fuzzy c-means
method. The judge rule is that candidate voxels are regarded as lesions only
if (1) they are considered as brain lesions in FLAIR images, and (2) they are
viewed as brain lesions in more than 1 imaging modality beside FLAIR.

2.3 Boundary Refinement of Brain Lesions Using 3-Phase Level Set

Since miss- and over- segmentations may arise in the above mentioned two steps.
A three phase level set method is proposed in this subsection as the third step to
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refine segmentation boundaries of the lesions. The proposed method can be seen
as an extension of the local intensity clustering (LIC) model with the capability
of segmenting ischemic stroke lesions from multi-spectral MR images [10].

Before defining the energy formulation of the proposed level set method, we
first view inhomogeneous intensities of an observed MR brain image Ii coming
from the i-th imaging modality, which is defined on a continuous domain Ω ⊂ R3,
as a product of the true image Ji and the bias field bi, i.e.,

Ii(x) = bi(x)Ji(x) + ni(x) (7)

where x ∈ Ω and ni is the zero-mean additive noise.
Consider a relatively small spherical neighborhood with a radius ρ centered

at a given point y ∈ Ω, defined by Oy � {x :| x − y |≤ ρ}. The bias field
bi in the neighborhood can be ignored due to its slowly and smoothly varying
property. Taking into account the constant intensity cij of the true image Ji in
Ωj as mentioned in Sect. 2.1, we obtain

bi(x)Ji(x) ≈ bi(y)cij for x ∈ Ωj ∩ Oy. (8)

This local intensity clustering property allows us to apply the standard K-means
algorithm in the following continuous form to classify these local inhomogeneous
intensities in the neighborhood Oy. Taking all images of the L imaging modalities
into account, we define

Ey =
N∑

j=1

γj

∫
Oy

(
L∑

i=1

χi ‖ Ii(x) − bi(y)cij ‖2
)

uj(x)dx (9)

where γj is a weighting coefficient used to control size of the j-th tissue, χi is
a weighting coefficient for images from the i-th imaging modality, and uj is the
binary membership function of Ωj . On account of the inherent property of the
membership function uj in representing Ωj , Ey can be rewritten as

Ey =
N∑

j=1

γj

∫
Ωj

Kσ(x − y)

(
L∑

i=1

χi ‖ Ii(x) − bi(y)cij ‖2
)

dx (10)

where Kσ is a nonnegative kernel function with the property
∫

|u|≤ρ
Kρ(u) = 1

and Kρ(u) = 0 for u /∈ Oy.
To ensure the partition {Ωj}N

j=1 of the entire domain Ω to be the one such
that Ey is minimized for all y in Ω, we minimize the integral of Ey with respect
to y over the entire image domain Ω and define

E =
∫

Ω

⎛
⎝ N∑

j=1

γj

∫
Ωj

Kσ(x − y)

(
L∑

i=1

χi ‖ Ii(x) − bi(y)cij ‖2
)

dx

⎞
⎠ dy. (11)

As our goal is to segment brain lesions, we consider the lesions as one region,
brain tissues (WM, GM, and CSF) as the second region, and the background as
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the third region. Let H be the Heaviside function and φ1 and φ2 be two level
set functions both defined on Ω. We therefore use M1(φ1, φ2) = (1−H(φ1))(1−
H(φ2)), M2(φ1, φ2) = H(φ1)(1 − H(φ2)), and M3(φ1, φ2) = H(φ2) to represent
these three regions, respectively, and rewrite E as

E =
∫

Ω

⎛
⎝ N∑

j=1

γjej(x)Mj(φ1(x), φ2(x))

⎞
⎠ dx (12)

where

ej(x) =
∫

Ω

Kσ(x − y)

(
L∑

i=1

χi ‖ Ii(x) − bi(y)cij ‖2
)

dy (13)

For convenience, we represent the bias field b1, b2, ..., bL with a vector
b = (b1, b2, ..., bL) and further rewrite c1, c2, ..., and cL into a new vector
c = (c1, c2, ..., cL). Thus, the level set functions φ1 and φ2 and the vectors b and
c are variables of the energy E , which can therefore be written as E(φ1, φ2,b, c).

The energy E(φ1, φ2,b, c) defined above is used as the data term of the final
energy functional of the proposed level set formulation, defined by

F(φ1, φ2,b, c) = E(φ1, φ2,b, c) + P(φ1, φ2) + L(φ1, φ2). (14)

where P(φ1, φ2) and L(φ1, φ2) are the regularization term and arc length term.
These two terms are introduced to maintain the regularity of the level set func-
tions and smooth the 0-level set contours of the level set functions, defined by

P(φ1, φ2) = μ1

∫
1
2
(| �φ1(x) | −1)2dx + μ2

∫
1
2
(| �φ2(x) | −1)2dx (15)

and
L(φ1, φ2) = ν1

∫
| �H(φ1(x)) | dx + ν2

∫
| �H(φ2(x)) | dx (16)

where μ1, μ2, ν1 and ν2 are weighting coefficients.
Energy minimization of F(φ1, φ2,b, c) can be achieved by alternately mini-

mizing it with respect to each of its variables. For fixed b and c, we minimize the
final energy functional F using standard gradient descent method and obtain

∂φ1

∂t
= δ(φ1)(1 − H(φ2))(λ1e1 − λ2e2)

+ μ1

(
�2φ1 − div

(
�φ1

| �φ1 |
))

+ ν1δ(φ1)div
(

�φ1

| �φ1 |
)

(17)

and

∂φ2

∂t
= δ(φ2)(λ1e1(1 − H(φ1)) + λ2e2H(φ1) − λ3e3)

+ μ2

(
�2φ2 − div

(
�φ2

| �φ2 |
))

+ ν2δ(φ2)div
(

�φ2

| �φ2 |
)

. (18)
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For fixed φ1, φ2, and b, the optimal c̃ = (c̃1, c̃2, ..., c̃L) where c̃i =
(c̃i1, c̃i2, ..., c̃iN ) and i = 1, 2, ..., L minimizes the final energy functional
F(φ1, φ2,b, c), given by

cij =
∫

Ii(x)Mj(φ1(x), φ2(x))(bi ∗ Kσ)(x)dx∫
Mj(φ1(x), φ2(x))(b2i ∗ Kσ)(x)dx

, j = 1, 2, ..., N. (19)

For fixed φ1, φ2, and c, the optimal b̃ = (b̃1, b̃2, ..., b̃L) that minimizes the final
energy functional F(φ1, φ2,b, c) is given by

b̃i =

(
Ii

∑N
j=1 cijMj(φ1, φ2)

)
∗ Kσ∑N

j=1 c2ijMj(φ) ∗ Kσ

, i = 1, 2, ..., L. (20)

2.4 Implementation

In the implementation of the proposed framework, the choice of K is important
but flexible as long as it is a normalized even function and satisfies the property
that K(u) ≥ K(v), if | u |<| v |, and lim|u|→∞K(u) = 0. In this paper, an
averaging filter with size of ρ is chosen as K. In our numerical implementation,
the stepped Heaviside function H is approximated by a smoothed Heaviside
function Hε with ε = 1, defined by Hε(x) = 1

2

[
1 + 2

π arctan
(

x
ε

)]
. The derivative

of Hε is used to approximate the Dirac delta function δ, which can be written
as δε(x) = H ′

ε(x) = 1
π

ε
ε2+x2 .

The implementation of the proposed framework can be straightforwardly
expressed in the following steps.

• Step 1. Segment images of each modality separately using the weighting
suppressed fuzzy c-means as described in Sect. 2.1. Update each variable of
the energy function defined in Eq. (2) iteratively until the iteration number
exceeds a predetermined maximum number or convergence criterion has been
reached.

• Step 2. Fuse segmentation results of different modalities using the voting strat-
egy as described in Sect. 2.2.

• Step 3. Refine fused segmentation results using the three phase level set
method as described in Sect. 2.3 where the level set functions φ1 and φ2 are
initialized to the results of Step 2. Update each variables of energy functional
defined in Eq. (14) iteratively until the solution is stable or the iteration num-
ber exceeds a predetermined maximum number.

3 Results

To evaluate the proposed framework, we participated in the ischemic stroke lesion
segmentation (ISLES) challenge of MICCAI 2015 and applied it to images of the
challenge. Figure 2 shows a segmentation example of the proposed framework.
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Fig. 2. Segmentation results of the proposed framework on images from four different
imaging modalities (http://www.isles-challenge.org/). Orignal images and correspond-
ing preliminary segmentations are given in the 1st and 2nd rows. Fusion result, final
segmentation, and the ground truth are given from left to right in the 3rd row.

3.1 Dataset and Parameter Set

The ISLES challenge consists of two sub-challenges: sub-acute ischemic stroke
lesion segmentation (SISS) and acute stroke outcome/penumbra estimation
(SPES). Dataset of the former includes 28 training cases and 36 testing cases,
whereas there are 30 training and 20 testing cases in the latter one. The images
are all from MRI and modalities DWI, T1w, T2w, and FLAIR are adopted by
the first sub-challenge SISS. In contrast, T1c, T2, DWI, CBF, CBV, TTP, Tmax
images are provided by the second sub-challenge SPES. The images are all skull-
stripped and have been re-sampled to an isotropic spacing of 13 mm (SISS) and
23 mm (SPES) and have also been co-registered to the FLAIR (SISS) and T1w
contrast (SPES) sequences, respectively.

For SISS, the number of imaging modalities L are set to be 4 with DWI, T1w,
T2w, and FLAIR as viewed as the 1st, 2nd, 3rd, and 4th imaging modalities,
respectively. When the images are segmented by the proposed weighting sup-
pressed fuzzy c-means separately, we set N = 4, 3, 2, 4, respectively. For each
imaging modality, e.g., the i-th modality, elements of the cluster centroid vec-
tor ci are initialized with equally spaced intensities. The other weighting coeffi-
cients of the proposed weighting suppressed fuzzy c-means are set to λ11 = λ12 =
λ13 = λ14 = 1.0, λ21 = 1.0, λ22 = 0.4, λ23 = 1.5, λ31 = 1.0, λ32 = 0.5, and
λ41 = λ42 = λ43 = λ44 = 1.0. The level set function in the third step was

http://www.isles-challenge.org/
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initialized as a binary step function, defined by φ(x) = −c for x inside the ini-
tial zero-level contour of φ and φ(x) = c otherwise. Unless otherwise specified, we
set c = 10, γ1 = ... = γL = 1.0, χ1 = ... = χL = 1.0, μ1 = ... = μL = 1.0,
ν1 = ... = νL = 0.1 × 255 × 255, Δt = 0.1, and ρ = 6 in this paper. Note that
these parameters can be set to be values learning from training sets.

We have also applied the proposed framework to sub-challenge SPES. We
set N = 3, 5, 3 for preliminarily segmenting images of modalities CBF, TTP,
Tmax, respectively. All weighting coefficients of the proposed weighting sup-
pressed fuzzy c-means are set to be 1.0. As the ground truth provided by the
organizers are not smooth enough and there are holes in the lesion-like regions,
fusion results obtained by the proposed framework are considered as final seg-
mentation results.

3.2 Evaluation Measures

To evaluate segmentation accuracy of automatic methods that participated in
the challenge quantitatively, segmentation results are compared with the refer-
ence ground-truth in terms of Dice’s coefficient (DC), average symmetric surface
distance (ASSD), and Hausdorff distance (HD).

It is well known that the DC is defined as twice of the quotient between
intersection size of a pairwise variable and sum of their sizes where the variables
are a segmentation result B and the ground truth A for image segmentation,
which can therefore be written as

DC =
2 | A ∩ B |
| A | + | B | (21)

where ∩ is the intersection operator. It is obvious that values of DC are in the
interval of [0, 1] with a higher value indicating a better match between A and B.

Considering two sets of surface points that constitute the segmentation result
B and the ground truth A, the average surface distance (ASD) is given by

ASD(A,B) =
∑

a∈A minb∈B d(a, b)
| A | (22)

where d(a, b) is the Euclidean distance between the points of a and b. Since
ASD(A,B) �= ASD(B,A), the ASSD can be then defined by

ASD(A,B) =
ASD(A,B) + ASD(B,A)

2
. (23)

Note that that ASSD is given in mm, a lower value indicating a better match
between the ground truth A and the segmentation result B.

The HD denotes the maximum distance between the obtained volume surface
points B and corresponding points in the ground truth A. It can be defined by

HD(A,B) = max{max
a∈A

(min
b∈B

d((a, b))),max
b∈B

(min
a∈A

d((b, a)))}. (24)

Thus, HD is given in mm and a smaller HD value indicates a better agreement
of the segmentation result with the ground truth.
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3.3 Quantitative Evaluation of the Proposed Framework

As shown in Table 1, 16 teams from all over the world participated in the chal-
lenge, where our team information are emphasized in bold font.

Quantitative comparison of the proposed framework with the other partic-
ipants’ methods on images from sub-challenges SISS and SPES are given in
Tables 2 and 3, respectively. It is obvious that the proposed framework is the

Table 1. Participants of the ISLES challenge of MICCAI 2015.

Team name Team leader Affiliation

UK-Imp1 Chen, Liang Biomedical Image Analysis Group, Imperial College London

CA-USher Dutil, Francis Université de Sherbrooke, Sherbrooke

CN-Neu Feng, Chaolu College of Inform. Science and Engineering,

Northeastern University, Shenyang

DE-Dkfz Goetz, Michael Junior Group Medical Image Computing, German Cancer

Research Center (DKFZ), Heidelberg

BE-Kul1 Haeck, Tom ESAT/PSI, Department of Electrical Engineering, KU Leuven

FI-Hus Halme, Hanna HUS Medical Imaging Center, University of Helsinki and

Helsinki University Hospital

CA-McGill Jesson, Andrew Centre for Intelligent Machines, McGill University

UK-Imp2 Kamnitsas, Konstantinos Biomedical Image Analysis Group, Imperial College London

SE-Cth Mahmood, Qaiser Signals and Systems, Chalmers University of Technology,

Gothenburg

DE-UzL Maier, Oskar Institute of Medical Informatics, Universität zu Lübeck

US-Jhu Muschelli, John Johns Hopkins Bloomberg School of Public Health

US-Odu Reza, Syed Vision Lab, Old Dominion University, Norfolk

BE-Kul2 Robben, David ESAT/PSI, Department of Electrical Engineering, KU Leuven

TW-Ntust Wang, Ching-Wei Graduate Institute of Biomedical Engineering, National

Taiwan University of Science and Technology

DE-Ukf Kellner, Elias Department of Radiology, Medical Physics, University Medical

Center Freiburg

CH-Insel McKinley, Richard Department of Diagnostic and Interventional Neuroradiology,

Inselspital, Bern University Hospital

Table 2. Accuracy comparison of segmentation results of the proposed framework with
the other participants’ methods on images from sub-challenge SISS.

Place Rank Team Cases ASSD DC HD

1st 3.25 UK-Imp2 (Kamnitsas, Konstantinos) 34/36 5.96 ± 9.38 0.59 ± 0.31 37.88 ± 30.06

2nd 3.82 CN-Neu (Feng, Chaolu) 32/36 3.27 ± 3.62 0.55 ± 0.30 19.78 ± 15.65

3rd 5.63 FI-Hus (Halme, Hanna) 31/36 8.05 ± 9.57 0.47 ± 0.32 40.23 ± 33.17

4th 6.40 US-Odu (Reza, Syed) 33/36 6.24 ± .21 0.43 ± 0.27 41.76 ± 25.11

5th 6.67 BE-Kul2 (Robben, David) 33/36 11.27 ± 10.17 0.43 ± 0.30 60.79 ± 31.14

6th 6.70 DE-UzL (Maier, Oskar) 31/36 10.21 ± 9.44 0.42 ± 0.33 49.17 ± 29.6

7th 7.07 US-Jhu (Muschelli, John) 33/36 11.54 ± 11.14 0.42 ± 0.32 62.43 ± 28.64

8th 7.54 UK-Imp1 (Chen, Liang) 34/36 11.71 ± 10.12 0.44 ± 0.30 70.61 ± 24.59

9th 7.66 CA-USher (Dutil, Francis) 27/36 9.25 ± 9.79 0.35 ± 0.32 44.91 ± 32.53

10th 7.92 BE-Kul1 (Haeck, Tom) 30/36 12.24 ± 13.49 0.37 ± 0.33 58.65 ± 29.99

11th 7.97 CA-McGill (Jesson, Andrew) 31/36 11.04 ± 13.68 0.32 ± 0.26 40.42 ± 26.98

12th 9.18 SE-Cth (Mahmood, Qaiser) 30/36 10.00 ± 6.61 0.38 ± 0.28 72.16 ± 17.32

13th 9.21 DE-Dkfz (Goetz, Michael) 35/36 14.20 ± 10.41 0.33 ± 0.28 77.95 ± 22.13

14th 10.99 TW-Ntust (Wang, Ching-Wei) 15/36 7.59 ± 6.24 0.16 ± 0.26 38.54 ± 20.36
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Table 3. Accuracy comparison of segmentation results of the proposed framework with
the other participants’ methods on images from sub-challenge SPES.

Place Rank Team Cases ASSD DC

1st 2.02 CH-Insel (McKinley, Richard) 20/20 1.65 ± 1.40 0.82 ± 0.08

2nd 2.20 DE-UzL (Maier, Oskar) 20/20 1.36 ± 0.74 0.81 ± 0.09

3rd 3.92 BE-Kul2 (Robben, David) 20/20 2.77 ± 3.27 0.78 ± 0.09

4th 4.05 CN-Neu (Feng, Chaolu) 20/20 2.29± 1.76 0.76± 0.09

5th 4.60 DE-Ukf (Keller, Elias) 20/20 2.44 ± 1.93 0.73 ± 0.13

6th 5.15 BE-Kul1 (Haeck, Tom) 20/20 4.00 ± 3.39 0.67 ± 0.24

7th 6.05 CA-USher (Dutil, Francis) 20/20 5.53 ± 7.59 0.54 ± 0.26

best in terms of ASSD and HD and the second best in DC for sub-challenge
SISS. According to the ranking rules of the challenge, which can be found on the
website http://www.isles-challenge.org/, the proposed framework finally took
the second and fourth places for SISS and SPES, respectively.

4 Conclusion and Discussions

An ischemic lesion segmentation framework has been proposed, which consists
of preliminary segmentation, label fusion, and boundary refinement. As most
of level set methods are usually time consuming and sensitive to initialization,
an improved fuzzy c-means method is first used to coarsely extract ischemic
lesions from normal brain tissues. The preliminary segmentation results are only
used as initialization of the level set method. Therefore, there is no need to
introduce bias correction rules in the first step in consideration of saving time.
Quantitative evaluation and comparison with methods that participated in the
ISLES challenge have demonstrated advantages of the proposed framework in
terms of accuracy.

Note that as the zero level contour of φ2 is used to represent boundaries
between brain tissues and the background, update of φ2 is not important for
seeking lesion boundaries. Therefore, φ2 can be fixed in the evolution of φ1 to
improve computational efficiency. In addition, narrow band implementation can
be used to further improve time performance of the proposed level set method.

In the future, we will further improve and validate the proposed method on
more datasets, such as MICCAI 2008 lesion segmentation data.

Acknowledgement. This work was supported by the Fundamental Research Funds
for the Central Universities of China under grant N140403006, N140402003, and
N140407001, the Postdoctoral Scientific Research Funds of Northeastern University
under grant No. 20150310, the National Science Foundation for Distinguished Young
Scholars of China under Grant Nos. 71325002 and 61225012, the Chinese National Nat-
ural Science Foundation under grant Nos. 61172002 and 71071028, the National Key

http://www.isles-challenge.org/


244 C. Feng et al.

Technology Research and Development Program of the Ministry of Science and Tech-
nology of China under grant 2014BAI17B01, and the Fundamental Research Funds for
State Key Laboratory of Synthetical Automation for Process Industries under Grant
No. 2013ZCX11.

References

1. Artaechevarria, X., Munoz-Barrutia, A., Ortiz-de Solórzano, C.: Combination
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Abstract. We present a novel fully-automated generative ischemic
stroke lesion segmentation method that can be applied to individual
patient images without need for a training data set. An Expectation
Maximization-approach is used for estimating intensity models for both
normal and pathological tissue. The segmentation is represented by a
level-set that is iteratively updated to label voxels as either normal or
pathological, based on which intensity model explains the voxels’ inten-
sity the best. A convex level-set formulation is adopted, that eliminates
the need for manual initialization of the level-set. The performance of the
method for segmenting the ischemic stroke is summarized by an average
Dice score of 0.78 ± 0.08 and 0.53 ± 0.26 for the SPES and SISS 2015
training data set respectively and 0.67±0.24 and 0.37±0.33 for the test
data set.

1 Introduction

In ischemic stroke, blood supply to the brain is lowered due to an artery occlu-
sion [1]. Depending on the severity and the duration of the blood supply defi-
ciency, damage to the brain tissue is reversible (penumbral tissue) or irreversible
(infarctic core tissue). MR image analysis techniques can be used to measure
the extent of the lesion and to distinguish between core and penumbral tissue.
The MICCAI Ischemic Stroke Lesion Segmentation (ISLES) challenge comprises
the automatic segmentation of ischemic stroke lesions acquired in the sub-acute
stroke development stage (SISS) and automatic segmentation of acute ischemic
stroke lesions for stroke outcome prediction (SPES).

Discriminative segmentation methods require a set of manually annotated
training images from which the appearance of the brain structures of interest is
implicitly learned by the algorithm. Generative models on the other hand do not
require a set of annotated training images. Explicit prior knowledge of anatomy
or intensity appearance is directly incorporated into the algorithm [2]. Although
it is clear that existing methods need to be improved in terms of accuracy,
practical usability of the methods on clinical data needs to be considered as well.
In clinical practice the availability of annotated training data may be limited or

c© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 246–253, 2016.
DOI: 10.1007/978-3-319-30858-6 21
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non-existent, such that a generative method that does not rely on training data
may be preferred.

We present a novel fully-automated generative ischemic stroke lesion segmen-
tation method that only makes use of a probabilistic brain atlas of white matter
(WM), grey matter (GM) and cerebrospinal fluid (CSF) and for which no man-
ual initialization is needed. The probabilistic prior guides the global search for
voxel outliers that cannot be explained by the normal tissue model and likely
should be labelled as lesion. The lesion boundary is represented as a level-set
that spatially regularizes the segmentation. The method is outlined in Sect. 2
and results are presented in Sect. 3.

2 Method

A level-set is used to represent the boundary between the normal region and the
pathological region. By means of an Expectation Maximization (EM)-approach,
an intensity model for the normal region is built as well as a separate intensity
model for the pathological region. The level-set is subsequently updated such
that a voxel is assigned to the region of which the intensity model best explains
the voxel’s intensity. The intensity models are then rebuilt, based on the current
estimate of the normal and pathological region. This process is repeated until
convergence (Fig. 1).

Prior Registration. Spatial priors indicate for every voxel the prior probability
of encountering WM, GM and CSF and they are widely available for healthy
adults in the form of brain atlases. These spatial priors of WM, GM and CSF are
non-rigidly registered to the patient image. Although registration of a healthy
atlas to a patient image is still an active field of research, this problem is ignored
for now and standard intensity-based non-rigid registration methods are used.
The prior information is relaxed by smoothing the spatial priors with a Gaussian
kernel.

Intensity Models and the Expectation-Maximization Algorithm. Normal and
pathological tissue intensities are modelled separately. Let GΣj

be a zero-mean
multivariate Gaussian with covariance matrix Σj, then normal and pathological
tissue are both modelled by a Gaussian mixture model

p(yi|θ) =
K∑
j

GΣj
(yi − μj)p(Γi = j), (1)

with yi = (yi1 , . . . , yiN ) the (raw) intensity of voxel i and Γi = {j|j = 1 . . . K}
the tissue class. The intensity model parameters θ = {(μj,Σj)|j ∈ 1 . . . K} are
iteratively updated using an EM-approach [2]. For normal tissue, K = 3 and
p(Γ = j) = πj are the spatial priors for WM, GM and CSF. For pathological
tissue, the weights of the Gaussians are updated according to the volume fraction
of each of the tumor classes.
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Fig. 1. (a) Spatial priors are non-rigidly registered to the patient image. (b) A full
EM-estimation of the normal and pathological intensity models is done, after which a
level-set is updated. This process is repeated until convergence.

Convex Level-Set Formulation. The image I is subdivided into regions labelled
Ωin (pathological tissue) and Ωout (normal tissue) for which the intensities are
modelled by the probability distributions described in the previous paragraph [3].
The regions are separated by a boundary ∂Ω that is implicitly represented by
a level-set function u. The boundary and intensity model parameters are found
by minimizing the energy functional

argmin
θin,θout,∂Ω

λ1

∫
Ωin

−log pin(I|Ωin, θin) dx

+ λ2

∫
Ωout

−log pout(I|Ωout, θout) dx (2)

+ κ length(∂Ω),

where length(.) is the length of the boundary. The first two terms penalize the
negative loglikelihood of the image I evaluated in respectively the pathological
and normal region. Voxels in a region that are unlikely according to the Gaussian
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mixture model for that region will have a high contribution to the energy func-
tion. The third term penalizes the length of the boundary and acts as a regular-
ization term. Parameters λ1, λ2 and κ determine the relative importance of the
energy terms. For each iteration to update the level-set, a full EM-estimation of
the parameters θin and θout is done.

The energy functional is non-convex and the gradient flow on the level-
set function u finds a solution that depends on a manual initialization of the
level-set [4]. This initialization typically has significant impact on the segmen-
tation result. In this work, this problem is overcome by using a convex level-set
formulation that performs a global search over the image and makes a manual
initialization superfluous. A global minimum is guaranteed by replacing the gra-
dient flow by another gradient flow with the same steady-state solution and by
restricting the level-set to lie in a finite interval [5]. The problem is thus refor-
mulated as an L1-minimization problem that is solved by the Split Bregman-
numerical scheme, which is an iterative technique that was recently proposed for
solving this kind of convex problem in a fast and efficient way [6]. As a result,
given a set of intensity parameters, our method will search for tumorous voxels in
a global way and independently of a manual initialization. The energy functional
equals

argmin
0≤u≤1

‖∇u‖L1 + λ 〈u, r〉 (3)

with 〈., .〉 the summation over the voxel-wise products of the arguments, u is the
level-set function and r is the data-fitting term,

r = log pout(I|Ωout, θout) − log pin(I|Ωin, θin). (4)

To solve this minimization problem, the split Bregman iteration technique intro-
duces an auxiliary variable d = ∇u and the Bregman variable b and solves a
sequence of unconstrained problems

(un+1,dn+1) = argmin
0≤u≤1,d

‖d‖L1 + λ 〈u, rn〉 +

μ

2
‖d − ∇u − bn‖2, (5)

bn+1 = bn + ∇un − dn, (6)

where un+1 is found by a Gauss-Seidel sweep and d is found by vectorial shrink-
age. The superscript n denotes the iteration index. A more detailed description
on the split Bregman iteration technique can be found in [6]. It is important
to note that, by using spatial priors of WM, GM and CSF, the global opti-
mum coincides with the clinically meaningful notion of normal and pathological
regions.
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Overall Algorithm. The overall algorithm is summarized in Algorithm 1. With
the Gaussian mixture model parameters from a previous iteration, the loglikeli-
hoods of the image for both normal and pathological region are combined into the
data-fitting term rn. Consequently, based on this data-fitting term an update of
the level-set u is done by performing one iteration of the split Bregman scheme.
This gives rise to a new estimate of the normal region Ωout and a new estimate
of the pathological region Ωin. Within these regions, a full EM-estimation of the
parameters θin and θout is done. This process is repeated until the change of the
level-set is below a threshold.

Initialize d = 0, b = 0, u = 0.5
while ‖un+1 − un‖L2 > ε do

// data-fitting term
rn = log pout(I|Ωn

out,Θ
n
out) − log pin(I|Ωn

in,Θn
in)

// update level-set from Eq. 5 en 6
Solve un+1

Solve dn+1

bn+1 = bn + ∇un − dn

// update regions

Ωn+1
in = {x : un+1(x) > 0.5}

Ωn+1
out = {x : un+1(x) < 0.5}

while EM not converged do

// update intensity models

Θn+1
in from region Ωn+1

in

Θn+1
out from region Ωn+1

out

end

end
Algorithm 1. Split Bregman tumor segmentation method

3 Experiments and Results

The patient volumes in the SPES and SISS training data set are already skull-
stripped and registered intra-patient. No further pre-processing is done. Prior
registration is based on the T1-weighted MNI-Colin27 atlas (2008) that is regis-
tered to the patient volume with a cross-correlation similarity measure (radius
4 voxels) by the Advanced Normalization Tools (ANTs) toolbox [7]. The spatial
priors are relaxed by a Gaussian kernel with σ = 3 voxels.
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For segmentation of the SPES data, we use the T2-weighted and TTP-
weighted MR images and for SISS the diffusion weighted and FLAIR-weighted
MR images. For SPES, the modalities are used in a completely multivariate way,
i.e. with bivariate Gaussian models. For SISS, the modalities are segmented sep-
arately and a voxel is only labelled as lesion if it is a lesion in both modalities.

The number of Gaussians for modelling the lesion intensities is set to 1.
The energy functional hyperparameters are λ1 = λ2 = 1e1 and κ = 1e1. For
each update of the level-set, a full EM-estimation for both the pathological and
normal intensity model is performed.

The computation time for a single patient volume is about 15 min on a
2 × 2.66 GHz Quad-Core CPU, out of which 10 min are spent for the non-rigid
registration of the priors to the patient volume. Example segmentations for the
test data set are visualized in Fig. 3. Performance of the algorithm for SPES
and SISS is evaluated by means of the ASSD, Dice overlap coefficient, Hausdorff
distance and precision and recall for both the training data set and test data set
(Table 1). The median Dice scores for the SPES and SISS training data sets are
0.79 and 0.60 respectively (Fig. 2).

Fig. 2. Left: Dice score boxplots for SPES and SISS training data sets. Right: T2-
and TTP-weighted MR example image from SPES (top) and FLAIR- and diffusion
weighted MR example image from SISS (bottom) with ground truth segmentations
(red) and the resulting segmentations (green) for a typical segmentation (Dice score
0.79 and 0.50).



252 T. Haeck et al.

Fig. 3. Row 1–3: Resulting segmentations overlayed on the TTP-weighted MR images
(patient nr. 1–15), as found by the presented method for the SPES test data set. Row
4–6: Example segmentations overlayed on the diffusion weighted MR images (patient
nr. 1–15), as found by the presented method for the SISS test data set. Since the
challenge is ongoing, the ground truth for the test data set is not publicly available.
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Table 1. Performance of the presented method on the SPES and SISS data

ASSD Dice Hausdorff Precision Recall

Avg Std Avg Std Avg Std Avg Std Avg Std

Training

SPES 3.51 2.13 0.78 0.08 46.31 25.17 0.78 0.11 0.80 0.12

SISS 14.43 25.88 0.53 0.26 69.67 30.77 0.62 0.31 0.56 0.29

Testing

SPES 5.18 6.13 0.67 0.24 42.29 19.42 0.74 0.22 0.67 0.27

SISS 17.36 19.27 0.37 0.33 63.59 31.68 0.49 0.40 0.40 0.33

4 Discussion and Conclusion

In plenty of clinical settings only a handful of patient images needs to be
processed without the availability of an annotated training set. Generative meth-
ods have therefore an enormous practical value. We have presented a generative
method for segmenting the ischemic stroke lesion in the SPESS and SISS train-
ing set. The method is abundantly flexible to detect any intensity abnormality,
and therefore also suitable to detect other lesions like tumor or MS.
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Abstract. Automated localisation and segmentation of stroke lesions
in patients is of great interest to clinicians and researchers alike. We
propose a supervised method based on cascaded extremely randomised
trees for lesion segmentation, working on a per voxel basis in native sub-
ject space. The proposed pipeline is evaluated in the MICCAI Ischemic
Stroke Lesion Segmentation (ISLES) challenge, both with nested cross-
validation on the training data as well as on independent, multi-centre
test data. We obtained good performance although inter-subject vari-
ability is large, and reached 3rd place in the SPES sub-challenge.

1 Introduction

In ischemic stroke, reduced blood flow to part of the brain results in localised
tissue damage and eventual necrosis. Automated localisation and segmentation
of the stroke lesion in patients is of great interest to clinicians and researchers
alike. Ultimately, this would enable them to differentiate potentially salvage-
able and permanently damaged tissue, identify effective treatments, and follow
progression of the ischemic lesion [9].

Segmentation of ischemic stroke lesion is often marred by the complexity of
shape, lack of ground truth, ambiguity and heterogeneity of the lesion size, loca-
tion and contrast [4]. There is growing interest to move from subjective threshold-
ing based techniques to automated methods that allow not only objective lesion
segmentation but also insight on critical sub-regions that characterise the onset
and evolution of stroke. The multi-modal MR images with diffusion and perfusion
information provide complimentary image features to make such classification.

An overview of ischemic stroke lesion segmentation methods based on
MR/CT images has been well discussed in Rekik et al. [9]. More recently, a
number of fully automated approaches have been introduced, based on super-
vised learning [5,7]. Mitra et al. [7] combine Bayesian-Markov random fields and
random decision forests. Maier et al. [5] use Extra Tree forests for voxel-wise
classification into two classes: the stroke lesion and healthy brain tissue. Like-
wise, the benefit of randomness during training phase when using Extremely
c© Springer International Publishing Switzerland 2016
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randomized trees (ExtraTrees) over random foresets for tumour segmentation
has been recently demonstrated [2].

In this paper, we propose a novel, supervised method based on cascaded
extremely randomised trees and optimal thresholding for stroke lesion segmenta-
tion in a single pipeline. This method is then evaluated in the MICCAI Ischemic
Stroke Lesion Segmentation (ISLES) challenge on two multi-modal MRI datasets
for sub-acute ischemic stroke lesion segmentation (SISS) and for acute stroke
outcome and penumbra estimation (SPES).

2 Method

Our processing pipeline first preprocessed all data for field inhomogeneity and
intensity standardization, and registers the resulting images to MNI reference
space. Subsequently, features are extracted at different spatial scales. Finally,
a cascaded Extra Trees classifier is trained on a dataset in which the stroke
lesions were manually delineated. Independent test data is processed identically
and passed to the classifier, generating a lesion probability map. Those maps are
then thresholded for optimal Dice score, to obtain the final segmentation.

2.1 Preprocessing

At first, the non-parametric images in both datasets were corrected for RF inho-
mogeneity. We estimated the bias field on the T1w-images using FSL FAST [3],
using a 3-tissue model and a bias field smoothing filter of 40 mm full-width half
maximum. The elevated smoothing parameter (default is 20 mm) was chosen to
improve robustness to the pathology. The estimated bias field was subsequently
applied to correct all T1w- and T2w-images, as well as the Flair and DWI images
in the SISS dataset. The ADC images and the perfusion measures in the SPES
dataset were not corrected, as these images are already normalised or assumed
to be in physical units.

Secondly, cross-subject histogram normalisation was done for each dataset
and each modality. To this end, we used a linear intensity rescaling based on
two percentile intensities of the histogram. These were heuristically determined
based on the histogram profile of a given modality across all subjects of each
dataset. For SISS we used 20 % and 99 % for T1, T2, and DWI, and 30 % and
90 % for Flair. For SPES we used 30 % and 90 % for T1, 20 % and 99 % for
T2, 20 % and 90 % for DWI (ADC), and 20 % and 50 % for TTP. No intensity
normalisation was applied to Tmax, CBF, and CBV.

Additionally, we wish to include spatial features in the classifier as well. There-
fore, we registered all subjects T1w-images to the MNI152 template using a 12
degrees of freedom affine transformation and normalised mutual information,
as implemented in FSL FLIRT [3]. The resulting transformation matrices are
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converted to (affine) deformation fields which provide, for each voxel in native
space, the corresponding coordinate in MNI space. As such, no image interpola-
tion is needed and the subsequent classifier training can be done in native space.

2.2 Classifier

We decided to use a voxel-wise classification approach for both segmentation
tasks. That is, we build a classifier that, given a set of features of a voxel,
estimates the probability that this voxel is part of a lesion. To increase com-
putational efficiency and spatial consistency, we use a cascaded approach. First,
the to-be-classified voxel is given to a classifier that uses a limited set of features.
If this classifier decides with very high probability that the voxel is non-lesion,
then this probability is the final answer. Else, the voxel is given to the second
classifier that uses a large set of features. Then, the voxels which were not classi-
fied as non-lesion with very high probability, are given to a third classifier. This
last classifier uses the same features as the second classifier and additionally the
earlier computed probabilities of that voxel and its neighbouring voxels.

We use extremely randomised trees [1] as a base classifier. This classifier
builds an ensemble of decision trees, but by randomising the selection of cut-point
in the decision tree nodes, its training is significantly faster than the training of
random forests while achieving comparable accuracy. We use the implementation
provided by scikit-learn [8].

2.3 Features

Since the classifier is the same for both challenges, the features are constructed
in a similar fashion.

For the SPES sub-challenge, the first cascade uses the T1c intensity. The
second cascade uses the intensity of the T1c, T2, TTP, Tmax and DWI images
smoothed with a sigma of 0 – 6 mm. It also has for TTP and Tmax the 0.5, 0.75
and 0.9 percentiles and for DWI the 0.1 and 0.25 percentiles of its neighbourhood
for varying radii (4 – 12 mm). Finally, it has the MNI-coordinates. The third
cascade uses the same features as the latter and additionally it has the earlier
estimated probabilities smoothed with a sigma of 0 – 8 mm and the 0.5, 0.75 and
0.9 percentiles of it neighbourhood for varying radii (4 – 8 mm).

For the SISS sub-challenge, the first cascade uses the T1 intensity. The sec-
ond cascade uses the intensity of the T1, T2, Flair and DWI images smoothed
with a sigma of 0 – 8 mm. It also has for Flair and DWI the 0.5, 0.75 and 0.9
percentiles of its neighbourhood for varying radii (4 – 8 mm). Finally, it uses
the MNI-coordinates. The third cascade uses the same features as the latter and
additionally it has the earlier estimated probabilities smoothed with a sigma of
0 – 8 mm and the 0.5, 0.75 and 0.9 percentiles of it neighbourhood for varying
radii (4 – 8 mm).
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2.4 Hyper Parameters

The extremely randomized trees classifier has a few hyper parameters that have
to be determined. We use 100 trees per classifier, and the number of features
considered at each cut-point is set to the square root of the number of features.
The most important hyper parameter is the size of the trees as it controls the
tendency of the classifier to under-/overfit. This can be constrained by either
enforcing a maximum depth of the trees or by requiring a minimum number of
samples in each leaf of the trees. We don’t have a preference for one over the
other and used the first for the SISS and the second for the SPES sub challenge.
Since the optimal value of this hyper parameter is strongly dependent on the
specific dataset, we define a range of considered values and use cross validation
to select the best performing one. We use 5-fold cross validation, meaning we
split the images in 5 folds, and each time leave one fold out for testing and use
the other four for training. The optimal hyper parameter value is the one that
results in the lowest mean log loss. The considered leaf sizes for SPES are 50,
100, 200 and 400. The considered tree depths for SISS are 12, 14, 16 and 18.

2.5 Probability Threshold for an Optimal Dice

Following the voxel-wise classification, we have for every voxel a probability of
belonging to a lesion. However, the ISLES challenge requires a binary segmen-
tation and hence we need to threshold the resulting probabilities. Instead of
using a fixed threshold for all images, we use a novel technique to find for every
image its optimal threshold, that is, the one that will give the highest dice score.
This threshold is estimated for each image independently using the estimated
probabilities.

The dice score of a segmentation S and the ground truth G is defined as:

DICE(S,G) =
2|S ∩ G|
|S| ∪ |G| , (1)

where both S and G are sets of voxels. Our classifier gives for every voxel x a
probability P (x) that it is part of the lesion. Hence, our segmentation S will
depend on the probability threshold Pt:

S(Pt) = {x|P (x) > Pt}, (2)

and thus:

|S(Pt)| =
∑
x

I[P (x) > Pt]. (3)
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Assuming that the probability estimates are correct and voxels are indepen-
dent from each other, we can calculate the expected value of |G|:

E
[ |G| ]

= E

[ ∑
x

1G(x)
]

=
∑
x

E

[
1G(x)

]
=

∑
x

P (x), (4)

with 1 the indicator function. The expected value of |S ∩ G| is:

E[ |S(Pt) ∩ G| ] = E

[ ∑
x

I[P (x) > Pt]1G(x)
]

(5)

=
∑
x

I[P (x) > Pt]P (x). (6)

Hence the expected dice score obtained with threshold Pt will be:

D(Pt) =
2
∑

x I[P (x) > Pt]P (x)∑
x P (x) +

∑
x I[P (x) > Pt]

, (7)

To speed up the computation, we first calculate the histogram of the proba-
bility image P (x). For each bin i we have the left bin edge bi, its center ci and
its number of voxels fi. With bi used as threshold, the expected dice score is:

D(bi) =
2
∑

j≥i fjcj∑
j fjcj +

∑
j≥i fj

, (8)

We exhaustively search for the optimal threshold Pt, considering all the left bin
edges bi. We use 1000 bins; the considered Pt are thus [0, 1e−3, 2e−3, ..., 999e−3].

3 Results

The performance of the proposed segmentation method is evaluated in the online
submission system of the challenge, and relies on the average symmetric surface
distance (ASSD), the Dice overlap coefficient (DC), and the Hausdorff distance
(HD). Additionally, precision and recall are reported to discriminate between
over- and under-segmentation respectively. The results of cross-validation on the
training data, and of independent evaluation in the testing data, are reported
in Table 1. ISLES did not report precision and recall on the testing data, and
because the ground truth is hidden we have no means to compute them ourselves.
Similarly, the challenge organisers decided to eliminate the Hausdorff distance
from the SPES evaluation due to many outliers.

The proposed lesion segmentation method is visually compared to expert
segmentations in training set cases of median and maximum overlap in Fig. 1.
These images show that the presented method produces acceptable results in
both SISS and SPES datasets. The lesion boundary is delineated accurately
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Fig. 1. Comparison between the ground-truth labels (green) and the predicted seg-
mentation (red), shown for selected examples with median (left) and maximum (right)
Dice coefficient in the training set. SISS Flair dataset on the top; SPES DWI (ADC)
dataset on the bottom (Color figure online).

in regions where intensities are elevated, but deviates if intensity differences
are inconclusive while an expert anatomical knowledge is more informative.
Leukoaraiosis in the contralteral hemisphere are correctly labelled as not part
of the ischemic lesion. Cases with a small lesion in the cerebellum remain chal-
lenging, particularly in the SISS dataset.
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Fig. 2. Segmentation results (red) in the 36 test subjects of the SISS dataset, overlaid
onto their FLAIR images. Representative cross-sections from individual subjects corre-
spond to the mid-slice of the segmentation result. No overlay in some cases may likely
be due to the absence of lesion segmentation result for that cross-section or the subject
themselves. The last eight images (rows 7-8) possibly corresponds to the second center,
whose data was not part of the training set (Color figure online).

Performance in the testing data is on par with the cross-validation results
in the training data, except for the lower Dice score in the SISS sub-challenge.
We attribute this decrease of DC to the multi-centre nature of the SISS testing
data, as can be seen in Fig. 2. Similarly, Fig. 3 shows the segmentation of the
test cases in the SPES dataset.
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Table 1. Segmentation metrics on the training and testing data, reported as the
average symmetric surface distance (ASSD), Dice coefficient (DC), Hausdorff distance
(HD), precision, and recall, between the predicted segmentation and the ground truth.

ASSD (mm) DC HD (mm) Precision Recall

SISS Training 9.36 ± 13.85 0.57 ± 0.28 53.88 ± 34.58 0.58 ± 0.33 0.68 ± 0.21

Testing 11.27 ± 10.17 0.43 ± 0.30 60.79 ± 31.14 - -

SPES Training 2.03 ± 1.35 0.82 ± 0.07 44.29 ± 27.59 0.81 ± 0.14 0.85 ± 0.07

Testing 2.77 ± 3.27 0.78 ± 0.09 - - -

Fig. 3. Segmentation results (red) in the 20 test subjects of the SPES dataset, overlaid
onto their DWI (ADC) images (Color figure online).

Compared to other participants in the challenge, our method performed
above average on the testing data, as shown in Fig. 4. Given the simplicity of
our approach, these results are satisfying.
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Fig. 4. Plots of the Dice coefficient (DC) and average symmetric surface distance
(ASSD) performance metrics of all challenge participants. Red: the presented method,
green: other methods that took part in both SISS and SPES challenges, blue other
participants (Color figure online).

4 Discussion

Our method is fairly standard, but we’d like to address the components that
have a large impact on our performance.

Intensity normalization is essential for the method: a threshold-based classi-
fier such as ours is sensitive to the intensity scaling. Without it, results degraded
quickly. However, the current linear approach is still sub-optimal. As illustrated
in Fig. 5, intensity differences between subjects are still present after histogram
correction. Future work may improve upon this method by revising the his-
togram normalisation. More advanced, non-linear approaches such as Meier and
Guttmann [6] could help in this regard.

The cascaded approach showed strong improvement over a single voxel-wise
classifier, and allows to take neighbourhood information into account while still
limiting the number of features and the required computation time. Even though
the third cascade uses the same image features as the second cascade, the addi-
tional features that describe the prediction of the second cascade, increase the
prediction quality and improve the dice score with about five percent in both
subchallenges. In retrospect, this approach is very similar to Auto-Context [10].
In our opinion, there are two big differences between our approach and Auto-
Context. First, only our last cascade uses predictions of the previous cascade.
They keep adding cascades that use the previous predictions until the pre-
dicted probabilities are stable. Their experiments demonstrate that this improves
results and in future work we would follow this approach. Secondly, our con-
text features are the smoothed probability estimates and percentiles of the local
neighborhood. Auto-Context uses the probability estimates of sparsely sampled
neighboring voxels. It would be interesting to compare both approaches in future
work.
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(a) Before intensity normalisation (b) After intensity normalisation

Fig. 5. Histograms of SISS Test cases, before and after intensity normalisation. The
vertical lines in red corresponds to the lower and upper percentile intensities of the his-
togram, as defined on the training data set. Residual inter-subject intensity variations
appears to remain even after normalization, especially for multi-center data (Color
figure online).
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The probability threshold for an optimal dice is a simple approach to optimize
the result towards maximal dice score. In our experiments, it improved the mean
dice scores consistently with a few percent. In future work, it would be interest-
ing to document its impact on the other performance measure which primarily
measure surface distance.

The actually selected threshold varied widely between images. We observed
thresholds between 0.05 and 0.44 for the SISS challenge and between 0.24 and
0.43 for the SPES challenge. Typically, images with a large, pronounced lesion
get higher thresholds, whereas images with small, not clearly visible lesions tend
to get relatively low thresholds. This can be understood as following: if the lesion
is not clearly visible, all the predicted probabilities will be low. But since there
is always a tumor present, the optimal threshold is also low.

To conclude, our proposed pipeline works well on both datasets, although
the inter-subject variability is rather large in the SISS data. Given that this is
the case for other contestants as well, it would be interesting to have access to
the inter-observer variability of the ground-truth segmentations.

5 Conclusion

We presented a supervised method for stroke lesion segmentation, based on
cascaded extremely randomised forests, and evaluated its performance in the
ISLES lesion segmentation challenge. As such, the ISLES challenge provides a
benchmark for comparing our method to the state-of-the-art. After nested cross-
validation on the training data, we obtained an average Dice score of 57 % for
the SISS data and 82 % for the SPES dataset, which is on par with other con-
testants. Subsequently, we segmented the test data and finished among the top
five contestants in both of the ISLES sub-challenges. Results on independent
testing data are good in both datasets, although the morphological variation of
the lesion between subjects and the standardisation between centres and sub-
jects remains a challenge.
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Abstract. This paper presents an automated segmentation framework
for ischemic stroke lesion segmentation in multi-spectral MRI images.
The framework is based on a random forests (RF), which is an ensemble
learning technique that generates several classifiers and combines their
results in order to make decisions. In RF, we employ several meaningful
features such as intensities, entropy, gradient etc. to classify the voxels
in multi-spectral MRI images. The segmentation framework is validated
on both training and testing data, obtained from MICCAI ISLES-2015
SISS challenge dataset. The performance of the framework is evaluated
relative to the manual segmentation (ground truth). The experimental
results demonstrate the robustness of the segmentation framework, and
that it achieves reasonable segmentation accuracy for segmenting the
sub-acute ischemic stroke lesion in multi-spectral MRI images.

Keywords: Segmentation · Automatic · MRI · Ischemic stroke lesion ·
Random forests

1 Introduction

Worldwide, each year around 15 million people suffer from a stroke and a third
of these die [1]. Stroke is a disturbance to the intracerebral blood flow caused
by either a clot blocking an artery (ischemic stroke) or bleeding as the result of
a burst blood vessel (hemorrhagic stroke) [2]. As a consequence, the oxygen and
glucose levels are reduced which in turn rapidly kills the affected brain tissue [3].
Ischemic stroke is the most common type of stroke accounting for about 80% of
cases (the proportion varies between countries) [4].

Multi-spectral magnetic resonance imaging (MRI) [5] can be used for detect-
ing the ischemic stroke lesion and can provide quantitative assessment of lesion
area. It can be established as an essential paraclinical tool for diagnosing stroke
as well as for monitoring the efficacy of experimental treatments.

For a quantitative analysis of stroke lesion in MRI images, expert manual
segmentation is still a common approach and has been employed to compute
the size, shape and volume of the stroke lesions. However, it is time-consuming,
c© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 266–274, 2016.
DOI: 10.1007/978-3-319-30858-6 23
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tedious, and labor-intensive task. Moreover, manual segmentation is prone to
intra-and inter-observer variabilities [6].

Therefore, the development of fully automated and accurate stroke lesion
segmentation method has become an active research field. In literature [6–8],
several automated segmentation methods have been proposed for stroke lesion
segmentation over the years. However, the automated stroke lesion segmenta-
tion is still a challenging task because of the gradual changes of stroke lesion
appearance in multi-spectral MRI images.

Herein, we present a fully automated framework for sub-acute ischemic stroke
lesion segmentation in multi-spectral MRI images. The framework is based on an
ensemble learning technique called random forests (RF) that is robust against
overfitting [9]. The main contribution in the framework is employing a set of
meaningful features and the choice of steps for pre-processing the MRI images
and post-processing of segmented data.

2 Method

The schematic procedure of the segmentation framework is shown in Fig. 1. The
framework takes the multi-spectral MRI brain images as input and it includes
two-step pre-processing: (1) Correction of bias field using the N3 bias field cor-
rection algorithm [10] and (2) normalization of intensity values of each MRI
modality to the interval [0 1], done by applying the linear histogram stretching.
For each voxel of multi-spectral MRI images, the following set of meaningful
features is extracted.

1. MRI scans intensities: These features comprise the intensity in the 4 MRI
scans (DWI, T2, T1 and FLAIR) provided by the data and the difference
between each two scans. The total number of these features was 16.

2. MRI scans smooth intensities: A Gaussian filter with size 7 × 7 × 7 was
employed to each MRI scan in order to extract the smooth intensities. The
total number of these features was 4.

3. MRI scans median intensities: A median filter with size 5× 5× 5 was applied
to each MRI scan to obtain the median intensities. The total number of these
features was 4.

4. The gradient and magnitude of the gradient: A gradient in the x, y and z
direction and their magnitude was computed in order to get the information
about the lines and edges in each MRI scan. The total number of these features
was 16.

5. Local entropy: The entropy for each voxel in the MRI scans was computed
using the neighborhoods size 9 × 9 × 9. The total number of these features
was 4.

All features, mentioned above, were normalized to zero mean and unit devi-
ation. These features are then employed to train the RF [9,11] classifier and
classifying the sub-acute ischemic stroke lesion.
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Input: Multi-spectral MRI brain images

Features Extraction 
(Intensity, intensity difference, gradient in x-direction, etc.)

Supervised method (Random forest)
Training and classification

Post-processing
(Erosion and dilation)

Pre-processing
(Bias field correction and normalization)

Segmented stroke lesion

T1

FLAIR

T2
DWI

Fig. 1. Schematic procedure of the segmentation framework
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Fig. 2. Quantitative results of the segmentation framework for each training data: (a)
ASSD (b) Dice and (c) Hausdorff distance.
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Fig. 3. Quantitative results of the segmentation framework for each training data: (a)
precision and (b) recall.

In RF the training is performed using labeled data sets provided from the
ground truths by building multiple decision trees, wherein every node except the
leaves is a decision node that contains a feature and its corresponding thresh-
old. Every leaf node contains a probabilistic class distribution (histogram of class
labels for the voxels that have reached that node). In RF, the testing is performed
by traversing voxels over the trees starting from the root of each tree to a leaf node.
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Fig. 4. Qualitative results of the segmentation framework for several axial slices of the
training data “06”: (a) DWI (b) Flair (c) T1 (d) T2 and (e) segmented stroke lesion
(f) ground truth.

The voxels are split at a given node based on the learned feature and a threshold
value at that node. The average probabilistic decision of the class distribution from
all trees is considered the final probabilistic class distribution (voxel label in this
scenario).

The two main parameters that can affect the efficiency of RF are the number
of trees and depth of each tree. In our work, we set the RF parameters: number
of trees = 150 and depth of each tree = 50. The Gini impurity was employed
as a splitting criterion. Moreover

√
44 features were considered at each node

for splitting. For training, a total of 999,000 data samples (37,000 samples per
training data) were used to train the RF classifier. These samples were obtained
by down sampling the majority class (non ischemic stroke) data in each training
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Fig. 5. Qualitative results of the segmentation framework for several axial slices of the
training data “16”: (a) DWI (b) Flair (c) T1 (d) T2 and (e) segmented stroke lesion
(f) ground truth.

data set in order to make their frequencies closer to the minority class (ischemic
stroke) data. The sampling was done randomly.

Finally, the post-processing is performed using the dilation followed by an
erosion operation by employing the 2D 5×5 square structuring elements in order
to remove the small objects classified as stroke lesion.

3 Results

The evaluation is performed on training data as well as on testing data, obtained
from the MICCAI ISLES-2015 SISS challenge dataset. For the training data, the
evaluation is done using leave-one-out cross validation. For the testing data, the
classifier, trained from the training data, is applied to segment the stroke lesion.
The training data comprise 28 sub-acute ischemic stroke lesion cases whilst the
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Table 1. Average quantitative results of the segmentation framework over all the
training data in terms of ASSD, Dice, Hausdorff distance, precision and recall.

ASSD (mm) Dice Hausdorff distance (mm) Precision Recall

10.30 ± 11.11 0.54 ± 0.26 82.78 ± 23.95 0.67 ± 0.33 0.50 ± 0.25

Table 2. Average quantitative results of the segmentation framework over all the
testing data in terms of ASSD, Dice, Hausdorff distance, precision and recall.

ASSD (mm) Dice Hausdorff distance (mm) Precision Recall

13.96 ± 13.77 0.40 ± 0.27 71.25 ± 17.02 0.53 ± 0.35 0.40 ± 0.28

testing data include 36 sub-acute ischemic stroke lesion cases. The evaluation is
done using the online evaluation system provided by the MICCAI ISLES-2015
challenge organizers.

The quantitative results of the segmentation framework for each training
data in terms of average symmetric surface distance (ASSD), Dice, Hausdorff
distance, and precision and recall are presented in Figs. 2 and 3 respectively.
They show that for the training data “01”, “02”, “05”, “06”, “07”, “09”, “14”,
“15”, “18”, “20” and “25” the framework has better segmentation performance
(lower ASSD, higher Dice and lower Hausdorff distance, higher precision and
higher recall) compared to that of other remaining training data. For the training
data “16”, “21”, “26”, “27”, the proposed framework has poorer segmentation
performance (higher ASSD, lower Dice, higher Hausdorff distance, lower preci-
sion and lower recall). Moreover for the data “27”, there is no overlapping (zero
Dice) between the segmented stroke lesion and the ground truth. The reason for
poor segmentation for the training data “16”, “21”, “26”, and “27” is that the
features used in our segmentation framework are not optimized to detect the
small stroke lesion in these data.

Table 1 shows the average quantitative results of the segmentation framework
over all the training data.

An example of good qualitative results of our segmentation framework for
several axial slices of the training data “06” that contain large stroke lesion is
presented in Fig. 4. An example of bad qualitative results of our segmentation
framework for several axial slices of the training data “16” that contain small
stroke lesion is presented in Fig. 5.

The average quantitative results of the segmentation framework over all the
testing data are presented in Table 2.

4 Conclusions

In this paper, we present an automated framework based on the RF classifier
for segmenting the sub-acute ischemic stroke lesion using multi-spectral MRI
images. We employ a set of meaningful features to train the RF and classify
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the ischemic stroke lesion. The experimental results show the efficacy of the
segmentation framework and that it can segment the sub-acute ischemic stroke
lesion with reasonable accuracy. For future work, we will explore more robust
features in order to improve the accuracy of our segmentation framework. The
total execution time of our segmentation framework is about 25 to 30 min for
segmenting the stroke lesion for each data using the MATLAB on a MacBook
Pro with an Intel processor (i5, 2.5 GHz) and 4 GB RAM.
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Abstract. We propose a fully automatic method for segmenting the
ischemic penumbra, using image texture and spatial features and a mod-
ified Random Forest algorithm, which we call Segmentation Forests,
which has been designed to adapt the original Random Forests algo-
rithm of Breiman to the segmentation of medical images. The method
was trained and tested on the SPES dataset, part of the ISLES MICCAI
Grand Challenge. The method is fast, taking approximately six minutes
to segment a new case, and yields convincing results. On the testing por-
tion of the SPES dataset, the method achieved an average Dice coefficient
of 0.82, with a standard deviation of 0.08.

1 Introduction

In patients presenting with acute stroke, it is important to be able to quickly
identify hypoperfused tissue-at-risk, in order to assess the suitability of intra-
arterial therapy. Thresholding maps derived from perfusion-weighted imaging
provides a usable but crude assessment of this volume of tissue: the technique
is prone to artifacts in the processing of the perfusion maps, leading to, for
example, identification of tissue as at-risk on the contralateral side of the brain
or in the ventricles. Fast, automatic methods for identifying the tissue at risk
that improve on thresholding are therefore needed. Previous attempts to auto-
matically segment perfusion lesions in stroke [1] have used manually defined
algorithms to exclude cerebrospinal fluid, air, and imaging artifacts and small
objects. More recently [2], attempts have been made to identify the perfusion
lesion in stroke using Random Forest classifiers [3] trained on image textures.

In this paper we refine this method. The algorithm uses simple features,
derived from multimodal imaging, to train a decision forest model which assigns
to each volume element a label indicating if it should be considered part of
the perfusion lesion. Decision Forest algorithms such as Random Forests are a
popular machine learning algorithm in medical imaging applications, but (as we
indicate in this paper) standard algorithms for training Decision Forests are not
c© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 275–283, 2016.
DOI: 10.1007/978-3-319-30858-6 24
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optimal for medical imaging data, which is (a) highly correlated at the patient
level, and (b) unbalanced, with the target class often having a prevalence of
1 % or less. We therefore introduce in this paper a new algorithm for training
Decision Forests, called Segmentation Forests, which avoids these problems by
bootstrapping training data first at the patient level, and by using the resulting
out-of-sample patients to empirically discover a threshold at which the Dice
coefficient of the segmentation is maximized, avoiding the need for holding out
training data to tune the classifier.

We begin the paper by recalling the notion of ischemic penumbra (Sect. 2)
and summarizing the details of the ISLES challenge (Sect. 3). The Segmentation
Forest Algorithm is introduced in Sect. 4. Results of applying this technique to
the ISLES acute stroke dataset are reported in Sect. 5, with Sect. 6 being devoted
to a brief examination of the method, looking at the effect of hyperparameter
optimization and the differences in performance between Segmentation forests
and ordinary Random Forests.

2 The Ischemic Penumbra

Stroke is the second most frequent cause of death and a major cause of disability
in industrial countries: in patients who survive, stroke is frequently associated
with high socioeconomic costs due to persistent disability. In clinical practice,
advanced neuroimaging techniques are increasingly employed for a quick, reliable
diagnosis and stratification for therapy. Tissue-at-risk estimation is frequently
performed by MRI, with the infarct core being identified as an area of restricted
diffusion on diffusion-weighted magnetic resonance imaging (DWI-MRI). The
surrounding severely hypoperfused and potentially salvageable tissue (i.e. the
penumbra) is characterized by its delay in arterial transit time using perfusion-
weighted MRI. The clinical image interpretation is routinely performed as a
visual analysis done by neuroradiologists and/or neurological stroke experts,
since manual volumetric analysis would be too time-consuming to incorporate
into a clinical workflow. Recent studies by PET and MRI indicated that a Tmax
threshold of >6 s improves the prediction of penumbral salvage volume in acute
stroke and correlates well with xenon CT and PET cerebral blood flow measures.
Thus, Tmax may be currently regarded as the most valid MR marker to estimate
the ischemic penumbra in stroke trials.

3 The ISLES Challenge (SPES)

The ISLES challenge (http://www.isles-challenge.org/) was a Grand Chal-
lenge held at the International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI) 2015 (www.miccai2015.org), which
consisted of two separate subchallenges: sub-acute ischemic stroke lesion seg-
mentation (SISS) and acute stroke outcome/penumbra estimation (SPES). This
paper documents a method used to compete in the SPES portion of the chal-
lenge. The SPES dataset consists of multimodal imaging (T1 contrast, T2, ADC,

http://www.isles-challenge.org/
www.miccai2015.org
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and TMax, TTP, CBV and CBF perfusion maps) from acute stroke cases,
together with a semi-manual segmentation of the perfusion lesion based on a
TMax threshold of 6 s. The goal is to build a technique which, learning from
a training set of thirty cases, is able to best approximate the semi-manual seg-
mentation on a dataset of twenty additional cases. The metrics used to compare
segmentations were Dice coefficient and average symmetric surface distance.

4 Segmentation Forests

Decision tree classifiers are, in general, low bias, high variance classifiers. A
Decision Forest is a simple form of ensemble model, consisting of a set of decision
trees whose output is determined by averaging the outputs of the individual
trees. The ability of a Decision Forest to outperform a single decision tree relies
on decorrelation of the trees in the forest to reduce the variance of the model
(Fig. 1).

Fig. 1. Diagram illustrating the segmentation forest algorithm: N random forest clas-
sifiers are trained, each on a random sample (with replacement) at the patient level.
The Out-Of-Sample patient cases are then used to find a threshold which optimizes the
mean Dice coefficient. The final classifier is obtained by averaging the outputs of the
N random forests, and then thresholding with the average of the thresholds obtained
during training

The Random Forest algorithm due to Breiman achieves this decorrelation by
inserting two sources of randomness into tree construction: bootstrap aggrega-
tion and the random subspace method. The random subspace method restricts
the feature set available when building each split node of each decision tree, and
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bootstrap aggregation (or bagging) refers to the practice of building each tree
of the ensemble on a bootstrap sample of the data, rather than on all the data
available.

The success of the Random Forest algorithm depends on the ability of the
algorithm to decorrelate the decision trees it constructs. Medical imaging data
presents a particular problem, in that the voxel-wise data contained in a single
volume is clustered. Given a training set, such as the SPES training set of 30
patients, any bootstrap sample of the voxel-wise data contained in that training
set will be very similar to the original dataset: put simply, bagging on clustered
data is less effective at reducing variance than bagging on unclustered data.
In addition the out-of-bag error of a Random Forest classifier is not reliable if
the data it is trained on was clustered, as most out-of-bag datapoints will be
correlated to in-sample training datapoints.

An existing solution to this problem of subject-level clustering can be found in
the RF++ algorithm of Karpievitch et al. [4], which replacing the bootstrapping
algorithm of Random Forests with a two-stage sampling: first at the cluster level,
then over data aggregated over the clusters.

A second problem inherent in medical image segmentation is the correct
calibration of models: a naive threshold of 0.5 set on the output of the classifier
will not in general give an optimal segmentation, but instead an over- or under-
segmentation. Whether it is an over- or under-segmentation depends on many
factors, including the relative prevalence of tissue classes in the training data. It
is possible to use a hold-out validation set to approximate the optimal threshold,
but this creates a tension between training and calibration: any data used for
training will be unavailable for calibration and vice-versa.

The segmentation forests algorithm improves on the performance of random
forests on clustered data, by respecting the cluster structure. In essence, a seg-
mentation forest is a bagged random forest, where the bagging takes place at
the cluster level. A subset of the patients available for training are selected with
replacement, and a random forest RF trained on the data from those patients.
This is repeated a number of times, and the final classifier is simply the union of
all the random forests: an ensemble of ensembles. This is similar to the sampling
regime in RF++, with the difference being that in segmentation forests, for each
cluster-level sample we build a forest, rather than a tree.

Each time a random forest RFj is built during the segmentation forest algo-
rithm, there is a set S of “out-of-bag” (OOB) patients not used to construct
RFj . This set can be used to assess segmentation performance as follows: for
each i ∈ S, find the threshold θji which maximizes the mean Dice coefficient over
RFj applied to S \ i. Each θji is an estimate of the optimal threshold of RFj

which did not use the data in case i, either for training or calibration, and can
therefore be used to evaluate the performance of RFi on case j. An estimate θj
for the optimal threshold for RFi is given by the average over S of the θji , and
the average over all random forests of the θj gives an estimate of the optimal
threshold for the whole ensemble.
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5 Segmenting the Ischemic Penumbra Using
Segmentation Forests

Our segmentation algorithm uses pre-processing and texture and spatial features
inspired by the features used in the BraTumIA brain tumour segmentation tool
[5] and a previous pilot study on stroke segmentation [2].

5.1 Standardization and Feature Processing

Prior to model construction, features were extracted from the multimodal imag-
ing volumes using the Insight Segmentation and Registration Toolkit, available
from http://itk.org.

Before feature extraction, the structural image modalities (T2 and T1 con-
trast) are smoothed (using the GradientAnisotropicDiffusionImageFilter from
ITK version 7.4.2) and a window filter is applied to the TMax map (with mini-
mum value 0 and maximum value 100) to suppress abnormally high values. All
feature maps were then rescaled with ITK version 7.4.2 to lie within the range
[0, 256].The T1c image is coregistered to an atlas to allow extraction of atlas
coordinates and the location of the mid-sagittal plane.

We then extract, for each voxel of the volume, and each image modality,
a feature vector, consisting of the following features: - local texture features,
extracted over both 3-by-3-by-3 and 5-by-5-by-5 voxel volumes - mean intensity
- intensity variance, skewness and kurtosis - signal to noise ratio, entropy and
energy - local intensity percentiles - local image gradient features (gradient mag-
nitude computed using GradientMagnitudeRecursiveGaussianImageFilter from
ITK version 7.4.2, with a sigma of 1.0) - point intensity of the gradient magni-
tude - mean of the gradient magnitude over 3-by-3-by-3 and 5-by-5-by-5 volumes
- variance of the gradient magnitude over 3-by-3-by-3 and 5-by-5-by-5 volumes -
a symmetry feature computed using a corresponding point on the contralateral
side of the brain (found using the previously computed atlas coordinates): the
difference between the voxel intensity and a smoothed intensity (computed using
a SmoothGaussFilterType from ITK version 7.4.2) from the contralateral side.

Additional features were the unscaled image modalities, atlas coordinates,
and an indication of whether the voxel is on the ispi- or contralesional (inferred
by comparing the means of the scaled TMax on each side of the brain.)

5.2 The Segmentation Forest Classifier

The classifier used to compete in the 2015 ISLES challenge was built using the
following parameters: the classifier was an ensemble of ten Random forest classi-
fiers, each built on a random sample of 20 cases from the 30 training examples,
with a maximum tree depth of 30 and an “mtries” parameter of 60. The seg-
mentation forest classifier was implemented using the SpeedRF Random Forest
implementation of the H2O machine learning package (Version 2.8.4.4), and the
accompanying R package, both acquired from on CRAN or via http://h2o.ai.

http://itk.org
http://h2o.ai
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This implementation of Random Forests is faster and more memory-efficient than
the standard R implementation, allowing for the use of all data in the training
sets, without downsampling of the background class.

An example of the output of the classifier and the resulting segmentation can
be seen in Fig. 2.

5.3 Results

The out-of-bag analysis of the classifier yielded a mean Dice coefficient of 0.851.
On the testing data, supplied by the ISLES challenge, the mean Dice coefficient
was 0.82 with a standard deviation over the testing cases of 0.08.

Fig. 2. Sample output of the Segmentation forest classifier. (A) The TMax map.
(B) The raw output of the classifier, displayed as a heatmap. (C) The segmentation
obtained by thresholding on the output. (D) The Ground truth as provided in the
SPES dataset.

6 Properties of the Classifier

By examining the out-of-bag error of the classifier, we can investigate the extent
to which the Segmentation Forest classifier outperforms ordinary random forest
classifiers, and the effect of data imbalance on performance.

6.1 Methodology

The following results are derived from the out-of-bag analysis of a number of
segmentation forest classifier constructions. In each case, the same sed was used
to select cases for the construction of the constituent Random Forests, and so
OOB data should be comparable between different parameter settings.

6.2 Random Forest Parameters

To assess the effect of varying the random forest parameters depth and mtries on
performance, we performed a small grid search on alternative parameters. The
results are displayed in Table 1.
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Table 1. Effect of changing random forest parameters on segmentation forest perfor-
mance: full data

mtries Depth ntree Mean AUC Mean Dice

30 20 50 0.991 0.847

30 30 50 0.991 0.849

40 20 50 0.991 0.849

40 30 50 0.992 0.850

60 20 50 0.992 0.851

60 30 50 0.992 0.851

6.3 Benefit of Segmentation Forest over Tuned Random Forest

Each ensemble resulting from the above OOB performance analysis has a differ-
ent size, ranging from two to seven models. Since each random forest has 50 trees,
this means the resulting decision forests have between 100 and 350 trees. To ver-
ify that patient-level bootstrapping has the expected effect on the strength of
the model, we built ordinary Random Forest models with 400 trees (depth=30,
mtries=60), each trained on the data from 20 patients and calibrated using the
remaining nine patients. This resulted in a mean Dice coefficient of 0.845, with
an mean AUC of 0.992.

6.4 Benefit of Using More Trees

We also built a single Segmentation forest with 400 trees in each random forest,
to assess the benefit of using more trees. The resulting decision forest (with 4000
trees) took roughly twelve hours to train (versus just over an hour and a half
for the model built using 50 trees in each random forest), and had a mean Dice
of 0.853.

6.5 Effect of Undersampling the Background Class

We reran our original grid search, this time using data which had been balanced
by undersampling so that the balance between lesion and background voxels was
roughly 50/50. The results are displayed in Table 2, showing a modest boost in
the classifier performance over using all available data.

6.6 Effect of Using Default Thresholds

To assess the contribution of the optimal threshold estimation, we also calculated
the mean Dice coefficient using a default threshold of 0.5. For the classifier
trained on all available data (mtries = 60, depth=30) this resulted in a decreased
Dice coefficient of 0.844. For the classifier trained on balanced data the result
was even more pronounced, with a threshold of 0.5 resulting in a Dice coefficient
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Table 2. Effect of changing random forest parameters on segmentation forest perfor-
mance: balanced data

mtries Depth ntree Mean AUC Mean Dice

30 20 50 0.992 0.850

30 30 50 0.992 0.852

40 20 50 0.992 0.851

40 30 50 0.992 0.852

60 20 50 0.992 0.852

60 30 50 0.992 0.854

of 0.824. The mean optimal threshold for the models built on balanced data
was 0.70, emphasizing that setting the correct threshold is vital to give a good
segmentation, even if data is balanced. We can conclude from this that the
Segmentation Forest method of generating segmentations is robust to different
levels of data imbalance, at least for the SPES dataset.

7 Conclusion

This paper introduces a new algorithm (Segmentation Forests) for training deci-
sion forest classifiers, designed to overcome problems inherent in the segmen-
tation of unbalanced datasets with clustering, such as medical imaging data.
The algorithm was the best performing entry in the 2015 SPES competition.
Our subsequent analysis suggests that the patient-level bagging employed by
Segmentation Forests has a much stronger influence on the performance of the
classifier than the parameters for construction of trees, or number of trees, or
the number of trees used. A follow-up study is in progress to apply the classifier
to other datasets and study its properties in a systematic fashion.

In addition, we are applying the same methodology to the prediction of final
lesion volume in stroke, using a delineation of the three-month follow-up lesion as
a ground truth. Our goal is to predict the lesion extent in the case of a successful
reperfusion (by, for example, mechanical thrombectomy), and also to predict the
lesion extent in case reperfusion is unsuccessful. The difference in these predicted
lesion volumes will, we hope provide additional information on which treatment
decisions in acute stroke can be based.
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Abstract. In machine learning larger databases are usually associated
with higher classification accuracy due to better generalization. This gen-
eralization may lead to non-optimal classifiers in some medical applica-
tions with highly variable expressions of pathologies. This paper presents
a method for learning from a large training base by adaptively select-
ing optimal training samples for given input data. In this way heteroge-
neous databases are supported two-fold. First, by being able to deal with
sparsely annotated data allows a quick inclusion of new data set and sec-
ond, by training an input-dependent classifier. The proposed approach
is evaluated using the SISS challenge. The proposed algorithm leads to
a significant improvement of the classification accuracy.

Keywords: Adaptive learning · Lesion segmentation · Machine
learning · Random forest

1 Introduction

Learning from large datasets becomes more and more important in computer
vision and specifically in the context of medical image analysis. A special chal-
lenge in this context is the high variability of the data – not only because of the
variety of imaging modalities and imaging configurations but also because the
appearance of pathological changes varies greatly.

An example of such variance is shown in Fig. 1. All four images are taken
from the SISS-challenge (see Sect. 3.1 for more details). Each one shows a slice
with a visible sub-acute ischemic stroke on a T2-weighted Magnetic Resonance
(MR)-image. It is easy to imagine that a classifier that is trained with all three
annotated examples is outperformed in the classification of the fourth image by
a classifier that is only trained on the left image.

Another source of differences is the inter- and intrascanner variability of
MR scanners. The transfer function of MR-scanners depends on multiple factors
like the time of acquisition, temperature changes, design differences, material
differences etc. [9]. While most differences can be reduced by normalizing the
images, there are usually still differences, especially between the images of differ-
ent devices [7,8]. Due to this, different approaches has been proposed to reduce
the variance.
c© Springer International Publishing Switzerland 2016
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Fig. 1. Even though all four images are from patients with sub-acute ischemic strokes,
the appearance of the pathology is very different. Only one of the three training patients
has a similar appearance to the test patient on the right side.

Van Opbroek et al. [10] proposed to increase the weight of images of scanners
with similar transfer functions during training to reduce the effect of different
scanners. They estimate the weight by comparing the intensities from multiple
images of each scanner. The weights are higher if the intensity distribution of a
scanner is similar to the distribution of the target scanner. While this allows to
reduce the effect of scanner variability, the different appearances of pathologies
are still present in the training data and need to be learned during classifier
training.

Based on the observation that all training data are different, Zikic et al. [11]
proposed to encode each image within a single classifier. This is done by training
each classifier with a single image but allowing over-fitting. The prediction of
all training data is then derived from merging the predicted segmentation of
all classifiers. This allows for encoding all information within the final classifier,
by training multiple sub-classifiers. But the influence of the best matches is
reduced by merging all results in the final state. If most of the training images
are different from the test image – for example like in Fig. 1 – the influence of
the different images might cancel out the positive effect of the similar image.

Another idea from computer vision is clustering of the training data or finding
the closest training images based on global image features. After the pre-selection
of the best training data, model-based approaches are used to transfer the labels
to the previously unlabeled image [12–16]. While these approaches use only a
subset of the training data set, the closest neighbors are defined by feature
distance. However, this distance does not necessarily reflect the best training
images as there might be features, which are irrelevant for the final training but
influence the feature based distance.

Ischemic strokes are a disease with highly heterogeneous appearance. This
makes the segmentation of ischemic strokes challenging. Reliable segmentations
are necessary to locate, segment, and quantify the lesions. Without an automatic
segmentation findings like suitable markers for treatment decisions, are subject
to observer variability. Due to this reason automatic ischemic stroke segmenta-
tion is important to support clinicians and researchers to provide more robust
and reproducible data [19,20].
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We propose a new, learning-based approach for lesion segmentation. With
’Input Data Adapted Learning’ (IDAL) we propose to learn the best training
base for every image and use this to predict a subgroup of best training images
for every previously unseen image. We incorporate ’Domain-Adapted Learning
from Sparse Annotations’ (DALSA) to allow the fast adaptation to new dataset
and to prove that our method is able to be incorporated in more complex setups.

2 Method

Instead of training a single classifier that is used to predict all unseen images we
propose to adaptively train a new classifier for every new image. This allows to
use only few, but similar images during training. While such an approach makes
each classifier less general, we expect that the so-trained classifier is better suited
to deal with the afore mentioned heterogeneity.

We realized this approach with a three-staged algorithm (Fig. 2). During the
first stage, that is performed offline like traditional classifier training, we train
an similarity classifier (SC) which can group images based on some similarity
measure.

The offline trained SC is used in the second stage – the online training – to
find images that are similar to the new, unlabeled image. Based on this indi-
vidual, input-dependent subset of training images, a new voxel-based classifier
(VC) is trained. For this, we used the approach presented in [5] which allows
to train a voxel-based classifier (VC) from sparsely and unambiguously labeled
regions (SURs). This VC is then used in the last stage to label each voxel of the
new image, leading to the prediction mask.

2.1 Preprocessing

A simple preprocessing was applied before the images were used for training or
prediction. The brainmask includes all voxels for which neither T1 nor T2 are
zero.

The intensities of the MR-images were linearly normalized so that the mode
of ares showing CSF and the overall brain tissue were 0 and 1, respectively. We
found that using mode instead of mean provides a more robust normalization
since the mode is less affected by the size of the lesions. We obtained the CSF-
area by training a simple classifier using only pure voxel intensities.

2.2 Similarity Classifier (SC)

The main idea of our work is to identify a subset of similar images which are then
used to train a voxel classifier. The similarity between two images is defined by
the ability to successfully use them to train a classifier. Accordingly, we define
the similarity ρ(I0, I1) of two images I0 and I1 as the Dice score that a voxel
classifier trained with I0 scores if the mask for I1 is predicted.
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Fig. 2. Overview of the workflow of the proposed IDAL-algorithm. A similarity clas-
sifier is trained a-priori based on the defined similarity between the training images.
Using the so-trained SC, a selection of the training data is made for every new input
image. This selection is then used to train an input-dependend voxel classifier and
finally estimate the lesion using the individual VC.

While it is possible to directly calculate the Dice-score based similarity of two
images with known voxel labels, it needs to be estimated for new images with
unknown voxel labels. We chose Neighbourhood Approximating Forests (NAF)
for this task [1]. NAFs are trained to find the most similar images based on a
high-dimensional representation by training trees that group the training data
such that the similarity within each leaf node is maximized. For the prediction,
the new images are then passed down each tree and all samples within the leaf
node are returned. The more often a specific training image is returned the more
similar it is to the test image.

To train the NAF and to use it as SC we first calculated the similarity of all
training images according to the previously given definition of ρ(·, ·). We then
built a feature vector for every patient based on the normalized T1, T2, DWI, and
FLAIR images by calculating the first order statistics for the whole brain (Inten-
sity minimum, maximum, range, mean, variance, sum, median, std. deviation,
mean absolute deviation, root means square, uniformity, entropy, energy, kurto-
sis, skewness and the number of voxels). Although these are all image-derived
values, the proposed approach also allows the use of additional information like
patient age, diagnosis, etc., which are not included in the challenge data.

We trained the NAF with 100 trees, a minimum of two samples at each leaf,
30 random tests for best split at each node during the training and a maximum
tree depth of 12. After predicting a new patient (Online Training stage, see
Fig. 2) we chose the three highest ranked training images to train the new VC.
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The distances, which are used by the provided implementation of the NAF-
algorithm, are calculated as 1000 − 1000 ∗ similarity.

2.3 Voxel Classifier (VC)

The estimation of voxel labels is done by a voxel-wise classification. For this task
extremely randomized trees (ExtraTrees)-based classifiers are used [2]. Previous
work showed that ExtraTrees usually perform slightly better than canonical
Random Forests [4] and were already successfully applied in lesion segmenta-
tion [6]. Voxel features were derived from the normalized MR-images. We used
the intensity and the differences between each of the modalities. Additionally,
the Gaussian, Difference of Gaussian, Laplacian of Gaussian (3 directions), and
Hessian of Gaussian were calculated with Gaussian sigma of 1 mm, 3 mm, and
5 mm, leading to 82 features per voxel.

To allow the use of sparsely and unambiguously annotated regions (SURs)
we adapted DALSA-learning [3,5]. This method reduces the sampling error that
is introduced by the sampling scheme by weighting all samples according to the
number of labeled samples and the overall number of similar samples within
the brain. It therefore improves the classifier quality if SURs are used for the
training and was already successfully applied to different scenarios [17,18].

Even though all data are already labeled, we relabeled the training data
again using SURs. This was done in less than 21/2 h for the complete data set.
To incorporate DALSA, every training sample x is weighted with a correction
weight w which is set to ensure that the probability for this sample in the training
data equals the probability P for this sample in the complete image, i.e.

w(x) =
PComplete Image(x)

PSURs(x)
(1)

We estimate the unknown w(x) by training a parameter-less logistic regres-
sion that differentiates between voxels that are labeled by SURs and voxels that
are within the brain mask. By using the probabilistic output of this method, w
can be estimated [5] without performing a division.

Each ExtraTrees classifier was trained with 50 trees and the Gini purity as
optimization measurement. The maximum tree depth was not limited. During
each training (during similarity calculation and final VC training) the best class
weights and minimum samples at leaf nodes were independently estimated using
cross validation.

3 Experiments

3.1 Data

We chose the data of the 2015 SISS challenge, a part of the 2015 MICCAI
ISLES challenge [19]. The objective of this challenge is the segmentation of sub-
acute ischemic stroke lesions in MR images. The performance of the contributed
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methods is evaluated using a test set consisting of 36 patients, the provided
training set consists of 28 patients.

Four different modalities, namely: T1-, T2-, DWI-, and FLAIR-weighted
MR-images, are available for every patient. All images are co-registered to the
FLAIR-weighted images and resampled to a common isotropic spacing of 1 mm3

and the brain is stripped. A manually created ground truth with annotations of
sub-acute ischemic stroke lesions is provided for the training data. All training
data originated from the same center, while the test data is provided by two
different centers.

A more detailed description of the data, the applied preprocessing, and moti-
vation for the challenge can be found at [19,21].

3.2 Evaluation of Similarity Classifier

We calculated the similarity matrix for all training data. This is done in the
same way as it is done during the complete training algorithm, i.e. one cell
of the matrix corresponds to the dice score that is obtained if an classifier,
that is trained on the corresponding training image, is used to segment the
corresponding test image. The resulting matrix indicates how similar the patients
are to each other. Please note, that our similarity measurement is not symmetric
and the corresponding matrix is therefore also not symmetric.

We then trained SC based on this matrix, using a leave-one-out approach.
We removed the column and row which corresponds to a single patient, trained
the SC and then predicted the removed patient. Based on this routine, the three
patients that were closest to the current patient are marked in the diagram.

3.3 Evaluation of Complete IDAL Algorithm

We evaluated IDAL using the training data of the SISS challenge. We conducted
a leave-one-patient-out experiment using three different types of classifier. The
first approach is a traditional approach, using all training data to train a single
classifier using the same voxel classifier (same normalization, features and clas-
sification algorithm). This classifier is then used to predict the unseen patient.
We did no further selection of the training data. The results of this classifier are
used as baseline.

The second classifier is the proposed scheme. Based on the prediction of the
SC, three patients are used to train a patient-specific classifier. The SC is trained
without knowing the left-out patient, i.e. similar to the approach described in
Sect. 3.2.

The third classifier is used to further evaluate the influence of the SC used.
Instead of predicting the closest neighbors, we determined them from the pre-
calculated similarity matrix. This is of course not possible for new data since the
real best is not known for data without the ground truth. Nevertheless, we chose
to report the results of these experiments to show the impact on the SC for the
results. This also shows what the expected best results would be if a perfect SC
would be used.



290 M. Goetz et al.

4 Results

The results of our experiments for the similarity matrix are displayed in Fig. 3.
The true similarity is color-coded with higher values appearing darker. The SC-
selected training patients are marked with crosses. For a perfect SC, the crosses
would always be at the position of the darkest cells, i.e. the most similar patients.

Fig. 3. The calculated similarity between different patients from the training data set
is color coded. The crosses mark the training patients that have been selected by the
similarity classifier during the leave-one-out.

The result of the evaluation of IDAL with the training data is shown in Fig. 4.
The proposed method (IDAL) does return better results compared to a naive
approach. The same result was observed for the test results where we obtained
Dice-Scores of 0.37 ± 0.30 and 0.39 ± 0.33 with the conventional and proposed
method respectively. Using a perfect SC further improves the segmentation qual-
ity and gives the best result. Of course, this is a theoretical result, as this method
cannot be applied to images with missing segmentation.

4.1 Qualitative Results

Example results that are achieved with our proposed method are given in Figs. 5
and 6. There are some example slices given from data of the testing dataset.
For every displayed patient, the FLAIR, the segmentation obtained from the
conventional approach, as well as the segmentation obtained from IDAL are
shown.
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Fig. 4. Dice-scores obtained during the leave-one-out experiments. Left: Traditional
approach, a single classifier was trained for all images. Middle: IDAL as proposed in
this paper. Right: theoretical best result that can be obtained with IDAL if a perfect
SC would be used. This approach cannot be used for previous unseen images since it
requires the knowledge of the dice scores.

5 Discussion

The results of our leave-one-out experiment showed that the use of IDAL leads
to a visible boost of segmentation performance. Within the training case, the
median dice score is increased by roughly 0.1 if IDAL is used instead of a single
classifier (Fig. 4). It is also visible that further improvement is possible if a better
similarity classifier is used, based on the fact that using a perfect similarity clas-
sifier leads to a 0.1 improvement compared to the proposed method. Therefore,
we conclude that there is further potential for improving this technique.

The improvement of the similarity classifier can be done by either changing
the used technique or by using a better set of features to describe the images. This
could be image-related features, like spatial pyramid [22], gist [23], or the his-
togram. Another possibility is to use non-image related patient data, for example
patient age or time since stroke. These data can be included without changing
the algorithm, making the proposed method very flexible. We strongly believe
that including these data would further improve the quality of the similarity
classifier, but we were not able to show this, since these data are not part of the
challenge data set.

We used three images to train the voxel classifiers during our experiments for
this paper. This number was chosen only as a starting point without any closer
evaluation as to the best number of images – this choice will be evaluated with fur-
ther experiments. We think that the proposed method will perform even better if
the number of used image is adapted to the given data set. We also plan to evalu-
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Fig. 5. Exemplary results of a single slice for test-patients 03–07.
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Fig. 6. Exemplary Results of a single slice for test-patients 08–12.
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ate the proposed method using new voxel classifier approaches and new datasets.
Incorporating a larger training base will allow more sophisticated statements.

We used a very basic approach for our challenge contribution, especially
avoiding all post-processing. We did this in order to reduce the effect of the
post-processing. Since the post-processing seems to have a big influence in the
final segmentation quality, a further increase could be achieved by an additional
cleaning of the segmentation mask.

As the proposed method does not depend on a given combination of features
or a specific voxel classifier, it is possible to incorporate IDAL with most other,
learning-based approaches. We expect that most approach could benefit from
the proposed method.

6 Conclusion

We proposed a new, learning-based approach that allows to learn from hetero-
geneous training data. The algorithm reduces the variance within the training
data by selecting a patient-specific training base. We showed that this approach
is superior to training a single classifier for all training data.
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Research Foundation (DFG) within project I04, SFB/TRR 125 Cognition-Guided
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