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ABSTRACT

Test time augmentation has been shown to be an effective
approach to combat domain shifts in deep learning. Despite
their promising performance levels, the interpretability of the
underlying used models is however low. Saliency maps have
been widely used in medical image analysis as a post-hoc
interpretability method for deep learning models. Beyond
explainability, in this study, we propose SaGTTA (Saliency
Guided Test Time Augmentation), the first learnable frame-
work that introduces saliency information to guide test time
augmentations via a novel self-supervised loss term. Dur-
ing test time augmentation, the proposed self-supervised
saliency-guided loss aims at promoting augmentation poli-
cies that enhance the distinctiveness among class-specific
saliency maps. By promoting saliency distinctiveness among
different labels of the test image during test time augmenta-
tion, the data distribution discrepancy between the test image
and training dataset is alleviated. We compared the proposed
method with a state-of-the-art method, using a publicly avail-
able dataset, showing improvements in terms of performance,
model calibration, and robustness. The code will be made
publicly available at https://github.com/yousuhang/SaGTTA.

Index Terms— Saliency map, Intepretability, Test time
augmentation, Medical image segmentation, Domain shift

1. INTRODUCTION

Deep neural networks (DNN) have been actively proposed
to tackle clinical problems and have been highly impactful
in achieving state-of-the-art performance levels in medical
image segmentation [1]. One common challenge in clinical
practice is known as domain shift [2] which leads to a dras-
tic decrease in performance for unseen datasets presenting
large discrepancies in terms of acquisition protocols, vendors,
etc. [3]. Many approaches have been proposed to mitigate
the issue of domain shift. However, these methods typically
require labeled multi-center/-vendor data during training to
learn domain-agnostic representations [4], or leverage unla-
beled data across vendors to improve the model generalisa-
tion [5], which is challenging in clinical practice due to the
scarcity of test data, or the need to retrain/fine-tune trained

models upon deployment. Therefore, a model that can self-
adapt without these limitations has raised much interest. Re-
cently, methods for test time adaptation and test time augmen-
tation (TTA) have been proposed to tackle this issue. Test
time adaptation aims at modifying the model parameters us-
ing unlabeled data and self-supervision [6], while TTA pro-
motes the test data distribution to be close to the distribution
of the training dataset [7]. In this study, we focus on TTA
due to its flexibility and no requirements to change a model
once it has been deployed (e.g., no need for re-certification of
modified models).

Specifically, OptTTA [7] is a state-of-the-art approach
that takes advantage of batch norm statistics learned from
the training dataset to optimize and select the best augmenta-
tion policy yielding the highest similarity between the batch
norm statistics of the training and augmented test set. De-
spite the success of OptTTA, it requires batch norm statistics
which does not apply to all DNN segmentation architectures.
Moreover, batch norm statistics might also not well approx-
imate the training data population statistics in all cases, as
reported in [8]. Besides, the interpretability of the underly-
ing neural network method and associated batch-norm-based
policy optimization remains low, which is of importance in
clinical practice when deploying and auditing these models.
Motivated by SIBNet [9], which uses saliency information
within an inductive bias for improved training of classifi-
cation models, we investigated the possibility of employing
saliency information to guide test time augmentations via a
novel self-supervised loss term. During test time augmenta-
tion, the proposed self-supervised saliency-guided loss aims
at promoting augmentation policies that enhance the distinc-
tiveness among class-specific saliency maps. By promoting
saliency distinctiveness among different labels of the test
image during test time augmentation, the data distribution
discrepancy between the test image and training dataset is
alleviated.

Our contributions are: 1) The first learnable framework
that introduces interpretability to guide test time augmenta-
tion under domain shift. 2) The injected interpretability infor-
mation not only guides the optimization of augmentation sub-
policies but also provides saliency maps implicitly informing
about the effect of the applied data augmentation policy. 3)
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We compare our method with OptTTA in terms of model per-
formance, model calibration, and robustness against scarcity
of training data and additive Gaussian noise.

2. METHODS

Our proposed method consists of two processes as shown
in Fig. 1. The first process is optimization & selection of
sub-policies and the second one is fine-tuning and applying
the selected sub-policies to the test dataset in an ensemble
manner. In the first process, all possible augmentation sub-
policies are included and each one is optimized using a few
samples from the testing dataset. After optimization, the best
sub-policies will be selected and further fine-tuned with the
rest samples from the test dataset and applied to generate im-
age segmentations. In the following sections, we detail each
process, followed by descriptions of the proposed saliency-
guided test-time self-supervised loss term.

Fig. 1. SaGTTA workflow. First, each sub-policy is optimized
with a few samples from the test dataset and the best sub-
policies are selected. Second, the selected sub-policies are
further fine-tuned with the rest of the samples from the test
dataset. Finally, the selected sub-policies are applied to the
test dataset to generate image segmentations.

2.1. Augmentation Module

Policy and Sub-policy. A sub-policy is defined as an image
transformation or a combination of image transformations.
We adopted commonly used image transformation combi-
nations used in policy optimization, from Identity, Gamma
Correction, Gaussian Blur, Contrast modification, Bright-
ness modification, Resize Crop, Horizontal Flip, Vertical Flip
and Random Rotation. Examples of sub-policies could be
[Gamma Correction, Identity, Random Rotation]. A policy
consists of one or more sub-policies. To apply the optimized
policy, we first optimize each sub-policy in the augmentation
module and combine all selected best sub-policies predictions
to create segmentation maps for the test dataset.
Learnable sub-policy and Reparameterization. Among
considered sub-policies, some image transformations are not
learnable (e.g. Vertical Flip) and some are learnable (e.g.
Gamma Correction). For sub-policies with learnable param-

eters, we define the process as:

Ip = T (Iin; Θ) (1)

where Iin and Ip are input and augmented image volumes.
T (·,Θ) is a sub-policy with k step transformation process
parameterized by Θ = [θ1, ...θi, ..., θk]

T where θi is an n-
dimensional vector θi ∈ Rn sampled from a uniform distri-
bution:

θi ∼ U(a, b) = µi + σi · U(−1, 1) (2)

where a and b are the lower and upper bound of the parameter
space, respectively. During optimization, the distribution of
each θi is learned through gradient descent in the reparame-
terized form where µi ∈ Rn and σi ∈ Rn parameters to de-
fine the sampling mean and standard deviation, respectively.
U(−1, 1) is a n-dimensional uniform distribution where each
dimension ranges in [-1, 1].

2.2. Saliency guided optimization & Sub-policy selection

2.2.1. Sub-policy optimization

Saliency maps reflect DNN’s response to the input image
where pixel intensities reflect pixel attribution or level of
importance to the task [10]. For a segmentation model
classifying each pixel into one out of K classes, a total of
K saliency maps can be calculated, each yielding a class-
specific saliency map. We exploit this property of saliency
map methods to optimize sub-policies, by promoting class-
specific saliency maps to be as distinctive as possible among
all K class-specific saliency maps.

For a policy augmented image volume Ip ∈ RN, the total
loss function of a sub-policy optimization is defined as the
linear combination of an entropy loss (Lent), a Nuclear Norm
loss Lnn, and the proposed saliency-guided loss Lsal:

Ltotal(Ip) = Lent + α · Lnn(Ip) + β · Lsal(Ip), (3)

where α and β are hyper-parameters. Below we describe each
loss term.
Conditional Entropy Loss (Lent): Aggregates all pixel en-
tropy conditioned on the augmented image Ip.

Lent = − 1

N
ΣN

i=1Σ
K
c=1p(c|Ip) log p(c|Ip) (4)

where p(c|Ip) is the prediction probability of label c on the
augmented image Ip. This loss term encourages confidence
in the predictions of the model.
Nuclear Norm Regularization (Lnn): Regularizes the ef-
fect of entropy minimization that reduces prediction diversity.
The nuclear norm is a convex approximation of the matrix
rank. Through maximization, prediction diversity and label
discrimination are maintained [11].

Lnn = trace(
√
p(c|Ip)∗p(c|Ip)) (5)
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where p(c|Ip)∗ is the conjugate transpose of p(c|Ip).
Saliency Guided Loss (Lsal). The proposed Lsal aims at
promoting distinctiveness of class-specific saliency maps.

Lsal(Ip) =

(
K − 1

2

)−1

ΣK−2
ci=1Σ

K−1
cj=ci+1CosSim(Sci , Scj )

(6)
where CosSim(Sci , Scj ) is the cosine similarity between the

saliency of label ci and cj .
(
K−1
2

)−1
takes the mean of all

paired labels where
()

is the combination operator that calcu-
lates all combinations of K − 1 non-background labels. Each
saliency map is calculated using Integrated Gradient [12] sim-
ply adapted for segmentation.

2.2.2. Best sub-policies selection and test time augmentation

After optimization of all sub-policies using gradient descent,
the top-m sub-policies yielding the lowest loss values Ltotal

(Eq.(3)) are selected to be further fine-tuned. During test time
augmentation, we randomly draw M samples of Θs for each
sub-policy and apply them to the test dataset. The ensemble
augmented segmentation probability p̂(c|Itest) is finally cal-
culated as:

p̂(c|Itest) =
1

mM
Σm

i=1Σ
M
j=1p(c|Ip

i,j) (7)

where m is the number of selected sub-policies, and Ip
i,j is

the augmented image from sub-policy indexed i and jth sam-
pled parameter set Θ.

3. EXPERIMENTS AND RESULTS

3.1. Dataset & Implementation

Dataset. We apply SaGTTA to the publicly available Spinal
Cord Gray Matter Segmentation dataset [13], which includes
four medical centers collected by different vendors. The an-
notated class labels are Gray Matter and White Matter. In
our experiments, and following [7], we specifically focus on
adapting test data from site #3 to the model trained with site
#1 since this corresponds to the most challenging domain shift
scenario for the dataset [7].
Implementation Details. Images were re-sampled to isotropic
1mm resolution with bi-cubic interpolation. For the test data,
we only applied re-sampling to the Axial plane. We trained
the segmentation model using 2D U-net due to volume in-
consistency in the cranio-caudal direction. During training,
we used batch-wise weighted cross entropy loss and ap-
plied RMSprop optimizer with a learning rate of 10−5 for
250K iterations. During optimization of sub-policies, we
set α = −0.005 and β = −0.01 empirically and selected
top-3 (i.e, m=3) sub-policies for fine-tuning using AdamW
optimizer with a learning rate of 10−3. All experiments
were implemented in PyTorch with NVIDIA GeForce GTX

Table 1. DSC(%) comparison among compared methods.
The model is trained with site 1 image volumes and tested
on site 3 image volumes. The paired t-test was applied to 20
reruns of OptTTA and SaGTTA, P < 0.005.

Direct Grid
Method Test OptTTA SaGTTA Search

DSC Mean% 57.09 79.43 80.16 80.36
DSC Std% 19.99 4.16 2.75 2.45

1080ti GPU. Segmentation performance was measured by
dice similarity coefficient (DSC).

3.2. Results

Fig. 2. SaGTTA DSC compared to OptTTA. Left: Mean and
std DSC of augmented segmentation using different percent-
ages of training data used for the trained model. Middle:
Mean and std DSC of augmented segmentation compared at
different levels of additive Gaussian noise added to the train-
ing data. Right: Reliability plot of augmented segmentation
results with expected calibration error (ECE) for SaGTTA and
OptTTA. The dashed line corresponds to perfect calibration.

As shown in Table 1, compared to OptTTA, SaGTTA
shows improved performance for mean and std DSC. To
compare to the best or upper bound of performance in this
dataset, we also ran an extensive grid search for parameters
of all sub-policies and selected the 3 best sub-policies, with
results showing that both OpTTA and SaGTTA converge very
closely to the upper bound of performance.

We also compared SaGTTA to OptTTA in three other
experiments. First, we checked for improved robustness to
smaller training dataset size by reducing its size to 75% and
50%. Second, we added different levels of Gaussian noise
to the training data. As shown in Fig. 2, SaGTTA performs
better in all ablated studies with larger means of DSC and
smaller stds of DSC. Third, we compared the calibration
properties of the two methods. The expected calibration error
(ECE) was calculated for the white matter and gray matter of
each test volume (lower values are better). SaGTTA achieved
better ECE values at 0.056 ± 0.033, indicating better cali-
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Fig. 3. Saliency map Comparison. From left to right: Original
image and ground truth, Saliency maps of gray matter (GM)
and white matter (WM) before and after applying SaGTTA
first second row, respectively. Last column: Image differ-
ences of saliency maps before and after SaGTTA.

bration properties than OptTTA. Shown in Fig. 3, we also
compared the saliency maps of each label before and after
SaGTTA. The saliency guides the test data to increase atten-
tion, especially in the edge areas of tissues. Specifically, the
silhouettes of the gray matter and white matter borders can
be observed in each label’s saliency maps after SaGTTA.

4. CONCLUSION

In our study, we propose SaGTTA, a saliency-guided test
time augmentation, and the first learnable framework that
introduces interpretability to guide test time augmentation.
SaGTTA yielded performance and robustness improvements,
along with improved calibration and interpretable information
at the benefit of optimized augmentation policies.
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