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Abstract. Despite advances in automatic medical image segmentation,
time-effective interactive correction tools are commonly required in the
clinical environment. In this work we present a new interactive correction
method for abdominal multi-organ segmentation. Our method enables
3D shape corrections through 2D interactions. During runtime local cor-
rections are used to build a conditional model, which infers the shape
of neighboring organs. The combination of 2D/3D shape deformation
model with a mechanism to propagate local corrections enables an intu-
itive and natural manipulation of 3D segmentation results, and reduces
substantially the number of interactions and correction time used for
multi-organ correction. Experimental results show the ability of the pro-
posed approach to produce high quality segmentations with 82% and
57% reductions on the number of user interactions and correction time,
respectively, in comparison to corrections performed on a single-organ
basis.

1 Introduction

The wide variability of imaging protocols, scanning parameters, and the intrinsic
discrete nature of medical imaging devices, makes image segmentation a difficult
task [1]. In clinical radiological evaluation of abdominal disorders this difficulty
is further increased, as the clinical diagnosis does not rely solely on the analysis
of a single organ, but on a comprehensive analysis over a group of organs [2].
Therefore, the segmentation task becomes a multi-organ problem. From the early
1980’s, these problems have been addressed from a variety of directions [1, 3, 4].
Pattern recognition, image processing, and computer vision fields have assembled
a wide spectrum of segmentation algorithms. Nevertheless, the performance of
these algorithms is still application-specific and despite the progress in automatic
segmentations, the segmentation task has become in practice a process where
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a post-correction and checking of the segmentation result has to be performed
in order to obtain accurate results of clinical utility. Nowadays the corrections
methods used in the clinics are still performed on a single organ basis, and
the most popular correction methods employed are still two-dimensional (e.g.
brushing, active 2D-contours, manual polygons). Clinicians (typically a radiolo-
gist) spend exhaustive time checking slice by slice, and correcting segmentation
results using these tools. In this regard, it is essential to reduce the correction
time while maintaining and improving the quality of the final segmentation with
minimal number of interactions.

Several correction methods have been proposed in the literature, e. g., Heckel
et al. [5] used a 2D live-wire extrapolation to edit the segmentation contours,
Grady et al. [6] employed a graph approach to edit the initial segmentation, and
Kronman et al. [7] applied a combination of min-cut segmentation and laplacian
deformation for the correction. Criminisi et al. [8] created a segmentation tool
(GeoS) based on a conditional random field and geodesic distance, which also
could be used for segmentation correction through refining of the segmentation
via additional brushes enforcing corrections or by slice-wise 2D brushing tech-
niques. These corrections tools are suitable to correct errors from algorithms
based on image thresholding or patter recognition techniques. However, algo-
rithms based on deformable models, where the error is caused by the initial
alignment or the registration technique [9], would need other approach. In [10],
Schwarz et al. proposed the use of contour-dragging interactions and a Gaussian
kernel in order to weigh the local influence of 3D shape deformations. In [11],
Timinger et al. proposed a modified active shape model-based segmentation that
introduces user interactions into a user-defined deformation energy term. In these
single-organ correction approaches special attention is needed in order to
correctly define the size of the Gaussian kernel used to locally weigh user-based
deformations.

In this paper, we present, to the best of our knowledge, the first multi-
organ correction method, which focused on reducing the correction time and
the number of interactions of multi-organ segmentation. Our approach produces
real-time 3D multi-organ correction through 2D contour manipulation over the
initial segmentation. Inspired by the 3D direct manipulation approach presented
by Hsu et al. [12] where the Free Form Deformation (FFD) of Sederberg et
al. [13] was improved. We created a new intuitive 2D/3D shape manipulation
tool oriented to clinical enviroment. The correction result, produced by these
CAD techniques, is used to build a posterior statistical shape model [14, 15] to
infer the shape of neighbouring organs. In this way, user corrections performed
at the organ level can be effectively propagated to neighbouring organs, enabling
in this way a faster and intuitive multi-organ segmentation correction.

We demonstrate the ability of the proposed approach to yield a substan-
tial correction speed-up on segmentations produced with the recently proposed
Generalized Hierarchical Active Shape Model [16]. On a set of leave-one-out ex-
periments on a database of 18 abdominal CT images comprising spleen, right
and left kidneys, gallbladder, pancreas, liver and stomach, we demonstrate the
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ability of the proposed approach to produce high quality segmentations with
an average of 82% reduction on the number of user interactions, and a 57% re-
duction on the correction time, as compared to the single-organ based method.
Similarly, at the same number of interactions the proposed approach yields an
average increase in Dice coefficient of 26.3%.

2 Methods

The proposed correction method is shown in Figure 1. As inputs an initial seg-
mentation and the corresponding medical image are loaded into the system.
Three 2D views (sagittal, coronal and axial) with the overlaid contour of the 3D
segmented shape are displayed. These contours are created from the intersection
between the slice planes and the 3D shape. The correction process is performed
through contour manipulation, where the user can drag and drop any point of
the contour. After the mouse drop event is triggered, the deformation method
(section 2.1) updates the shape based on the desired position. This new shape
is used in conjunction with a shape model of the organs to build a posterior
shape model, which will update the shape of neighbouring organs (section 2.2).
Finally, the 2D slices with the new contours are automatically updated in real-
time, enabling a fluent correction process. In the following sections we describe
in details each part of the correction pipeline.
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Fig. 1: Correction Pipeline. As inputs, the system receives a medical image and the segmentation
result (labeled image or mesh). The correction is performed through contour manipulation in a
2D environment, this manipulation is then transformed to a 3D shape deformation, which is then
used within a statistical shape model scheme to create a posterior model that predicts the shape of
neighbouring organs. This process continues over several iterations until the user is satisfied with
the final result.

2.1 Deformation-Based Correction Method: from 2D interactions
to organ-level corrections

To create a fast and intuitive interactive correction framework, we propose a
FFD [13] based model to generate 3D deformations from 2D user interactions.
In particular, the proposed model is deformed in terms of a tensor product of
trivariate Bezier polynomial. The new shape of the geometrical model X can be
computed as
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, where xffd is the deformed position of the point x, P is a vector containing
the Cartesian coordinates of the control points created on the parallelepiped
region of X (see white grid in Figure 2), and (s, t, u) are the coordinates of the
point x in terms of the local coordinate system. Thanks to this mathematical
model (Eq. (1)), the user is able to control the 3D deformation process through
3D control points manipulation. However, the direction of the movement of the
control points is not directly related to the desired deformation (i.e. the user has
to figure out the position of the control point that yields a specific deformation
of the mesh). To solve this issue, and thus enable direct 3D deformations from
contour manipulations, we adopted the Direct-Manipulation of FFD model pro-
posed by Hsu et at [12] where a direct manipulation on the mesh is performed
by the user, which will used to compute the position of the control points that
produce such deformation.

Fig. 2: Overlapping challenge. Left: Red arrow shows the direction of the correction needed to solve
the overlapping between the liver and the stomach. Center: after correction, both organs move in
the same direction and the overlapping remains. Right: Grid of control point covering all the organs.

2.2 Posterior Shape Model Estimation: from organ-level to
multi-organ corrections

The corrected organ, produced by the deformation model presented in section 2.1
can be combined with an existing statistical shape model of the abdominal organs
(e.g. [16, 2]) to build a posterior shape model [14, 15] of the abdominal organs.
The main idea is to influence the shape of neighbouring organs by the shape of
corrected organ sg. The hypothesis is that the shape correlation among organs
enables improved shape predictions of these neighbouring organs [16]. Formally,
given a statistical shape model as a multivariate normal distribution N (µ,σ),
a principal component analysis of the covariance matrix (σ = UD2UT) enables
a compact parametric representation of shapes s(α) = µ+ UDα = µ+ Qα.
Given a partial or complete corrected organ shape, a posterior shape model
N (µc, σc) can be computed as,

p(s|sg) = N (µ+ Qη,QΛQT)
µc = µ+ Q(QT

g Qg + σ2In)−1QT
g (sg − µg)

Σc = σ2Q(QT
g Qg + σ2In)−1QT,

(2)

with η = (QT
g Qg + σIn)−1QT(sg − µg), In a shrinkage term used for co-

variance estimation, and Qg and µg submatrices of Q and µ corresponding to
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the corrected organ, respectively. The resulting posterior distribution, p(s|sg) is
then modeled by the posterior mean µc and posterior covariance Σc.

After the posterior model is created, the posterior mean µc represents the
most likely shape given the partial data. In this way, the corrections performed
on the specific organ is propagated to the neighbouring organs. Furthermore,
this will also solve the common overlapping problem present on multi-organ seg-
mentation result, Figure 2. Although, this problem could be solved using the
deformable model on a single-organ basis, this would be time-consuming, as we
will show on the results section. In addition, in the results section we demon-
strate how a cascade of corrections and posterior shape models can be used to
exploit studied shape correlations among abdominal organs [2]. Based on the
findings of Okada et. al [2] we followed the cascaded correction protocol as fol-
lows (the right arrow indicates the order by which the corrections take place),
Liver→Spleen→Pancreas→Gallbladder→Right Kidney→Left Kidney→Stomach
(the Stomach was not included in Okada study, hence we include it at the end
of the cascade correction). Upon user corrections the corrected organ shape is
“frozen” and kept fix for the following levels of the cascade. The posterior com-
ponent of the statistical shape model is then augmented with the corrected organ
in order to further add information to the organ to be corrected next.

3 Results

In order to test the performance of the proposed correction method by an expert
user, we developed a GUI software tool 4. We used the Insight Toolkit for Seg-
mentation and Registration (ITK, http://www.itk.org), and the visualization
Toolkit (VTK, http://www.vtk.org) with Qt (http://qt-project.org) for visual-
ization and GUI. To create the Statistical Shape Model (SSM) and the Posterior
Shape Model we used the Statismo framework [17]. To quantify results, the soft-
ware records the number of interactions performed by the user, with a single
interaction defined as a “mouse-down-mouse-up” event on the GUI viewer.

3.1 Data and experiments

We used a proprietary dataset of 18 CT abdominal patient images (High res-
olution scan with 1 mm slice thickness and in-slice resolution from 0.54 mm
to 0.91 mm), with each case comprising seven organs (spleen, left and right
kidney, gallbladder, pancreas, liver, and stomach). Each organ was manually
segmented under the supervision of a board certified radiologist to generate a
ground-truth segmentation. As metrics we used Dice coefficient and recorded
the number of interactions. As input segmentations to be corrected we used seg-
mentations generated by the approach recently proposed by Cerrolaza et al. [16],
where a Generalized-Hierarchical Active Shape Model (GH-ASM ) was used for
multi-organ abdomen segmentation.

4 Software video: https://www.youtube.com/watch?v=BV6Eixd5nso



6 Waldo Valenzuela et al.

Two experiments were designed to evaluate the correction speed and quality
of both, the Single-Organ Free Form Deformation model, termed below SO-FFD,
and of the Multi-Organ posterior shape model Free Form Deformation approach,
termed below MO-FFD.

Experiment 1: Single-organ correction. The aim of this first experiment
was to quantify the number of interactions and the correction time needed to
perform a correction of the complete set of organs using SO-FFD. Each organ
was corrected individually and the total number of corrections was recorded.
The stopping criteria for the correction was defined qualitatively by the expert
user, as the point where an adequate contour matching was obtained for the
entire organ. In addition, corrections were stopped when the user identified no
possible further improvements. We remark that definition of a given Dice co-
efficient as stopping criteria was not used as the quality of the segmentations
vary from organ to organ, making the definition of a single value difficult. We
also emphasise that the goal of these experiments is not to outperform previous
methods in terms of dice, but to demonstrate improved results at a lower num-
ber of user interactions. As shown in Figure 3, 300 interactions were needed to
increase the initial average Dice coefficient from 0.75±0.12 to 0.91±0.1. A total
time of 70±10 minutes of correction time per set of organs was required.
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Fig. 3: Average correction accuracy. These curves shows the average Dice coefficient of seven organs
of the abdominal region. Correction using MO-FFD ( blue curve), the red curve correction using
SO-FFD method.

Experiment 2: Multi-organ correction. In this second experiment we eval-
uated the ability of the proposed MO-FFD, to yield faster and improved correc-
tions of the organs. The analysis focused at the organ level in order to better
understand the behaviour of the method using a cascading correction scheme,
presented below. In these experiments we use a leave-one-out scheme to create
the input segmentations [16] and the posterior shape model. Figure 3 summarizes
results for both SO-FFD and MO-FFD. Although we do not report the results
herein, SO-FFD yields a sixfold speedup as compared to the common slice-by-
slice manual segmentation approach used in the clinics. Moreover, as shown in
Figure 3, MO-FFD delivers much faster corrections than SO-FFD. Only 54 in-
teractions were needed to reach an average Dice coefficient of 0.9±0.05, which
is reflected on the reduction of the correction time by 57% (30±2 minutes per
case).



Fast Correction Method for Multi-organs 7

Table 1: Dice Coefficient per Organ. The first row is the initial Dice coefficient with segmentation
ASM-based. The second row shows the final dice after correction.

Liver Spleen Pancreas Gallblader Right Kidney Left Kidney Stomach

Initial Dice 0.863 0.847 0.672 0.738 0.814 0.512 0.817

Final Dice 0.886 (+3%) 0.880 (+4%) 0.862 (+28%) 0.890 (+21%) 0.948 (+17%) 0.938 (+83%) 0.901 (+10%)

In Table 1 we report initial ([16]) and final Dice coefficient values after MO-
FFD for each organ. From Table 1, it can be concluded that the proposed
methodology increase on an average of 23.3% the initial segmentation with 57%
of reduction in the correction time from a single-organ approach. Noteworthy
that we used the same grid resolution for all the organs corrected. In future work
we will include adaptive resolution, to improve the correction accuracy of FFD
on organs like the liver that has a high shape complexity. In organs such that
spleen, where the correction was mostly driven by the posterior shape model, an
improvement on the accuracy could be achieved through an increased number
of interactions. Also, the combination of the cascade model together with FFD
correction enabled a significant increase of speed and accuracy on organs that
are difficult to segment (pancreas, gallbladder and stomach).

4 Discussion and Conclusions

The variety of image protocols and the quality of radiological images has shown
to produce errors in the result of segmentation algorithms. Therefore, correction
of image segmentation results is a common and crucial step for clinical analysis.
Specially in clinical radiology of abdominal organs where a fast and robust multi-
organ segmentation correction is needed for an effective clinical workflow and
diagnosis.

In this work we present a new interactive correction method for multi-organ
segmentation. Our method provides a 2D/3D environment that enables 3D shape
corrections through simple 2D interactions. During runtime, local corrections
are combined with a statistical shape model to build a conditional model, which
when used in a cascading scheme of known inter-organ correlations, allows us to
effectively infer the shape of neighbouring organs. The combination of a 2D/3D
shape deformation model with a mechanism to propagate local corrections en-
ables an intuitive and natural manipulation of 3D segmentation results, and
reduces substantially the number of interactions used for multi-organ correc-
tion. The proposed method provides a natural and real time user-interface for
correction of 3D medical image segmentations that has the potential to be in-
corporated in the clinical environment.

Experimental results on a database of abdominal organs (spleen, kidneys,
gallbladder, pancreas, liver and stomach) show the ability of the proposed ap-
proach to produce high quality segmentations with a 82% reduction on the num-
ber of user interactions, as compared to the number of interactions performed
on a single-organ basis. Similarly, with the same number of interactions the pro-
posed approach yields an average increase of Dice coefficient of 26.3%, with a
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reduction of the correction time of 57% in comparison to the single-organ ap-
proach. Future work includes the notion of segmentation quality assessment,
which can be learned from existing data or through previously proposed assess-
ment metrics, in order to pre-evaluate the input segmentation at a local and
organ-base level, and with this enabling improved multiple-organ corrections.
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