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Abstract— In the clinical environment, accuracy and speed of
the image segmentation process plays a key role in the analysis
of pathological regions. Despite advances in anatomic image seg-
mentation, time-effective correction tools are commonly needed
to improve segmentation results. Therefore, these tools must
provide faster corrections with a low number of interactions,
and a user-independent solution.

In this work we present a new interactive correction method
for correcting the image segmentation. Given an initial seg-
mentation and the original image, our tool provides a 2D/3D
environment, that enables 3D shape correction through simple
2D interactions. Our scheme is based on direct manipulation
(DM) of free form deformation (FFD) adapted to a 2D en-
vironment. This approach enables an intuitive and natural
correction of 3D segmentation results. The developed method
has been implemented into a software tool and has been
evaluated for the task of lumbar muscle segmentation from
Magnetic Resonance (MR) Images. Experimental results show
that full segmentation correction could be performed within
an average correction time of 6±4 minutes and an average of
68±37 number of interactions, while maintaining the quality of
the final segmentation result within an average Dice coefficient
of 0.92±0.03.

I. INTRODUCTION

Medical image segmentation is still an on-going research
topic. The wide variability of imaging protocols with com-
binations of scanning parameters makes it difficult to have a
unique solution for image segmentation [18], [3]. Moreover,
the performance of segmentation methods is also impaired
by the presence of pathologies. For example, MR images
produced with sequences such as DIXON or IDEAL [4],
[12], are used to study fat infiltration in the musculoskeletal
system. However, the quality on the muscle segmentation is
reduced by the presence of fat in the muscle and low contrast
of edges describing their interfaces.

From the early 1980s, the problem of segmentation has
been addressed from a variety of directions [2], [11], [13].
Pattern recognition, image processing, and computer vision
fields have assembled a wide spectrum of segmentation al-
gorithms. Nevertheless, the performance of these algorithms
is still application-specific. As a result, the segmentation task
has become a process where a post-correction and checking
has to be performed to achieve an optimal solution. The
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most popular correction method used in the clinics is the
so-called Brushing Tool. Clinicians (typically a radiologist)
spend several hours checking slice by slice and correcting
segmentation results using these tools. For instance, the
correction procedure of lumbar muscle segmentation takes
between 60±20 minutes. In this regard, the key issue is to
reduce the correction time and the number of user inter-
actions, while maintaining the quality of the segmentation
results.

Several correction methods have been proposed in the
literature to handle errors produced by intensity based and
shape based segmentation techniques. Firstly, for intensity
based segmentation correction, Heckel et al. [6] used a 2D
live-wire extrapolation to edit the segmentation contours,
Grady et al. [5] used a graph based approach to edit the initial
segmentation, and Kronman et al. [10] used a combination of
min-cut segmentation and laplacian deformation for the cor-
rection. In the case of shape based segmentation correction,
Timinger et al. [17] proposed a modified active shape model-
based segmentation that introduces user interactions into a
user-defined deformation energy term. Schwarz et al. [15]
proposed the used of contour-dragging interactions and a
Gaussian kernel in order to weigh the local influence of
3D shape deformations. The problem with these approaches
is that the correction depends on the number of modeled
shapes, which is a main problem of shape-based segmenta-
tions [7].

We propose a new correction method that produces a real-
time 3D shape correction through 2D contour manipulation.
We combined and adapted the DM approach presented by
Hsu et al. [8] with FFD of Sederberg et al. [16] to create an
intuitive and fast correction tool.

II. METHODS

From the point of view of the clinical environment, a
3D image correction tool has to provide an intuitive 2D
environment. We developed a 2D slice-wise interface, where
the clinician can explore and correct the 3D segmentation
result (see Fig. 5). Additionally, we selected a deformation
algorithm that reduces the number of interactions, and en-
ables real-time 3D deformation through 2D interactions. The
correction pipeline (Fig. 1) start with a medical image and its
initial segmentation. Three views (sagittal, coronal and axial)
with the contour of the 3D segmented shape are displayed.
These contours represent the intersections between the 3D
segmentation result and the image planes.
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Fig. 1: Correction Pipeline. The process received as a input a medical image (e.g.
MRI or CT) and the segmentation result (labeled image or mesh). After, the user
performs the contour manipulation in a 2D environment, the deformation method and
the contours shape are computed.

The correction process is performed through Contour
Manipulation, which means that the user can drag and drop
any point of the contour, Fig. 4. Upon contour manipulation,
the deformation method computes the new shape based on
the current position. The time difference between the events
is less than a second, which enables a fluent correction
process.

A. Deformation-based correction method

To create a fast and intuitive interactive correction frame-
work, we propose a FFD [16] based model to generate 3D
deformations from 2D user interactions. In particular, the
shape is represented by a tensor product of trivariate Bezier
polynomial. The new shape of the geometrical model X can
be computed as
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where x f f d is the deformed position of the point x, P is a vec-
tor containing the cartesian coordinates of the control points
(yellow spheres in Fig. 2a) created on the parallelepiped
region of X, and (s, t, u) are the local coordinates of the
point x.

The essential idea behind (1) is that the deformation
of the shape can be achieved through 3D control point
manipulation, (Fig. 2a). However, the direction of the motion
of the control points is not directly related with the desired
deformation and it is difficult to find the correct position
of the control points yielding a specific deformation. The
solution to this was proposed by Hsu et al. [8], where the
user defines a desired deformation through 3D vertex manip-
ulation. The position of the control points that produces the
deformation is computed by solving an “inverse” FFD. In this
way the deformation becomes more intuitive. However, 3D-
based manipulation techniques requires a training on a 3D
environment. To tackle this, we modified the method to work
directly on 2D, while keeping 3D deformations as explained
in the next section.

B. Correction Pipeline

The correction pipeline starts with a 2D visualisation of
the 3D medical image and 3D segmented shape (Fig. 3).
Initially, three 2D viewers (axial, sagittal and coronal views
located at the center of the image) are shown to the user.
The position and orientation of these slices can be defined
by the user (arbitrary re-slicing). The correction process
starts when the user drags the contour to a new position
(red arrow, Fig. 4a). This gives the initial and end-points
of the 2D displacement, which are transformed to the 3D

(a) Before deformation

(b) After deformation

Fig. 2: 3D deformation using FFD. (2a) A grid of control points (yellow spheres)
equally space on each direction is placed on the shape. (2b) Ones the user has moved
the 2D contour the new position of the control points are computed to create the 3D
deformation of the shape. Note: the grid of control points is not presented to the user
during the correction process.

coordinate system. The resulting 3D displacement is passed
to the Direct Manipulation of Free Form Deformation (DM-
FFD) algorithm [8], which computes the position of each
control point. Then, using the computed control points, the
FFD algorithm updates the new shape. Finally, the contours
of the 2D viewers are updated (see Fig. 4b). Note that the
complete pipeline is executed in real-time, which gives a
smooth correction process.

III. RESULTS

To test the performance of the proposed correction
methodology, we developed a 1software tool and evaluated
it on ASM-based lumbar muscle segmentation. Our focus
was in measuring the correction time, number of interactions,
and how different are the correction result from users with
different backgrounds.

1the tool is available on
http://www.istb.unibe.ch/content/research/medical image analysis/software
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Fig. 3: Detailed Correction Pipeline. Left: shows the GUI and a 2D vector (red arrow) that represents interactions on 2D contour deformation. Right: shows the position of the
control points before and after the deformation. Note: The grid of control points is shown only for illustrative purposes. It is not shown to the user in practice.

A. Evaluation Database and Initial Segmentions

Scans from 20 volunteers were used to create the test-
ing database. MR images of the lumbar section between
vertebrae L1 and S1 acquired with a Dixon sequence, pro-
viding fat and water images, were used as input images
(Fig. 4). To create the initial segmentations we implemented
Active Shape Model-based (ASM) segmentation proposed by
Cootes et al. [1]. We used a multi-resolution scheme to speed
up the segmentation and a statistical model of the intensity
profile for the fitting part. As initialization, we performed
manual alignment of the mean shape to each patient image.
The tool and the ASM was implemented in C++, with the
Insight Toolkit for Segmentation and Registration (ITK) [9],
and the visualization Toolkit (VTK) [14] and Qt (http://qt-
project.org/) for visualization and GUI, respectively. To
create the statistical shape model for muscle segmentation,
we randomly selected six manually segmented cases from
the muscle database and used the remaining 14 for the
ASM-based segmentation. The average Dice coefficient of
the ASM-based segmentation was 0.82±0.04. Fig. 7 (left)
summarizes the results for the ASM-based segmentation.

(a) Before deformation (b) After deformation

Fig. 4: 2D deformation using FFD. Left: shows the segmented 2D contour before
deformation. Right: shows the 2D contour before and after the deformation, the yellow
arrow indicates the direction of the 2D interaction.

B. Correction Protocols

To test the correction method, two different users (a
clinician “User B”, expert in the anatomy and corrections,
and a software engineer “User A”, expert in the tool, but not
expert in the anatomy) were asked to perform the corrections

Fig. 5: Correction software. The figure shows the graphical user interface (GUI) of the
software developed for the test.

on fourteen randomly selected subjects from the database.
The users followed a correction protocol consisting of three
steps: First, to start the corrections, the user had to select one
subject from database (we did not specify any selection).
After the selection, the MR image, contours of the initial
segmentation and initial Dice coefficient (blue status bars)
are displayed, Fig. 5. The Dice coefficient could be computed
at any time during the correction and does not interfere with
the rest of the process. Second, for the correction, the user
could explore the image using any 2D viewer. Once the error
is located, the user have to drag the segmented contour and
drop it to its correct position, which produces a 3D correction
over the overall segmentation. A global internal counter
stores the number of interactions performed on all the slices.
Third, once the user is satisfied with the result the internal
chronometer had to be stopped. Number of corrections, and
correction times were saved automatically. Furthermore, no
additional information about the correction using the tool was
provided to the user. To perform the corrections, the users
should only rely on their expertise of the anatomy and the
provided visualizations.
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Fig. 6: Comparison between users. The yellow boxplot represent the result of the User
A and the purple represent the result of the User B.
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Fig. 7: Dice coefficient after the muscle correction. The figure shows the initial Dice
coefficient (red box) and the final Dice coefficient per user after correction.

C. Correction results

For an increase in Dice coefficient from 0.82±0.04 to
0.92±0.03 (see Fig. 7), our numerical evaluations on the
correction time and the number of interactions showed no
significant difference between the users (see Fig. 6). For both
users, and independently of their different level of expertise,
the correction tool provides a fast correction process using a
lower number of interactions. The speed up of the correction
is due to the fact that one interaction on the contour produces
a full 3D deformation, which automatically covers sections
that are close to the slice where the user is working. This
reduces the slice-wise corrections on the image.

IV. CONCLUSIONS

The variety of MR image protocols and the quality of
these images, has shown to produce errors in the result
of segmentation algorithms. Therefore, correction on the
segmentations is critical for clinical analysis, where the
correction time and its quality plays a key role.

In this paper we presented a new correction method
for medical image segmentation. Our approach combines
the direct manipulation of free form deformation algorithm
within a 2D environment used in clinics, which enables 3D
shape deformations through 2D interactions. This approach
produces an intuitive and time-effective correction method,
providing a natural user-interface for correction of 3D med-
ical image segmentations.

The major limitation of the proposed method lies on the
complexity of the segmented shape, where the performance
of the FFD component lies on the number of control points
needed to model local correction. An increase on the number
of control points, increase the computation time of the defor-
mation method, affecting directly on the real-time response
of the tool. Nevertheless, in our experiments the number of
control points allowed us to keep real-time response. As
a consequence, this method cannot be used for correcting

intricate structures such as brain, without further acceleration
schemes.

The future work will focus on solving the mentioned limi-
tation through adaptive control points, where the complexity
of the shape in the region is measured and used as a decision
parameter to decrease or increase the number of control
points of the FFD component.
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