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Abstract   Finite element (FE) analysis is an important computational tool in bio-
mechanics. However, its adoption into clinical practice has been hampered by its 
computational complexity and required high technical competences for clinicians. 
In this paper we propose a supervised learning approach to predict the outcome of 
the FE analysis. We demonstrate our approach on clinical CT and X-ray femur 
images for FE predictions (FEP), with features extracted, respectively, from a sta-
tistical shape model and from 2D-based morphometric and density information. 
Using leave-one-out experiments and sensitivity analysis, comprising a database 
of 89 clinical cases, our method is capable of predicting the distribution of stress 
values for a walking loading condition with an average correlation coefficient of 
0.984 and 0.976, for CT and X-ray images, respectively. These findings suggest 
that supervised learning approaches have the potential to leverage the clinical in-
tegration of mechanical simulations for the treatment of musculoskeletal condi-
tions. 

Keywords Finite Element Analysis, Biomechanics, Statistical Shape Modeling, 
Machine Learning, Femur 

Introduction 

Osteoporosis is a very frequent disease that affects the life of many people after 
the age of 50. Osteoporosis causes annually more than 2.3 million fractures in Eu-
rope and in the USA. In 2002, it was reported that in England and Wales, the oste-
oporosis related fractures cost £942 million annually and this value would increase 
with the ageing of the population in the western countries [1]. An accurate estima-
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tion of bone strength and fracture risk can help the diagnosis of osteoporosis, lead-
ing to an improvement of patient’s quality of life and reduced associated 
healthcare costs.  

Dual energy X-ray absorptiometry (DEXA) scan is the standard clinical diagnos-
tics tool to evaluate the level of osteoporosis and the related risk of fracture. A T-
score smaller than or equal to -2.5 of femoral neck or lumbar spine indicates oste-
oporosis. T-score is the number of standard deviations (STD) that bone mineral 
density deviates from the average of bone mineral density (BMD), measured in a 
healthy 30 year old population with the same gender and ethnicity as the patient 
[1]. 

To automate the diagnosis of osteoporosis from DEXA images, Whitmarsh and 
colleagues used statistical shape and appearance models. They proposed a Fisher 
Linear Discriminant Analysis (FLDA) method to classify bones having a high or 
low fracture risk [2]. Sarkalkan and colleagues proposed 2D finite element models 
built from DEXA images to predict the fracture risk of the proximal femur [3].  

It has been shown that 3D (FE) analyses predict bone strength more accurately 
than clinical methods such as DEXA [4]. However, the adoption of FE analyses 
into clinical practice has been hampered by its computational complexity and re-
quired technical competences. To analyze the bone behavior under a certain load-
ing condition, an accurate segmentation of the bone is necessary, a valid finite el-
ement mesh must be generated, and appropriate boundary conditions need to be 
applied to the model. These preparation steps are followed by time-consuming 
calculations to determine the biomechanical behavior of the bone. All of these 
steps are time consuming and computationally demanding, which make the FE 
analysis less appealing for clinicians [5]. As a consequence, up to now, the FE 
analysis techniques did not reach the clinical workflow. Different research studies 
aimed to automate the segmentation [6] and finite element mesh creation [7,8], 
however to the best of our knowledge no method has been proposed to bypass the 
computational complexity of FE calculations. In this paper we aim at alleviating 
the aforementioned issues of FE analysis to promote their adoption into clinical 
practice. 

The two most important features describing bone biomechanics are shape and 
bone mineral density (BMD). Therefore, we hypothesize that machine-learning 
techniques can be used to predict the biomechanical properties of the bone using 
shape and density features extracted from clinical patient scans, as well as patient 
anthropometric information. To this end, we propose a supervised learning ap-
proach to predict the outcome of FE analysis. As feature predictors for bone shape 
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and density, we propose to characterize this information in a compact way by us-
ing statistical shape modeling of the anatomy [6]. In this way, we reduce the di-
mensionality of the feature space, which leverages the building process of the ma-
chine learning model, and moreover, allows us to exploit previous developments 
in statistical shape modeling (e.g. active shape models [9]). We demonstrate this 
by predicting bone stresses from clinical CT (FEP), where features are extracted 
from a statistical shape and statistical intensity model of the human femur and pa-
tient’s anthropometric information. As a second demonstration we present prelim-
inary results on a simplified scenario where FE femur biomechanics are predicted 
from 2D X-ray images. Morphometric and density information available in the 2D 
image was used as predictors. 

 In the next section we describe in detail how the prediction models are built, how 
features are defined and extracted, and one example scenario to demonstrate how 
the approach can be adapted for X-ray scans. In the Results section, the databases 
used for training and testing of the method are presented and the quality of the 
prediction is quantified. We conclude the paper by discussing the advantages and 
limitations of our proposed approach. 

 

Method 

In this section we explain the proposed method for finite element prediction, 
termed here FEP. We then follow by exemplifying how the proposed method can 
be employed for a different image modality, such as X-ray. 

Finite Element Prediction (FEP) Framework 

The main framework for FEP is summarized in Figure 1. Following the same 
scheme as in supervised learning, our approach has two stages.  

First, during the training stage, a statistical model of shape and intensity is created 
as in [10]. In short, an iterative mesh morphing method [11] is used to compute 
point correspondences for a dense volumetric mesh consisting of approximately 
190,000 nodes and 130,000 tetrahedral elements. Bone density for each node is 
then extracted from the original CT scans [10]. A principal component analysis 
(PCA) is then performed separately on shape and density information, yielding 
two separate models. As shown in Figure 1 (training phase) each bone can then be 
modeled through shape and density scores.  
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Figure 1: Schematic description of the FEP predictions. Using shape, density, and 
stress scores of training data, we learn a random forest regression model. In the test 
phase, the trained random forest predicts from anthropometric and SSM-based bone 
and density predictors, extracted for a new image, the parameters of the statistical 
stress model. 

As response variables, FE computations are used to calculate stress values on each 
node of the FE mesh. The FE analyses were performed with the commercial pack-
age Abaqus/Standard (Abaqus v6.12, SIMULIA, USA). Boundary conditions 
(BC) representing a walking situation were applied to the bone models. We chose 
the loadings of the joint configuration proposed in [12], where the node con-
straints are selected at the femoral head, the intercondylar femoral notch, and the 
lateral epicondyle of the femur. The force values were calculated based on the 
body weight. The calculated nodal stress values were used to build a statistical 
model of stress. 

A statistical model of the stress in the model was built. The scores of this model 
were used as output of the prediction algorithm. For the calculations, we consid-
ered only the top modes of shape, density and stress obtained from the statistical 
models. The number of modes included was based on the criterion to keep 98% of 
the variation that was in the dataset.  

Using the set of aforementioned predictors and response variables, a random-
forest model [13] was trained to work as the regressor. Random forests are being 
used for different classification and regression problems [14]. They are robust to 
noise and more importantly are able to predict the output even when some input 
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information is missing. Besides, Random forests are naturally conceived to use na-
ture of different data, as here anthropometric, morphometric and BMD Infor-
mation is used.  

We note here that as the output of the prediction is the parameters of orthogonal 
vectors, it is possible to train one random forest regressor for each stress parame-
ter. As suggested in [13], one-third of features are selected for each node-split, and 
the maximum depth for the tree is selected based on a 10-fold cross validation.  

During the test phase, given a patient CT image of the anatomy, the feature extrac-
tion process consists of projecting the patient's anatomy into the shape space to re-
cover shape and density parameters [6,10]. Here is where current and advanced 
SSM-based technologies (e.g. active shape models, hierarchical shape models [6]) 
can be used to compute scores for shape and density information. For the sake of 
simplicity we relied our experiments on a leave-one-out scheme where these pa-
rameters are extracted during model building. We also included anthropometric 
features such as patient's age, gender, height, and weight in the input features. Fi-
nally, after feature extraction, FE predictions can be computed to yield stress 
scores, which are converted into stress values by simply drawing the correspond-
ing sample values from the statistical model of stresses. 

FEP for X-ray Images 

By employing statistical shape and density scores to represent the anatomy and 
predict bone biomechanics, it is possible to decouple the prediction model from 
the input image modality. In other words, bone shape and density scores act as a 
“bridge” connecting the image modalities used to capture bone shape and density 
information of the patient to the image modality (CT scan) used to characterize 
bone biomechanics. As an example of using FEP for a different image modality, 
we demonstrate in this paper the case of having X-ray images as the input image 
modality used to capture bone shape and density information. We then show how 
to connect this information to shape and density scores used by FEP to predict 
bone biomechanics. 

For the sake of simplicity, in this study we built synthetic X-ray scans by project-
ing the captured CT scans to two orthogonal planes. To characterize bone shape 
and density information, we used a set of simple yet effective feature descriptors. 
From two orthogonal X-ray images a total of 21 bone morphometric dimensions, 
as shown in Figure 2, are extracted by selecting a few landmarks from both views. 
To model bone density information, the histogram of pixel intensities is calculated 
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for the frontal view, generating a feature vector of size equal to the number of his-
togram bins.  

From the triplets of 1) X-ray derived features, 2) patient's anthropometric data and 
3) corresponding bone shape and density scores, a random forest regression model 
is built. During testing, a new set of previously unseen X-ray orthogonal images is 
used to extract morphometric and bone density features to predict the bone shape 
and density scores. By cascading this model with the stress prediction model, de-
scribed in the previous section, we are able to perform bone biomechanics FEP 
from X-ray images. 

 

Figure 2: The morphometric feature descriptors extracted from two orthogonal views. 
Diameters (in green), distances (in white) and angles (in red) are shown for frontal 
and lateral views. By selecting three landmarks for each circle fitting and two for each 
line we perform the measurements. 

Results 

In this section we show the results of the proposed method for fast FE predictions. 
First the database and tools used for the study are explained. It is followed by the 
results of FEP method for CT and X-Ray scans. Database and Tools 

The database used in this study consists of 89 left femurs CT images. The resolu-
tion of CT scans was between 0.61 mm × 0.61 mm and 1.171 mm × 1.171 mm, 
with a slice thickness of 1 mm. The CT scans were acquired from 48 female and 
41 male donors with average age, height, and weight of, respectively, 60.7 ± 16.2 
years old, 165.70 ± 7.2 cm and 70.1 ± 13.9 kg. Table 1 reports statistics about pa-
tients and femur morphometric in our database. 

 

1.�Head�diameter,�2.�Large�trochanter�diameter,�3.�Condyle�diameter�I,�4.�Condyle�diameter�II�
5.�Bone�length,�6.�Neck�length,�7.�Sha �width,�8.�Cortex�thickness,�9.�condyle�size,�10.�small�trochanter�posi on�
11.�Neck�angle��

12.�Head�diameter,�13.�Sha �curve�diameter,�14.�Condyle�diameter�I,�15.�Condyle�diameter�II�
16.�Bone�length,�17.�Neck�length,�18.�Sha �width,�19.�Cortex�thickness,�20.�condyle�size�
21.�Neck�angle��

1�

2�

3�

4�

5�

6�
7�8�

9�

10�
11�

21�

16�
17�18�19�20

�

12�13�14�

15�

120



Table 1: The statistics of the bones used in the database (n=89) 
 Patients Morphological parameters 

 Age Height (cm) Weight (kg) Length (cm) Anterior curve diameter 
(cm) 

Min 23 150 42 37.8 57.0 

Max 90 180 140 50.9 297.2 

Mean 60.7 165.70 70.1 44.5 123.4 

STD 16.2 7.2 13.9 23.2 33.4 

 

To study the accuracy of FEP, we used Leave-One-Out (LOO) [15] methodology 
to train with the maximum number of samples. The method was tested for one 
sample in the database when the rest of samples were used for training. This ap-
proach was repeated until every sample in the set was tested, which resulted in 89 
different sets of training and testing samples. 

For each training set, we built statistical models of shape, and density [10], fol-
lowed by FE computations. In the calculations, we considered the top modes of 
shape, density and stress statistical models with the sum of more than 98% of the 
variation in the dataset. As a result, 20 modes of shape and 46 modes of BMD 
were used for predicting the parameters of 16 modes of statistical model of stress. 
To tune the parameters of random forest, we performed a 10-fold cross validation 
using the scikit-learn toolbox [16]. 

Results of FEP for CT Scans 

We evaluated the prediction accuracy of stress values for each test sample. We 
calculated the correlation coefficient between the ground-truth stress values for 
each mesh node (as generated by the FE computations, using Abaqus FE solver in 
the normal walking loading situation), and the predicted Mises stress for those 
nodes. The average correlation coefficient for 89 test cases was 0.984 with a 
standard deviation of 0.008, showing the high accuracy of the proposed method. 

We further evaluated the prediction performance by calculating the prediction er-
ror as the difference between ground-truth and predicted stress values. The 
ground-truth stress values, the predicted values, and the error distribution are 
shown in  
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Figure 3 for the best and the worst results. Among 89 samples, the best result was 
achieved with an average error (and standard deviation) of 0.058 (0.898) MPa in 
the mesh. For the worst case, the average error (and standard deviation) of the 
predicted stress values was equal to 1.316 (7.822) MPa. After examination of the 
worst-case result, we found that it corresponds to a patient with a body weight of 
140 Kg, while the maximum weight seen in training dataset was only 110 Kg. 
This can be improved by using more samples for training to cover a larger variety 
of the population.  

To evaluate FEP for different regions of interest, we also examined its accuracy in 
the femoral neck, femoral trochanter and the femoral shaft, separately (see  

Figure 4).  The prediction error of stress for the neck region, which is the region of 
interest in fracture risk assessment, was smaller than 0.9 MPa in average. 

 

Figure 3: The stress map predicted by FEP model for the best and the worst cases. 
From top to bottom: the stress map calculated using FE calculations (ground-truth), 
the predicted stress values for the corresponding bones, the error distribution for 
these bones. The best result is achieved for the bone on the left column with a correla-
tion coefficient of 0.994, and the worst prediction result in the database is in the right 
column with a correlation coefficient of 0.939. In absolute error distribution plots, we 
zoom in on the range of [-10, 10] MPa for better visibility. The frequency of error be-
yond this range is negligible (0.0003 and 0.0122, for the best and the worst case). 
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Results of FEP for X-ray Images 

Based on features extracted from X-ray images we predicted the parameters of sta-
tistical shape and density models. We then used these parameters as input to our 
FEP. The average (standard deviation) correlation coefficient between the predict-
ed stress using this method and the ground-truth values was 0.976 (0.012).  

We developed a test case to evaluate the benefit of cascading two learning blocks 
(from X-ray to 3D data, and from 3D data to stress parameters) as compared to a 
single learning model that directly predict stresses from X-ray based features. 
Similarly to the other models, the depth of trees is determined based on cross-
validation on training data. In this case the average correlation coefficient values 
dropped from 0.976 ± 0.012 to 0.956 ± 0.286. This shows that the cascading of 
two regression models, as proposed herein, does not significantly alter the accura-
cy of the prediction as compared to a single learning model. In addition, the cas-
cading scheme has the extra value that other modality-specific models can be easi-
ly combined to FEP. 

 
Figure 4: The absolute error of FEP for different parts of the bone, (top) in average, 
(bottom-left) best case and (bottom-right) for worst case. The different regions of in-
terest are shown on the bone with different colors. Red: neck, blue: trochanter region 
and orange: shaft.  
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Conclusion and Discussion 

It has been shown that using 3D FE analyses improves the osteoporosis diagnosis 
[4]. However clinical adoption of FE analysis in bone biomechanics and fracture 
risk assessment has been hampered by its computational complexity and required 
technical competences [5]. In this paper we developed a random-forest based re-
gression framework to predict the results of the Finite Element Prediction, termed 
here FEP, by simply selecting a couple of landmarks on clinical images. We pro-
posed to use shape and density statistical model parameters to produce a compact 
and predictive set of features. In addition, the approach allows other image modal-
ities to be used for prediction, and enables the incorporation of other emerging 
technologies developed for statistical shape modeling. 

Using leave-one-out experiments, comprising a database of 89 clinical cases, our 
method is capable of predicting the stress values for a walking loading condition 
with an average correlation coefficient of 0.984 and 0.976, for CT and X-ray im-
ages, respectively. These findings suggest that supervised learning approaches 
have the potential to leverage the clinical integration of mechanical simulations 
for the treatment of musculoskeletal conditions. 

Motivated by the observed connections between the importance values obtained 
by random forest and actual models for shape, we analyzed the most important 
features in predicting the parameters of the stress statistical model. To predict the 
stress parameters, the body weight was found to be the most important parameter. 
This can be explained by the fact that in our experiments all bones were loaded in 
the walking situation when forces are scaled proportional to the body weight. 
Hence, the weight directly affects the stress values. 

We note that our motivation is to demonstrate that even with rather simple, yet de-
scriptive, selected features it is possible to yield a good level of prediction for 
bone biomechanics in real-time. In this work we used simple feature predictors for 
X-ray images. However, as proposed by the state-of-the-art approaches [17] three-
dimensional bone shape and density parameters can be estimated robustly and ac-
curately from X-ray images, which can further increase the predictive power of 
FEP. 

Our method predicts the output stress values of an elastic material model for FE 
analysis from density and shape. However, it is flexible and can be easily adapted 
to incorporate more advanced mechanical parameters for predicting the bone frac-
ture. For further improvement of FEP, we are planning to use existing methods on 
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predicting trabecular bone structure from CT scans [18–20] to improve the estima-
tion of biomechanical behavior of the bone. 

This study has some limitations. First, the estimation of the scores of shape and 
density from CT scans was obtained using mesh registration. This registration task 
is time consuming and should be replaced by more effective methods such as ac-
tive appearance model.  However, this intermediate step is not necessary when the 
stress predictions are obtained from X-ray images. Another limitation results from 
the choice of synthetic images to mimic patients’ x-ray images. This approach has 
been chosen to establish the method and avoid uncontrolled source of error. Clear-
ly the accuracy of the predictions will decrease when clinical data will be used. 
Further studies will investigate this effect, but the high correlations reported in this 
study indicate that the prediction from clinical x-ray will provide accurate stress 
estimations. Finally, we observed that the method is not as successful in predicting 
the stress values for a bone of a patient who has the highest weight in our dataset. 
This problem occurs because no other patient with a similar body weight exists in 
our dataset. Similar to all other techniques that rely on machine learning, a large 
database that samples the population more evenly helps tackling this issue. 

Our proposed approach followed by further improvements (adding trabecular bone 
structure to the analyses and using active shape modeling) shows a promising path 
towards real-time biomechanical analysis of bones in different patient-specific 
studies and brings an automated FE analysis to clinics. Since it is fast (the stress 
values are calculated in less then one second), several loading cases can be ana-
lyzed to have a better understanding of the patient's bone, moreover it can be used 
to find the bone strength and fracture risk for each individual patient. 

The drawback of FEP is that for each loading case, i.e. walking, stance, side fall, 
one different model has to be trained. Note that this process is done offline during 
the training phase. The testing phase is fast and the stress values can be calculated 
in less than a second.  

References 

[1] Kanis J a. Assessment of osteoporosis at the primary health care level. 
World Health 2007:339. 

[2] Whitmarsh T, Fritscher KD, Humbert L, Del Rio Barquero LM, Roth T, 
Kammerlander C, et al. A statistical model of shape and bone mineral 
density distribution of the proximal femur for fracture risk assessment. 
Med. Image Comput. Comput. Assist. Interv., vol. 14, 2011, p. 393–400. 

[3] Sarkalkan N, Waarsing JH, Bos PK, Weinans H, Zadpoor AA. Statistical 
shape and appearance models for fast and automated estimation of 

125



proximal femur fracture load using 2D finite element models. J Biomech 
2014;47:3107–14. doi:10.1016/j.jbiomech.2014.06.027. 

[4] Dall’Ara E, Luisier B, Schmidt R, Kainberger F, Zysset P, Pahr D. A
nonlinear QCT-based finite element model validation study for the human
femur tested in two configurations in vitro. Bone 2013;52:27–38.
doi:10.1016/j.bone.2012.09.006.

[5] Poelert S, Valstar E, Weinans H, Zadpoor AA. Patient-specific finite
element modeling of bones. Proc Inst Mech Eng H 2013;227:464–78.
doi:10.1177/0954411912467884.

[6] Heimann T, Meinzer H-P. Statistical shape models for 3D medical image
segmentation: a review. Med Image Anal 2009;13:543–63.
doi:10.1016/j.media.2009.05.004.

[7] Grassi L, Schileo E, Boichon C, Viceconti M, Taddei F. Comprehensive
evaluation of PCA-based finite element modelling of the human femur.
Med Eng Phys 2014;36:1246–52. doi:10.1016/j.medengphy.2014.06.021.

[8] Castro-Mateos I, Pozo JM, Cootes TF, Wilkinson JM, Eastell R, Frangi
AF. Statistical Shape and Appearance Models in Osteoporosis. Curr
Osteoporos Rep 2014;12:163–73. doi:10.1007/s11914-014-0206-3.

[9] Cootes TF, Taylor CJ, Cooper DH, Graham J. Active Shape Models-Their
Training and Application. Comput Vis Image Underst 1995;61:38–59.
doi:10.1006/cviu.1995.1004.

[10] Bonaretti S, Seiler C, Boichon C, Reyes M, Büchler P. Image-based vs.
mesh-based statistical appearance models of the human femur:
Implications for finite element simulations. Med Eng Phys 2014;36:1626–
35. doi:10.1016/j.medengphy.2014.09.006.

[11] Boichon C, et al. shape indexing of human femur using morphing and
principal component analysis. VPH, 2010.

[12] Speirs AD, Heller MO, Duda GN, Taylor WR. Physiologically based
boundary conditions in finite element modelling. J Biomech
2007;40:2318–23. doi:10.1016/j.jbiomech.2006.10.038.

[13] Breiman L. Random Forests. Mach Learn n.d.;45:5–32.
doi:10.1023/A:1010933404324.

[14] Criminisi A, Shotton J, editors. Decision Forests for Computer Vision and
Medical Image Analysis. No. 1. Springer-Verlag London; 2013.
doi:10.1007/978-1-4471-4929-3.

[15] Geisser S. Predictive Inference. CRC Press; 1993.
[16] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et

al. Scikit-learn: Machine Learning in Python. J Mach Learn Res
2011;12:2825–30.

[17] Zheng G. 3D volumetric intensity reconsturction from 2D x-ray images
using partial least squares regression. 2013 IEEE 10th Int. Symp. Biomed.
Imaging, IEEE; 2013, p. 1268–71. doi:10.1109/ISBI.2013.6556762.

[18] Taghizadeh E, Maquer G, Reyes M, Büchler P. Including the trabecular
anisotropy from registered microCT data in homogenized FE model
improves the bone’s mechanical predictions. CMBBE, Amsterdam: 2014.

126



[19] Larsson D, Luisier B, Kersh ME, Dall’ara E, Zysset PK, Pandy MG, et al. 
Assessment of transverse isotropy in clinical-level CT images of 
trabecular bone using the gradient structure tensor. Ann Biomed Eng 
2014;42:950–9. doi:10.1007/s10439-014-0983-y. 

[20] Lekadir K, Hazrati-Marangalou J, Hoogendoorn C, Taylor Z, van 
Rietbergen B, Frangi AF. Statistical estimation of femur micro-
architecture using optimal shape and density predictors. J Biomech 
2015;48:598–603. doi:10.1016/j.jbiomech.2015.01.002.  

 

127


	Title page
	Preface
	Contents
	Invited Lectures
	Medical Image Computing Meets Biomechanics
	Improving patient safety through real-time numericalsimulation

	Part I: Biomechanics of Solids
	Computer Assisted Planning of Periacetabular Osteotomy with Biomechanical Optimization: Constant Thickness Cartilage Models vs. Patient-specific Cartilage Models
	Role of ligaments in the knee joint kinematicbehavior: Development and validation of a Finite Element model
	Challenges to Validate Multi-physics Model of Liver Tumor Radiofrequency Ablation from Pre-clinical Data
	Robust Landmark Identification for Generating Subject Specific Models for Biomechanics
	Forward problem of time-resolved diffuse optical tomography considering biological tissue deformation
	Mechanical Models of Endothelial Mechanotransmission Based on a Population of Cells
	Investigation of Modelling Parameters for Finite Element Analysis of MR Elastography
	Fuzzy Tissue Classification for Non-linear Patient-Specific Biomechanical Models for Whole-Body Image Registration
	GPU-based fast finite element solution for nonlinear anisotropic material behavior and comparison of integration strategies
	Fast Prediction of Femoral Biomechanics Using Supervised Machine Learning and Statistical Shape Modeling
	Some Use Cases for Composite Finite Elements in Image Based Computing

	Part II: Vascular System and the Brain
	Computational Simulation of Blood Flow and Drug Transportation in a Large Vasculature
	Fundus image based blood flow simulation of the retinal arteries
	Integration of an Electrophysiologically-Driven Heart Model into Three-Dimensional Haemodynamics Simulation using the CRIMSON Control Systems Framework
	Simulating Patient Specific Multiple Time-point MRIs From a Biophysical Model of Brain Deformation in Alzheimer’s Disease
	Traumatic brain injury – an investigation into shear waves interference effects
	Modeling of Bifurcated Tubular Structures for Vessel Segmentation
	Modelling the Presence of Diffuse Axonal Injury in Primary Phase Blast-Induced Traumatic Brain Injury




