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Abstract. When encountering a dubious diagnostic case, radiologists
typically search in public or internal databases for similar cases that
would help them in their decision-making process. This search repre-
sents a massive burden to their workflow, as it considerably reduces
their time to diagnose new cases. It is, therefore, of utter importance
to replace this manual intensive search with an automatic content-based
image retrieval system. However, general content-based image retrieval
systems are often not helpful in the context of medical imaging since they
do not consider the fact that relevant information in medical images is
typically spatially constricted. In this work, we explore the use of inter-
pretability methods to localize relevant regions of images, leading to
more focused feature representations, and, therefore, to improved med-
ical image retrieval. As a proof-of-concept, experiments were conducted
using a publicly available Chest X-ray dataset, with results showing
that the proposed interpretability-guided image retrieval translates bet-
ter the similarity measure of an experienced radiologist than state-of-
the-art image retrieval methods. Furthermore, it also improves the class-
consistency of top retrieved results, and enhances the interpretability of
the whole system, by accompanying the retrieval with visual explana-
tions.
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1 Introduction

Accessibility to medical imaging technologies has considerably increased over
the last decade, leading to an increase in the number of images that need to
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be analyzed by radiologists in their daily workflow [11]. As the ratio of diag-
nostic demand to the number of radiologists is increasing, the effective avail-
able time per diagnostic has been decreasing and became a critical issue when
diagnostic needs to be supported by confirmatory evidence of a potential sus-
pected diagnosis. Currently, when in doubt for a suspected condition, radiolo-
gists turn to public or internal image databases where similar disease-matching
images can be searched and compared against. Such a task is time-consuming
and ineffective since it requires several iterations to find the right matching
image supporting a final diagnosis. Therefore, it is of great value to develop
disease-targeted content-based image retrieval (CBIR) systems that automati-
cally present disease-matching similar images to the one being analyzed. CBIR
systems mainly consist of two tasks: feature representation, and feature indexing
and search [10]. For feature representation, one seeks to find a low-dimensional
description of the image that is suitable for characterizing it well enough. In
contrast, in feature indexing and search, the objective is more related to the
efficiency of the retrieval process.

The focus of this work is on the feature representation task. To date, feature
representation is mainly performed in one of three different ways: based on sta-
tistical measures, hand-crafted features, or through learned features. As pointed
out by Li et al. [10], one successful approach to do feature representation is the
use of a pre-trained Convolutional Neural Network (CNN), with a following fine-
tuning phase using the medical dataset related to the task, as done in several
state-of-the-art works [7,14,18]. Li et al. also mentioned that there are other
possibilities, such as training from scratch in the medical dataset, or combining
extracted deep features with hand-crafted features. Furthermore, in the absence
of a sizeable labelled dataset, unsupervised approaches have also been proposed
to perform feature extraction [3]. In terms of computing similarity among fea-
ture representations, it was referred by Ghorbani et al. [6] and demonstrated
by Zhang et al. [20] that the Euclidean distance (L2 distance) measured in the
activation space of final layers is an effective perceptual similarity metric.

Chest X-ray Image Saliency Map Image with Saliency

Fig. 1. Chest X-ray image and corresponding disease-related saliency map. In the
saliency map, brighter colors mean higher relevance. (Color figure online)
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The state-of-the-art approaches fail to give particular attention to the regions
that are determinant for the medical condition, performing an overall image to
image comparison, equally weighting anatomical and pathophysiological related
image information. It is then of great importance to find a way to direct the
focus of the image retrieval methods to the clinically relevant regions of a med-
ical image, ideally, in an unsupervised manner. In that sense, interpretability
methods [15], namely those which produce visual explanations in the form of
saliency maps [2,12,13,16] appear as a suitable solution to find these relevant
regions without supervision. In Fig. 1, we illustrate the motivation behind our
central idea, by presenting an example of a Chest X-ray image and its corre-
sponding saliency map, which points out to the disease-related image regions.

In this work, we explore the use of interpretability saliency maps as an atten-
tion mechanism to focus the feature representations to image regions that char-
acterize the class to which they belong. As a proof-of-concept, experiments were
conducted for the pleural effusion condition in Chest X-Ray images. The eval-
uation of the retrieval quality of the proposed method is based on its ranking
capabilities and class-consistency.

2 Materials and Methods

2.1 Data

For the experiments, we used the publicly available CheXpert dataset [9], which
consists of 224,316 chest radiographs from 65,240 patients collected from the
Stanford Hospital. Each case was labelled for the presence of 14 different obser-
vations, with training set labels being automatically generated from the associ-
ated radiology reports, while both validation (200 chest radiographs) and test
(500 chest radiographs) sets were labelled by board-certified radiologists. Cur-
rently, the test set is not publicly available since a competition is running1.
Thus, the validation set was used for the evaluation of the proposed approach.
From the validation set, we create two different sets: a test set with the cases
to be analyzed, and a catalogue, with well-curated cases to be retrieved. For
the sake of this work, we focused on the Pleural Effusion condition. Multiple
reasons justify this decision, namely, most of the images of the validation set
having been acquired in the anteroposterior position, and the data being highly
imbalanced for certain medical conditions. Our work was also supported by an
experienced board-certified radiologist, who provided us a ranking ground-truth
for the catalogue cases, and the localization of the condition.

2.2 Method

State-of-the-art image retrieval methods analyze the image as a whole, produc-
ing a feature representation that characterizes the image in its entirety. Our
proposed method aims to refine this feature computation process, enforcing the
focus to relevant regions, and consequently improving medical image retrieval.

1 https://stanfordmlgroup.github.io/competitions/chexpert/.

https://stanfordmlgroup.github.io/competitions/chexpert/
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As the focus mechanism used here is based on interpretability saliency maps, we
named our approach as Interpretability-guided CBIR (IG-CBIR). The method2

is presented in Fig. 2 and described in the following paragraphs.

Training: The training process can be divided into two different steps. In Step
1, we train a CNN model to classify images into Pleural Effusion or Non Pleural
Effusion. The CNN model used was the well-known DenseNet-121 [8], which was
initialized with the pre-trained weights from ImageNet [4], and afterwards was
fine-tuned (all weights) with the CheXpert training set. To accommodate for the
use of the pre-trained network, grayscale images were replicated (by concatena-
tion), so that they became three-channel RGB-like images. Furthermore, image
resolution (224 × 224) and pre-processing were the same as for the ImageNet
pre-training process. The model was trained for 10 epochs, using the Adadelta
optimizer [19], a batch size of 32, and the binary cross-entropy loss. The number
of epochs was optimized by splitting training set into train and validation. In
Step 2, the goal is to enforce the focus of the network in clinically relevant
regions. To do so, we generate saliency maps, using one of the standard inter-
pretability methods provided by the iNNvestigate toolbox [1] (Deep Taylor [12]
was the one used in this work). Afterwards, these training saliency maps are used
to fine-tune the previously trained CNN. This fine-tuning stage follows the same
procedures as before, with the only difference being that the inputs now are the
saliency maps, instead of the original images. In short, this training phase results
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Fig. 2. Overview of the proposed approach. Blocks in light gray (�) mean CNNs are
being trained (i.e., weights are being updated), whereas blocks in dark gray (�) repre-
sent trained CNNs (i.e., weights are fixed). In the saliency maps, brighter colors mean
higher relevance. Blue circles indicate ranking positions. (Color figure online)

2 Code available at https://github.com/wjsilva19/ig cbir.

https://github.com/wjsilva19/ig_cbir
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in two trained models: a first model to make predictions and generate saliency
maps; and, a fine-tuned version of it to compute deep feature representations.

Test and Retrieval: The next step consists of using test and catalogue images
as inputs to the first trained model (Fig. 2, lower part). With this, label pre-
dictions and saliency maps (for test and catalogue images) become available.
Afterwards, these saliency maps are the input to the second trained model. Dur-
ing this stage, the features computed in the previous to last layer of the model are
saved. The final step consists of calculating the Euclidean distance (L2) between
the feature representations obtained for test and catalogue images, and rank the
catalogue in terms of similarity to the test image (from most to least similar).

2.3 Evaluation

Baselines: We considered two types of baselines: a statistically-based, and a
CNN-based. For the statistically-based baseline, we considered a well-known
statistical measure of similarity, the structural similarity index (SSIM) [17]. The
SSIM was computed directly between test and catalogue images, using its default
values. Since high values of SSIM mean high similarity, the top retrieved images
with this method are the ones with the highest similarity index. The second type
of baseline is, like the proposed approach, based on deep learned features. As
detailed in Li et al. [10], a current successful technique to learn feature repre-
sentations of medical images is to use a CNN, pre-trained with natural images
(e.g., ImageNet [4]), and fine-tune it in the application dataset (e.g., CheXpert).
Afterwards, one can use the features computed in the last layers of the network
to measure similarity. In practical terms, this CNN-based baseline consists of
using the CNN disease classifier (from step 1 of Fig. 2) and saving the feature
representations computed from the previous to last layer, which means that this
baseline also works as ablation to assess the value of Step 2. Finally, the rank-
ing of the catalogue images is performed in the same way as for the proposed
approach, by computing and sorting the Euclidean distances between the input
image and each catalogue image.

Assessing the Quality of the Retrieval: We considered two types of metrics,
one to measure the quality of the ranking, and a second one to evaluate the class-
consistency of the top retrieved images.

To measure the quality of the ranking, we used a standard metric in learning
to rank tasks [5], the normalized Discounted Cumulative Gain (nDCG) - Eq. (1).
The nDCG is the normalized version of the Discounted Cumulative Gain (DCG)
- Eq. (2), being it normalized by the ideal/maximum possible value of DCG
(IDCG). In both Eq. (1) and Eq. (2) the subscript p represents the number of
retrieved images considered. Relevance values (reli) were assigned from 1 to 5.5,
being 1 the least similar image according to the radiologist, and 5.5 the most
similar one (i.e., the relevance of two contiguous positions differs by 0.5). This



310 W. Silva et al.

nDCGp =
DCGp

IDCGp
(1) DCGp =

p∑

i=1

2reli − 1

log2(i + 1)
(2)

was done with the goal of giving more importance to the first positions of the
catalogue.

As images with high similarity ideally belong to the same class, we also mea-
sure the class-consistency of each method. For that, we considered a traditional
retrieval evaluation measure, namely, precision - Eq. (3). In this context, relevant
images are the ones that belong to the class of the test image.

precision =
|{relevant images} ∩ {retrieved images}|

|{retrieved images}| (3)

3 Results

We performed five initial experiments, corresponding to five different sets of
images, that resulted from the use of different seeds when doing the split of the
validation data into test and catalogue (keeping the proportion of the classes).
Due to time limitations of the radiologist, we considered catalogues of 10 images
of size. In Fig. 3, we present the results in terms of nDCG for the top-4, top-7,
and top-10 retrieved images3.

Top-4 Top-7 Top-10

Fig. 3. Box-and-whisker plots regarding the nDCG results for Top-4, Top-7, and Top-
10 retrieved images, respectively. SSIM is the statistically-based baseline, CNN is the
CNN-based baseline, and IG-CBIR is the proposed interpretability-based approach.

To evaluate the class-consistency, we only needed dataset images and labels,
and no expert-based ranking, hence we considered larger catalogues, computing
3 Detailed results are provided in Table 1 of the Supplementary Material.
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precision results for three different settings: top-4 images retrieved when cata-
logue has 10 images; top-7 images retrieved when catalogue has 20 images; and,
top-11 images retrieved when catalogue has 30 images. Class-consistency results

Table 1. Precision results. Top-X means X retrieved images (X: 4, 7, 11). Cat-Y means
catalogue of size Y (Y: 10, 20, 30). X is also the number of relevant images in catalogue
Y. Results are presented as average [min, max].

Method Top-4 (Cat-10) Top-7 (Cat-20) Top-11 (Cat-30)

SSIM-based 0.55 [0.25, 0.75] 0.40 [0.29, 0.57] 0.42 [0.27, 0.55]

CNN-based 0.85 [0.50, 1.00] 0.60 [0.29, 0.86] 0.69 [0.55, 0.82]

IG-CBIR (Proposed) 0.95 [0.75, 1.00] 0.77 [0.71, 0.86] 0.80 [0.73, 0.82]

EXPERT-based 

SSIM-based 

CNN-based 

IG-CBIR 

Test Image

Test + Saliency

Fig. 4. Retrieved catalogue images for one example test image. From left to right: test
image (and test image with saliency map superimposed) and most similar images sorted
according to each method. From top to bottom: ground-truth defined by the radiologist,
SSIM baseline results, CNN baseline results, and IG-CBIR results. IG-CBIR results are
presented with image and saliency superimposed. Green boxes mean agreement with
test image label whereas red boxes mean disagreement. Numbers on top of the images
represent ranking position in the ground-truth based on expert rating. (Color figure
online)
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are presented in Table 14 in terms of average, minimum, and maximum values
obtained by each method.

In Fig. 4, we present an example of a test image and the top-4 retrieved
images given by each of the methods for that same test image. We show the test
image and the test image with the corresponding saliency map superimposed
(Fig. 4, left). It is important to point out that this saliency map is in agreement
with the report of the radiologist: “Bilateral pleural effusion, stronger on the
right side but also present, to a lesser extent, in the left side”. On the right
side, one can see the top-4 of the most similar catalogue images to the test one
according to the expert and to each of the considered methods.

4 Discussion and Conclusion

We proposed to improve medical image retrieval by using interpretability
saliency maps to focus the image retrieval system in the clinically relevant regions
of the medical images. The proposed interpretability-based approach leads to an
improvement in medical image retrieval, with the most significant improvement
being related to the ranking quality of the retrieval. As demonstrated in Fig. 3,
and illustrated in Fig. 4, the proposed approach resembles better the ranking
order given by the radiologist than state-of-the-art image retrieval methods. It is
also important to mention that the method’s training process is expert-agnostic.
We only use label information during training, and the labels that we use are
the ones already provided by the CheXpert dataset. Furthermore, the method
also improves the results in terms of class-consistency, as shown in Table 1. As
we considered different sizes of catalogues for the class-consistency evaluation,
we observed that the method seems to be robust to the catalogue size.

For both our proposed approach and the CNN-based baseline (or even any
CNN-based approach), the quality of the retrieval will, of course, be limited by
the classification performance of the model. Indeed, that was the reason for us not
to consider conditions such as Atelectasis in this proof-of-concept. Nonetheless,
as sizes of the databases grow, the classification performance for more diseases is
expected to be in a suitable range for CNNs to be used in medical image retrieval
applications. Classification performances obtained with our CNN model were in
line with those reported by the CheXpert team [9].

In this work, the experiments were conducted with the Deep Taylor inter-
pretability method. It can be noted that results may change according to the
interpretability method to be used, since they produce very different saliency
maps. Nonetheless, we are confident that the use of other interpretability saliency
maps will also help in the refinement of the retrieval. As future work, we intend
to explore different interpretability methods to generate the saliency maps, and
also different ways of combining them to perform the fine-tuning stage, with the
goal of improving the robustness of the method.

In conclusion, we have introduced a novel approach based on interpretability
saliency maps to refine the quality of medical image retrieval achieved by deep
4 Detailed results are provided in Table 2 of the Supplementary Material.
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CNNs. As shown, this approach leads to a better similarity measure between
medical images of the same condition, and, therefore, to a better image retrieval
than that obtained using state-of-the-art approaches. Moreover, it also enhances
the interpretability of the computer aided-diagnosis system, as it accompanies
the retrieval with visual explanations.
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cium scoring in cardiac CT angiography using convolutional neural networks. In:
Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS,
vol. 9349, pp. 589–596. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24553-9 72

19. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

20. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

http://arxiv.org/abs/1412.6806
https://doi.org/10.1007/978-3-319-24553-9_72
https://doi.org/10.1007/978-3-319-24553-9_72
http://arxiv.org/abs/1212.5701

	Interpretability-Guided Content-Based Medical Image Retrieval
	1 Introduction
	2 Materials and Methods
	2.1 Data
	2.2 Method
	2.3 Evaluation

	3 Results
	4 Discussion and Conclusion
	References




