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Abstract   Many methodologies dealing with prediction or simulation of soft tis-
sue deformations on medical image data require preprocessing of the data in order 
to produce a different shape representation that complies with standard method-
ologies, such as Mass-spring networks, Finite Element Methods (FEM), etc. On 
the other hand, methodologies working directly on the image space normally do 
not take into account mechanical behavior of tissues and tend to lack physics 
foundations driving soft tissue deformations. This paper presents a method to 
simulate soft tissue deformations based on coupled concepts from image analysis 
and mechanics theory. The proposed methodology is based on a robust stochastic 
approach that takes into account material properties retrieved directly from the 
image, concepts from continuum mechanics and FEM. The optimization frame-
work is solved within a Hierarchical Markov-Random Field (HMRF) which is im-
plemented on the Graphics Processor Unit (GPU). 

Introduction 

One of the current problems with non-rigid registration techniques is their lack 
of physics foundations concerning mechanical properties and energies driving the 
deformations. Conversely, classical methods to compute soft tissue deformations 
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such as Finite Element Methods (FEM), Mass-spring networks, etc. suffer from 
the need of transforming the data into a volumetric mesh representation of the 
object. As a consequence, image segmentation and volumetric mesh generation 
are two inevitable steps to be performed. Whereas image segmentation can be 
performed semi- or fully automatically with some acceptable accuracy, automatic 
volumetric meshing algorithms are prone to errors and dependent on object 
topology, desired boundary conditions [1], etc. Therefore semi-manual techniques 
are often used, which is tedious and time consuming. Furthermore, jumping from 
the image space (i.e. voxels) to the shape space (i.e. mesh) involves 
approximations due to the discrete and different nature of both data 
representations [15]. In addition, voxel intensities have valuable information about 
material properties of the structure, which is required to be translated to the shape 
space (linear and non-linear interpolations, barycentric-based techniques, etc.) at 
the price of introducing further errors due to these approximations. The 
aforementioned limitations of these two approaches (mesh- and image-based 
techniques) are known by the scientific community and efforts have been made in 
this direction. In [2, 17] automatic FEM meshing techniques are proposed. The 
method generates a one-to-one representation of voxels into hexahedra elements 
and a posterior smoothing approach is applied to deal with jagged edges of the 
geometry. However, the high number of generated elements yield long 
computations making this technique only applicable to micro-CT images. In [11] 
an approach is presented for deformable registration of brain tumor images to a 
normal brain atlas, here the dissimilarity of the images hinders the usability of 
readily available deformable image registration techniques. Through statistical 
modelling of sought tumor-induced deformations the method combines a 
biomechanical model of tumor mass-effect and a deformable image registration 
technique. By doing this, the authors reported significant reduction in the 
registration error. Nonetheless, the reliability of the method depends on the 
statistical training performed on a set of FEM simulations using different 
parameters of the tumor mass-effect, such as tumor sizes, locations, external 
pressures, etc. Inspired by the work presented in [13] here we present a method to 
simulate soft tissue deformations in the image space that is based on a Maximum a 
Posteriori (MAP) model of the deformations, which considers novel developed 
energy terms to account for tissue material properties, boundary conditions and 
related confidence maps. Stochastic optimization is performed under a Markov 
Random Field (MRF) approach, which is further extended into a Hierarchical-
MRF (HMRF) approach. The use of a HMRF approach enables us to use fast local 
optimizers, as opposed to global optimizers which are computationally very 
expensive. The hierarchical approach is also robust with respect to local minima 
[14]. Finally, MRF and HMRF are well suited for parallel implementation [9, 10], 
which has brought more attention with the advent of GPU-based application 
programming interfaces (API). 
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Test Data 

  

 (a)  (b) 

  

 (c)  (d) 

Fig. 1. a) input image b) segmentation of the input image c) representation of boundary condition 
image with outward expansion and d) deformed input image. 

A set of synthetic data is used to validate the method. This data is generated so 
it resembles an MRI image of a brain, as seen in Fig. 1a. To simplify notations 
three tissue types are considered. Namely, normal matter (gray color), tumoral 
tissue (black color) and soft tissue (white color), depicted in Fig. 1b. Secondly, a 
boundary condition image is constructed as seen in Fig. 1c, where the 
displacement vectors are shown. In the following, the boundary condition image is 
described by y. In this example, the boundary condition image describes an 
outward expansion. In real applications, the boundary condition image can for 
example be computed using a non-rigid registration algorithm [3, 16]. To be able 
to control the amount of confidence in the boundary condition image a confidence 
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image is also provided. In the following, the confidence image is described by c. 
In this implementation, it is a binary vector-valued image where a value of 0 
means no confidence in the boundary condition image at that pixel and a value of 
1 means complete confidence. In the presented example the confidence image 
coincides with Fig. 1c except the vectors are normal vectors. The use of 
confidence fields is described in [12]. Finally, an image m, describing the local 
material properties is used. In our example, it corresponds to the input image 
where each pixel is assigned the Young's modulus stiffness based on the 
underlying tissue. A value of 40 MPa is used for tumors, 20 MPa for the normal 
tissue and 10 MPa for soft tissue. In a real application, the mechanical properties 
can be assigned using a segmentation and classification algorithm. In conclusion, 
the following images are used as input for the proposed method: segmented input 
image, boundary condition image y, confidence image c and mechanical 
properties image m. 

Methods 

The aim of our method is to compute a displacement field that conforms both 
to a given boundary condition image and a set of mechanical properties of the 
underlying tissue. In the following it is demonstrated how this is solved using 
Markov Random Field (MRF) regularization. Using MRF enables us to describe 
the underlying mechanical properties of the tissue using a prior energy term, and 
to set the boundary conditions using an observation energy term. Because no 
initial guess for the displacement vector field is available the field is set to null 
vectors at all sites. 

The displacement vector field is described using a multivariate random variable 
D. A realization of the vector field is described by d. In addition, each vector in 
the displacement field is also described by a multivariate random variable ds, were 
s denotes the spatial location of the vector. This will be explained in more details 
in the next sections. 

Maximum a Posteriori and Markov Random Fields  

The final objective is to find a vector displacement field d̂  that maximizes the 
posterior probability P,  

 ),|(maxarg=ˆ ydd
d

P  (1) 
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given a boundary condition image y. MRF are defined on a finite index set S with 
elements s called sites. Random variables are associated to each element in S. To 
be able to compute the posterior probability the theorem of Hammersley-Clifford 
is used, which establishes the equivalence between MRF and Gibbs distribution, a 
proof can be found in [4, 18]. With the help of the Gibbs distributions  

 ),)/((exp1=)( TU
Z

P dd −  (2) 

where Z, U and T are the normalizing constant, the energy function and the 
temperature, respectively, the probability can be defined in terms of energy 
functions. Energy functions are the summation of potential functions  

 
,=)( C

C
VU

C∈
∑d

 (3) 

where VC are defined on local neighborhood systems N. A local neighborhood 
system is a subset of S, usually only a few sites are involved. C is called a clique if 
any two different elements of C are neighbors, so C is a subset of N. The set of 
cliques will be denoted by C . The Markov property of MRF is expressed as [5]  

 ,),|(=),|( SsNtPstP s ∈∀∈≠ tsts dddd  (4) 

where Ns is a neighborhood system at site s, ds and dt are vectors at site s and t, 
respectively. It means that the probability distribution of each site only depends on 
the state of neighboring sites. In Bayesian terms the posteriori probability can be 
written as  

 .
)(

)()|(=)|(
y

ddyyd
P

PPP  (5) 

In image processing applications P(d) stands for the a priori energy term, 
which represents prior knowledge about the configuration of d. P(y|d) represents 
the observation function, which describes the relation between y and d. P(y) is the 
density of y, which is a constant when y is given. The combination of (2), (3) and 
(5) yields  

 ),/(exp)|( total TUP −∝yd  (6) 

 where  
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 ,= nobservatiopriortotal UUU +  (7) 

is the sum of observation and prior energy. To maximize (6) one can minimize (7). 

Prior Energy 

In the current implementation, the prior energy is based on the mechanical 
properties of the underlying tissue. The prior energy should therefore be 
formulated so it is at its minimum when the deformation of the tissue conforms to 
the expected mechanical properties. Mechanical properties of the tissue are 
modeled using a finite difference approach, where the local tissue characteristics 
are based on Young's modulus. The used energy function is then  

 ,=),(
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where 1C , 2C , 3C  and 4C  are four different kind of cliques. Each involving 
three pixels, which can be visualized as in Fig. 2. 

 

 
Fig. 2. Four cliques for the prior energy. 

The four types of cliques are assigned with potential functions to described the 
biomechanical process of deformation:  
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where di = [dxi dyi]T and mi are the displacement vector at site i and the 
biomechanical property image sampled at i, respectively. Indicated by letters (a) to 
(d) there are four parts that define the prior knowledge, analog for (9) and (10). 
Parts (a) and (b) describe the change of Young's modulus in one direction and (c) 
and (d) the change in the opposite direction. The goal of the prior energy is to 
reach:  

 ),(=)( tust dddd −−
u

t

m
m

 (12) 

at every site. The relative change at site t is equal to the relative change at u by a 
ratio of mt/mu. The differences (dt-ds) and (du-dt) describe the elasticity in terms of 
relative displacements at site t and u, respectively. To assign an energy value to 
the relative difference this translates to  

 .)()(
2

tust dddd −−−
u

t

m
m

 (13) 

This means that the minimum energy at site t is given by 0. The bigger the 
difference the higher the energy. Also by taking the square of the energy value, 
values >1 contribute more than values <1. The energy function also detects non-
monotonic fields. A monotonic field is defined as  

 |||||| uts ddd ≤≤  (14) 

or  

 .|||||| uts ddd ≥≥  (15) 

Example 1. [Zero energy at site t] In this example a situation is presented 
where two neighboring pixel have different Young's modulus values. The 
minimum energy is reached when (12) is fulfilled. A possible configuration for 
three displacement vectors ds, dt and du is given. 
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Example 2. [Non-monotonic field at site t] In the second example both pixel 

have the same Young's modulus. Inserting the example values into (13) gives the 
energy value. 
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Even though the difference between sites and the biomechanical properties are 

the same, a non-zero value is calculated. Non-monotonic fields cause overlapping 
of sites, which is not realistic. 

Observation Energy 

The current application uses the observation energy to set the boundary 
conditions:  
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where C5 and C6 are cliques at single sites s and  
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where p is the penalty vector field image. The penalty image is proportional to the 
confidence image  

 ,=,=
sysysxsx KcpKcp  (19) 

where cs = [cxs cys]T, ps = [pxs pys]T, and K is the penalty constant. By issuing a 
penalty, a low energy value is sensitive to the difference between the boundary 
vector and the displacement vector. Hence, the probability is high when the 
displacement vector at a site coincides with the boundary condition vector 
whenever boundary conditions are available, indicated by the confidence vector. 

Hierarchical Markov Random Fields 

The idea is to propagate the geometrical information through hierarchical 
levels. Low resolution scale levels express global geometrical features whereas 
high resolution scale levels are used for fine tuning. Geometrical information is 
needed to converge to a global solution. By using a hierarchical approach, local 
energy optimizers can be used to find global solutions. Local optimizers are stable 
and predictable whereas global optimizer do not guarantee convergence and the 
computation time is enormous, this is further discussed in the next section. 

 

 
Fig. 3. Dependency graph corresponding to a quadtree structure. With white, light gray, dark 
gray and black circles representing displacement vectors, boundary condition vectors, confidence 
vectors and mechanical property vectors, respectively. 

In [14] HMRF for segmentation is presented, it follows the adaptation to the 
presented method. Let G = (S,L) be a graph composed of a set S of nodes and a set 
L of edges. A tree is a connected graph that has no cycle. Each node has a unique 
parent node, except the root node r. A quadtree, as illustrated in Fig. 3, is a special 
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case of a tree. Each node in a quadtree has four child nodes except the leave 
nodes, which are terminal nodes. Set S can be partitioned into subsets we call 
scale levels. The subset, RSSSS ∪∪∪ K10= , are distinguished according to the 
path length from each node to the root. S0 is the subset with the most elements and 
SR = {r} the one with the least elements. A subset contains 4R-n sites, where R 
represents the scale and n the distance from the root node r. 

Different interpolation methods are used for projecting the images from one 
scale level to the next. d is interpolated linearly, because linear elastic behavior 
was used to describe the material properties of the image. On the other hand, for 
the interpolation of m, y and c, nearest neighbor interpolation is used to preserve 
information at interfaces between different tissue types and prevent over-
smoothing. In Fig. 3 the propagation between scale levels is shown, starting on top 
with the root element r. To each white circle ds∈d, three circles ms∈m, ys∈y 
and cs∈c, are attached, representing interpolated pixel values at corresponding 
locations s. 

Energy Minimization 

In practice, the crucial point of optimization is a good initial guess. With initial 
guesses far off the global minimum, local energy optimizers like Iterated 
Conditional Modes (ICM) [18] will most likely stay at a local minimum and 
global energy optimizers like Markov Chain Monte Carlo (MCMC) with 
Simulated Annealing (SA) [18] methods will take a long time; if the cooling 
schedule is not adjusted to the problem, it might even stop at a local minimum as 
well. In the current approach, the overall geometrical structure of tissues and their 
corresponding mechanical properties are crucial in obtaining a good initial guess. 
A top-down hierarchical approach is used to supplement the local nature of the 
used energy terms. Each level of the hierarchy is used as an initial guess for the 
next level. Iterated Conditional Modes is used as local optimizer within each 
hierarchy level because a good initial guess from the previous level can be 
assumed. 

Hierarchical Markov Random Fields on GPU 

Even though ICM is used as optimization method, computation of the entire 
quadtree is expensive. As will be explained in the following sections around 70 
iterations per scale level are needed to reach convergence. By implementing the 
method on graphics hardware the computation time can be reduced drastically. 
Due to the fact that MRF is only looking at neighborhood information it is fairly 
easy to implement it in a highly parallelized way. 
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Implementation 

In [9, 10] the general way of MRF on graphics hardware is presented. For the 
implementation a new extension for OpenGL, EXT_framebuffer_object [6, 7], 
was used. Code execution on the GPU is done through shader programs. The 
shader program is executed on each pixel simultaneously. As input arguments the 
shader program has access to read-only memory; for output values the shader 
program has access to write-only memory. The EXT_framebuffer_object enables 
alternating between read and write buffers directly without copying the buffers 
back and forth after one iteration has been completed. Two textures are created as 
read/write data structures on the GPU. One framebuffer object is created and the 
two textures are attached. Using the glDrawBuffer extension, ping-pong rendering 
is implemented. Each scale level is computed until the finest scale level is 
reached. 

The current implementation has the two restrictions: First, the number of 
iterations needs to be predefined before the simulation is started. Second, one can 
only read or write to memory and not both, this means that we can not update the 
image during the iteration process. 

The pseudo code for the implementation is listed in Alg. 3.7. Utotal  is calculated 
according to (7) and Γ  is a set of values describing the next estimate, e.g. 
Γ ={(0.1,-01),(0.001,0.001),…}. By varying Γ  one can set the step size for the 
optimization method. Line 3 to 6 are the projection from one scale level to the 
next. Line 7 to 10 is the ICM minimization. The loop will continue until the full 
resolution image is reached. 

Computation on the quadtree (with notations from Fig. 3) and optimization 
with ICM: 
 
Data: boundary condition image y, confidence image c, mechanical property 

image m 
Result: displacement vector field d̂  
 

initialize d to null vector field 
for n=R to 0 do 

• projection of d from scale n+1 to n by linear interpolation 
• projection of y from scale 0 to n by nearest neighbor interpolation 
• projection of c from scale 0 to n by nearest neighbor interpolation 
• projection of m from scale 0 to n by nearest neighbor interpolation 
• repeat 
• foreach site Ss∈ do 
• )),,,((minarg total sssss mdcyd eU

e
+←

Γ∈
 

• until Utotal stabilizes 
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Experiments and Results 

   
 (a) (b) (c) 

Fig. 4. Deformation grids: a) HMRF method b) ABAQUS and c) elastic registration method. 

In general non-rigid deformation algorithms do not include mechanical 
property information which results in non-realistic deformation. Therefore a 
comparison with an existing elastic deformation registration method [3] was 
made. As will be explained in Sec. 4.1 a FEM model was taken as the ground truth 
deformation. The elastic registration method was used to register the deformation 
image received from ABAQUS6 with the input image. The resulting displacement 
vector fields are shown as deformation grids in Fig. 4a-c. The HMRF model and 
ABAQUS show similar deformations whereas the elastic registration method does 
not consider mechanical properties, which can be seen by looking at tissue 
interfaces. The elastic registration image looks smooth because the change of 
biomechanical properties at the interfaces is not taken into account. 

Ground Truth 

To validate the results of the simulation the same mechanical deformation in a 
FEM model in ABAQUS was implemented and used as ground truth image. A 
comparison of data using a root mean square deviation (RMSD) was realized,  

 ,|ˆ|
||

1=)( 2
ss da −

∈
∑

SsS
xRMSD  (20) 

where sa  and sd̂  are the displacement vector obtained from ABAQUS and our 
model, respectively. 

                                                           
6ABAQUS is a software tool to create FEM models 
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Quality 

 
 (a) 

 
 (b) (c) 

Fig. 5. Experimental data obtained to evaluate quality compared to FEM, 4255 elements of type 
CPS3 (3-node linear) and CPS4R (4-node bilinear, reduced integration with hourglass control) 
are used for the FEM calculations. 

 

Table 1. ABAQUS and HMRF displacement vector field images differences: a) magnitude of 
the vector b) x component of the vector and c) y component of the vector. 

Method Mean energy value RMSD error FEM - HMRF Iterations Computation time 
HMRF 0.19404 1.44 pixel 700 1.63 sec. 
FEM - - - 1.30 sec. 

 
The comparison with FEM results are shown in Table 1. In Fig. 5a the 

difference image with ABAQUS results is shown. It can be seen that the region 
that differ the most are around the outer corner of the synthetic brain. Further it is 
interesting to look at the two Fig. 5b-c in which the difference per component is 
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depicted. In both images the results show that most of the differences occur at the 
outer border of the synthetic brain, which confirm the interpretation of Fig. 5a. 

Computation Time 

Table 2. Comparison of computation times between GPU and CPU implementation with 70 
iteration steps. 

Image Size GPU Time CPU Time Speed-up 
300 x 300 1.63 sec. 91.39 sec. 56.07 
600 x 600 6.42 sec. 363.89 sec. 56.68 
1200 x 1200 26.25 sec. 1445.94 sec. 55.08 

 
In Table 2 a listing on the performance gain with GPU compared to CPU is 

shown. Three different image sizes have been examined, a speed-up factor of 
around 55 was found. The number of iterations per scale level is set to 70. 

The experiments were performed on a system with ATI, Radeon X1300 Series, 
and Intel, CoreTM 2 Duo E6300 1.86 GHz. 

Discussion and Future Work 

A method to simulate soft tissue deformations in the image space using 
physical-based concepts and image processing techniques was presented. The 
method combines mechanical concepts into a Bayesian optimization framework 
which has been defined and solved under a HMRF approach and implemented for 
the GPU. The main advantages of the proposed methodology over previous ones 
is its mesh-free characteristic, which is normally needed to perform accurate 
mechanical simulations of tissues. The use of HMRF proves to be an appealing 
technique to solve the proposed stochastic problem. the reasoning is twofold: On 
one hand it was found that local minima are avoided by using a hierarchical 
approach, which in turn allows for a speed-up since it is now possible to use local 
optimizers rather than slow global optimizers (e.g. Monte-Carlo optimization). 
Secondly, the nature of the Markovian approach resulted in a straightforward 
implementation in the GPU, which has been remarked by others [9, 10]. The 
experiments showed that by using HRMF at the GPU level, stable results can be 
attainable in a very reasonably computation time, simplifying the soft-tissue-
deformation simulation pipeline. Making this method very appealing for medical 
applications. 
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In future experiments the focus will be on more complex geometry and non-
synthetic image data. In these regards ongoing work includes its extension to 3-D 
models. An implementation with OpenGL and Cg shader programming was 
realized. In the future a transfer to the Brook [8], project from Stanford University, 
or CUDA, NVIDIA, framework will be considered. A strong influence of the 
number of hierarchical levels on the number of iterations needed for the model to 
converge are assumed, this topic will also be further investigated in the future. 
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