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Abstract. Deep learning-based image segmentation for radiotherapy is
intended to speed up the planning process and yield consistent results.
However, most of these segmentation methods solely rely on distribution
and geometry-associated training objectives without considering tumor
control and the sparing of healthy tissues. To incorporate dosimetric
effects into segmentation models, we propose a new training loss func-
tion that extends current state-of-the-art segmentation model training
via a dose-based guidance method. We hypothesized that adding such a
dose-guidance mechanism improves the robustness of the segmentation
with respect to the dose (i.e., resolves distant outliers and focuses on loca-
tions of high dose/dose gradient). We demonstrate the effectiveness of
the proposed method on Gross Tumor Volume segmentation for glioblas-
toma treatment. The obtained dosimetry-based results show reduced
dose errors relative to the ground truth dose map using the proposed
dosimetry-segmentation guidance, outperforming state-of-the-art distri-
bution and geometry-based segmentation losses.
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1 Introduction

Radiotherapy (RT) has proven effective and efficient in treating cancer patients.
However, its application depends on treatment planning involving target lesion
and radiosensitive organs-at-risk (OAR) segmentation. This is performed to
guide radiation to the target and to spare OAR from inappropriate irradia-
tion. Hence, this manual segmentation step is very time-consuming and must
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be performed accurately and, more importantly, must be patient-safe. Studies
have shown that the manual segmentation task accounts for over 40% of the
treatment planning duration [7] and, in addition, it is also error-prone due to
expert-dependent variations [2,24]. Hence, deep learning-based (DL) segmenta-
tion is essential for reducing time-to-treatment, yielding more consistent results,
and ensuring resource-efficient clinical workflows.

Nowadays, training of DL segmentation models is predominantly based on
loss functions defined by geometry-based (e.g., SoftDice loss [15]), distribution-
based objectives (e.g., cross-entropy), or a combination thereof [13]. The general
strategy has been to design loss functions that match their evaluation counter-
part. Nonetheless, recent studies have reported general pitfalls of these metrics
[4,19] as well as a low correlation with end-clinical objectives [11,18,22,23]. Fur-
thermore, from a robustness point of view, models trained with these loss func-
tions have been shown to be more prone to generalization issues. Specifically, the
Dice loss, allegedly the most popular segmentation loss function, has been shown
to have a tendency to yield overconfident trained models and lack robustness
in out-of-distribution scenarios [5,14]. These studies have also reported results
favoring distribution-matching losses, such as the cross-entropy being a strictly
proper scoring rule [6], providing better-calibrated predictions and uncertainty
estimates. In the field of RT planning for brain tumor patients, the recent study
of [17] shows that current DL-based segmentation algorithms for target struc-
tures carry a significant chance of producing false positive outliers, which can
have a considerable negative effect on applied radiation dose, and ultimately,
they may impact treatment effectiveness. In RT planning, the final objective is
to produce the best possible radiation plan that jointly targets the lesion and
spares healthy tissues and OARs. Therefore, we postulate that training DL-based
segmentation models for RT planning should consider this clinical objective.

In this paper, we propose an end-to-end training loss function for DL-based
segmentation models that considers dosimetric effects as a clinically-driven learn-
ing objective. Our contributions are: (i) a dosimetry-aware training loss function
for DL segmentation models, which (ii) yields improved model robustness, and
(iii) leads to improved and safer dosimetry maps. We present results on a clin-
ical dataset comprising fifty post-operative glioblastoma (GBM) patients. In
addition, we report results comparing the proposed loss function, called Dose-
Segmentation Loss (DOSELO), with models trained with a combination of
binary cross-entropy (BCE) and SoftDice loss functions.

2 Methodology

Figure 1 describes the general idea of the proposed DOSELO. A segmentation
model (U-Net [20]) is trained to output target segmentation predictions for the
Gross Tumor Volume (GTV) based on patient MRI sequences. Predicted segmen-
tations and their corresponding ground-truth (GT) are fed into a dose predictor
model, which outputs corresponding dose predictions (denoted as ̂DP and DP in
Fig. 1). A pixel-wise mean squared error between both dose predictions is then
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Fig. 1. Schematic overview of the proposed dosimetry-aware training loss function.
A segmentation model (U-Net [20]) is trained to output target segmentation predic-

tions (̂ST ) for the Gross Tumor Volume (GTV) based on patient MRI sequences IMR.

Predicted (̂ST ) and ground-truth segmentations (ST ) are fed into the dose predictor
model along with the CT-image (ICT ), and OAR segmentation (SOR). The dose pre-

dictor outputs corresponding dose predictions ̂DP and DP . A pixel-wise mean squared
error between both dose predictions is calculated, and combined with the binary cross-
entropy (BCE) loss to form the final loss, Ltotal = LBCE + λLDSL.

calculated and combined with the BCE loss to form the final loss. In the next
sections we describe the adopted dose prediction model [9,12], and the proposed
DOSELO.

2.1 Deep Learning-Based Dose Prediction

Recent DL methods based on cascaded U-Nets have demonstrated the feasibility
of generating accurate dose distribution predictions from segmentation masks,
approximating analytical dose maps generated by RT treatment planning sys-
tems [12]. Originally proposed for head and neck cancer [12], this approach has
been recently extended for brain tumor patients [9] with levels of prediction error
below 2.5 Gy, which is less than 5% of the prescribed dose. This good level of
performance, along with its ability to yield near-instant dose predictions, enables
us to create a training pipeline that guides learned features to be dose-aware.

Following [12], the dose predictor model consists of a cascaded U-Net (i.e., the
input to the second U-Net is the output of the first concatenated with the input
to the first U-Net) trained on segmentation masks, CT images, and reference
dose maps. The model’s input is a normalized CT volume and segmentation
masks for target volume and OARs. As output, it predicts a continuous-valued
dose map of the same dimension as the input. The model is trained via deep



528 E. Rüfenacht et al.

supervision as a linear combination of L2-losses from the outputs of each U-
Net in the cascade. We refer the reader to [9,12] for further implementation
details. We remark that the dose predictor model was also trained with data
augmentation, so imperfect segmentation masks and corresponding dose plans
are included. This allows us in this study to use the dose predictor to model the
interplay between segmentation variability and dosimetric changes.

Formally, the dose prediction model MD receives as inputs: segmentations
masks for the GTV ST ∈ Z

W×H and the OARs SOR ∈ Z
W×H , the CT image

(used for tissue attenuation calculation purposes in RT) ICT ∈ R
W×H , and

outputs MD(ST , SOR, ICT ) �→ DP ∈ R
W×H , a predicted dose map where each

pixel value in D corresponds to the local predicted dose in Gy. Due to the
limited data availability, we present results using 2D-based models but remark
that their extension to 3D is straightforward. Working in 2D is also feasible
from an RT point of view because the dose predictor is based on co-planar
volumetric modulated arc therapy (VMAT) planning, commonly used in this
clinical scenario.

2.2 Dose Segmentation Loss (DOSELO)

During the training of the segmentation model, we used the dose predictor model
to generate pairs of dose predictions for the model-generated segmentations and
the GT segmentations. The difference between these two predicted dose maps is
used to guide the segmentation model. The intuition behind this is to guide the
segmentation model to yield segmentation results being dosimetrically consistent
with the dose maps generated via the corresponding GT segmentations.

Formally, given a set of N pairs of labeled training images {(IMR, SP )i : 1 ≤
i ≤ N}, IMR ∈ R

D (with D : {T1, T1c, T2, FLAIR} MRI clinical sequences),
and corresponding GT segmentations of the GTV ST ∈ Z

H×W , a DL segmen-
tation model MS(IMR) �→ ̂ST is commonly updated by minimizing a standard
loss term, such as the BCE loss (LBCE).

To guide the training process with dosimetry information stemming from seg-
mentation variations, we propose to use the mean squared error (MSE) between
dose predictions for the GT segmentation (ST ) and the predicted segmentation
(̂ST ), and construct the following dose-segmentation loss,

LDSL =
1

H × W

H×W
∑

i

(Di
P − ̂Di

P )2 (1)

DP = MD(ST , SOR, ICT ) (2)
̂DP = MD(̂ST , SOR, ICT ), (3)

where Di
P and ̂Di

P denote pixel-wise dose predictions. The final loss is then,

Ltotal = LBCE + λLDSL, (4)
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where λ is a hyperparameter to weigh the contributions of each loss term. We
remark that during training we use standard data augmentations including spa-
tial transformations, which are also subjected to dose predictions, so the model is
informed about relevant segmentation variations producing dosimetry changes.

3 Experiments and Results

3.1 Data and Model Training

We divide the descriptions of the two separate datasets used for the dose pre-
diction and segmentation models.

Dose Prediction: The dose prediction model was trained on an in-house
dataset comprising a total of 50 subjects diagnosed with post-operative GBM.
This includes CT imaging data, segmentation masks of 13 OARs, and the GTV.
GTVs were defined according to the ESTRO-ACROP guidelines [16]. The OARs
were contoured by one radiotherapist according to [21] and verified by mutual
consensus of three experienced radiation oncology experts. Each subject had a
reference dose map, calculated using a standardized clinical protocol with Eclipse
(Varian Medical Systems Inc., Palo Alto, USA). This reference was generated
on basis of a double arc co-planar VMAT plan to deliver 30 times 2 Gy while
maximally sparing OARs. We divided the dataset into training (35 cases), val-
idation (5 cases), and testing (10 cases). We refer the reader to [9] for further
details.

Segmentation Models: To develop and test the proposed approach, we
employed a separate in-house dataset (i.e., different cases than those used to
train the dose predictor model) of 50 cases from post-operative GMB patients
receiving standard RT treatment. We divided the dataset into training (35 cases),
validation (5 cases), and testing (10 cases). All cases comprise a planning CT
registered to the standard MRI images (T1-post-contrast (Gd), T1-weighted,
T2-weighted, FLAIR), and GT segmentations containing OARs as well as the
GTV. We note that for this first study, we decided to keep the dose prediction
model fixed during the training of the segmentation model for a simpler presen-
tation of the concept and modular pipeline. Hence, only the parameters of the
segmentation model are updated.

Baselines and Implementation Details: We employed the same U-Net [20]
architecture for all trained segmentation models, with the same training param-
eters but two different loss functions, to allow for a fair comparison. As a strong
comparison baseline, we used a combo-loss formed by BCE plus SoftDice, which
is also used by nnUNet and recommended by its authors [8]. This combo-loss has
also been reported as an effective one [13]. For each loss function, we computed a



530 E. Rüfenacht et al.

five-fold cross-validation. Our method1 was implemented in PyTorch 1.13 using
Adam optimizer [10] with β1 = 0.9, β2 = 0.999, batch normalization, dropout
set at 0.2, learning rate set at 10−4, 2 · 104 update iterations, and a batch size of
16. The architecture and trained parameters were kept constant across compared
models. Training and testing were performed on an NVIDIA Titan X GPU with
12 GB RAM. The input image size is 256 × 256 pixels with an isotropic spacing
of 1 mm.

3.2 Evaluation

To evaluate the proposed DOSELO, we computed dose maps for each test case
using a standardized clinical protocol with Eclipse (Varian Medical Systems Inc.,
Palo Alto, USA). We calculated dose maps for segmentations using the state-
of-the-art BCE+SoftDice and the proposed DOSELO. For each obtained dose
map, we computed the dose score [12], which is the mean absolute error between
the reference dose map (DST

) and the dose map derived from the corresponding
segmentation result (D

̂ST
, where ̂ST ∈ {BCE+SoftDice, DOSELO}), and set it

relative to the reference dose map (DST
) (see Eq. 5).

RMAE =
1

H × W

H×W
∑

i

|DST
− D

̂ST
|

DST

(5)

Although it has been shown that geometric-based segmentation metrics
poorly correlate with the clinical end-goal in RT [4,11,18,23], we report in sup-
plementary material Dice and Hausdorff summary statistics as well (supplemen-
tary Table 3). We nonetheless reemphasize our objective to move away from such
proxy metrics for RT purposes and promote the use of more clinically-relevant
ones.

3.3 Results

Figure 2 shows results on the test set, sorted by their dosimetric impact. We
found an overall reduction of the relative mean absolute error (RMAE) with
respect to the reference dose maps, from 0.449 ± 0.545, obtained via the
BCE+SoftDice combo-loss, to 0.258 ± 0.201 for the proposed DOSELO (i.e.,
an effective 42.5% reduction with λ = 1). This significant dose error reduc-
tion shows the ability of the proposed approach to yield segmentation results in
better agreement with dose maps obtained using GT segmentations than those
obtained using the state-of-the-art BCE+SoftDice combo-loss.

Table 1 shows results for the first and most significant four cases from a
RT point of view (due to space limitations, all other cases are shown in sup-
plementary material). We observe the ability of the proposed approach to sig-
nificantly reduce outliers, generating a negative dosimetry impact on the dose
1 Code available under https://github.com/ruefene/doselo.

https://github.com/ruefene/doselo
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Fig. 2. Relative mean absolute dose errors/differences (RMAE) between the reference
dose map and dose maps obtained using the predicted segmentations. Lower is better.
Across all tested cases and folds we observe a large RMAE reduction for dose maps
using the proposed DOSELO (average RMAE reduction of 42.5%).

maps. We analyzed case number 3, 4, and 5 from Fig. 2 for which the standard
BCE+SoftDice was slightly better than the proposed DOSELO. For case no. 3
the tumor presents a non-convex shape alongside the skull’s parietal lobe, which
was not adequately modeled by the training dataset used to train the segmen-
tation models. Indeed, we remark that both models failed to yield acceptable
segmentation quality in this area. In case no. 4, both models failed to segment the
diffuse tumor area alongside the skull; however, as shown in Fig. 2-case no. 4, the
standard BCE+SoftDice model would yield a centrally located radiation dose,
with strong negative clinical impact to the patient. Case no. 5 (shown in supple-
mentary material) is an interesting case called butterfly GBM, which is a rare
type of GBM (around 2% of all GBM cases [3]), characterized by bihemispheric
involvement and invasion of the corpus callosum. In this case, the training data
also lacked characterization for such cases. Despite this limitation, we observed
favorable dose distributions with the proposed method.

Although we are aware that classical segmentation metrics poorly correlate
with dosimetric effects [18], we report that the proposed method is more robust
than the baseline BCE+SoftDice loss function, which yields outliers with Haus-
dorff distances: 64.06 ± 29.84 mm vs 28.68 ± 22.25 mm (–55.2% reduction) for
the proposed approach. As pointed out by [17], segmentation outliers can have a
detrimental effect on RT planning. We also remark that the range of HD values is
in range with values reported by models trained using much more training data
(see [1]), alluding to the possibility that the problem of robustness might not be
directly solvable with more data. Dice coefficients did not deviate significantly
between the baseline and the DOSELO models (DSC: 0.713 ± 0.203 (baseline)
vs. 0.697 ± 0.216 (DOSELO)).
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Table 1. Comparison of dose maps and their absolute differences to the reference dose
maps (BCE+SoftDice (BCE+SD), and the proposed DOSELO). It can be seen that
DOSELO yields improved dose maps, which are in better agreement with the reference
dose maps (dose map color scale: 0 (blue) - 70Gy (red)).

Case Input Image
Dose Simulation

Reference |Ref.-(BCE+SD)| |Ref. - DOSELO|

1

2

3

4

4 Discussion and Conclusion

The ultimate goal of DL-based segmentation for RT planning is to provide
reliable and patient-safe segmentations for dosimetric planning and optimally
targeting tumor lesions and sparing of healthy tissues. However, current loss
functions used to train models for RT purposes rely solely on geometric con-
siderations that have been shown to correlate poorly with dosimetric objectives
[11,18,22,23]. In this paper, we propose a novel dosimetry-aware training loss
function, called DOSELO, to effectively guide the training of segmentation mod-
els toward dosimetric-compliant segmentation results for RT purposes. The pro-
posed DOSELO uses a fast-dose map prediction model, enabling model guidance
on how dosimetry is affected by segmentation variations. We merge this informa-
tion into a simple yet effective loss function that can be combined with existing
ones. These first results on a dataset of post-operative GBM patients show the
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ability of the proposed DOSELO to deliver improved dosimetric-compliant seg-
mentation results. Future work includes extending our database of GBM cases
and to other anatomies, as well as verifying potential improvements when co-
training the segmentation and dose predictor models, and jointly segmenting
GTVs and OARs. With this study, we hope to promote more research toward
clinically-relevant DL training loss functions.
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