
Computer Methods and Programs in Biomedicine 231 (2023) 107374 

Contents lists available at ScienceDirect 

Computer Methods and Programs in Biomedicine 

journal homepage: www.elsevier.com/locate/cmpb 

PyRaDiSe: A Python package for DICOM-RT-based auto-segmentation 

pipeline construction and DICOM-RT data conversion 

Elias Rüfenacht a , ∗, Amith Kamath 

a , Yannick Suter a , Robert Poel b , Ekin Ermi ̧s b , 
Stefan Scheib 

c , Mauricio Reyes a 

a ARTORG Center for Biomedical Engineering Research, University of Bern, Murtenstrasse 50, Bern 3008, Switzerland 
b Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland 
c Varian Medical Systems Imaging Laboratory GmbH, Baden, Switzerland 

a r t i c l e i n f o 

Article history: 

Received 15 October 2022 

Revised 9 January 2023 

Accepted 23 January 2023 

MSC: 

68T45 

68U05 

68U10 

62P10 

92C55 

PACS: 

87.53.Tf 

89.70.+c 

Keywords: 

Auto-segmentation 

Deep learning 

Radiotherapy 

DICOM 

DICOM RT structure sets 

DICOM RTSS conversion 

a b s t r a c t 

Background and objective: Despite fast evolution cycles in deep learning methodologies for medical imag- 

ing in radiotherapy, auto-segmentation solutions rarely run in clinics due to the lack of open-source 

frameworks feasible for processing DICOM RT Structure Sets. Besides this shortage, available open-source 

DICOM RT Structure Set converters rely exclusively on 2D reconstruction approaches leading to pixelated 

contours with potentially low acceptance by healthcare professionals. PyRaDiSe, an open-source, deep 

learning framework independent Python package, addresses these issues by providing a framework for 

building auto-segmentation solutions feasible to operate directly on DICOM data. In addition, PyRaDiSe 

provides profound DICOM RT Structure Set conversion and processing capabilities; thus, it applies also to 

auto-segmentation-related tasks, such as dataset construction for deep learning model training. 

Methods: The PyRaDiSe package follows a holistic approach and provides DICOM data handling, deep 

learning model inference, pre-processing, and post-processing functionalities. The DICOM data handling 

allows for highly automated and flexible handling of DICOM image series, DICOM RT Structure Sets, and 

DICOM registrations, including 2D-based and 3D-based conversion from and to DICOM RT Structure Sets. 

For deep learning model inference, extending given skeleton classes is straightforwardly achieved, al- 

lowing for employing any deep learning framework. Furthermore, a profound set of pre-processing and 

post-processing routines is included that incorporate partial invertibility for restoring spatial properties, 

such as image origin or orientation. 

Results: The PyRaDiSe package, characterized by its flexibility and automated routines, allows for fast de- 

ployment and prototyping, reducing efforts for auto-segmentation pipeline implementation. Furthermore, 

while deep learning model inference is independent of the deep learning framework, it can easily be in- 

tegrated into famous deep learning frameworks such as PyTorch or Tensorflow. The developed package 

has successfully demonstrated its capabilities in a research project at our institution for organs-at-risk 

segmentation in brain tumor patients. Furthermore, PyRaDiSe has shown its conversion performance for 

dataset construction. 

Conclusions: The PyRaDiSe package closes the gap between data science and clinical radiotherapy by 

enabling deep learning segmentation models to be easily transferred into clinical research practice. 

PyRaDiSe is available on https://github.com/ubern-mia/pyradise and can be installed directly from the 

Python Package Index using pip install pyradise . 
© 2023 The Author(s). Published by Elsevier B.V. 
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. Introduction 

The clinical adoption of computer-aided diagnosis and inter- 

ention planning systems in radiotherapy has increased treatment 

uality and reduced the duration until treatment commencement 
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1] . Both aspects are associated with prolonged, progression-free 

urvival in some aggressive tumor types (e.g., glioblastoma [2] ); 

hus, further reducing delays until treatment commencement could 

otentially improve the progression-free survival of numerous can- 

er patients [3] . One possible path for further reducing delays in 

he clinical radiotherapy workflow is automating laborious and 

rror-prone workflow steps using deep learning (DL) techniques 

4] . Recently, DL-based methods have shown massive potential for 

any real-world applications [5,6] . Similarly, many studies have 

hown that DL techniques provide the potential for accurately seg- 

enting anatomical structures [7,8] and tumor sites (i.e., target 

tructures) [9,10] as is required in radiotherapy. In addition, study 

esults indicate that the gap in segmentation quality is consistently 

educing with evolving DL techniques compared to human experts 

7] . However, differences in data formats for medical image seg- 

entation introduce challenges in adopting DL techniques. While 

ata science relies typically on discretized image formats (e.g., 

IfTI, NRRD, MHA), radiotherapy workflows depend on the Digi- 

al Imaging and Communications in Medicine (DICOM) [11] format, 

recisely the DICOM Radiotherapy Structure Set (DICOM-RTSS) for- 

at, containing lists of contour control points. The main reason for 

sing discrete medical image formats in data science is that most 

L-based segmentation architectures (e.g., U-Net [12] ) operate ex- 

lusively on data aggregated on a grid. However, the processing 

f continuously spaced contour points on the state-of-the-art seg- 

entation architectures is not foreseen. Thus, accurate data con- 

ersion between discrete and continuous spaces is necessary for 

orking with the clinical DICOM-RTSS data format. 

In addition to the data format challenges, building auto- 

egmentation solutions involves pre-processing the provided DI- 

OM image series and post-processing the generated segmenta- 

ion masks. Pre-processing the patient’s images is necessary to 

lean and adjust their properties (e.g., intensity value normaliza- 

ion, resolution, registration to an atlas) to fit the model’s input. 

ence, pre-processing images for DL model inference often con- 

ists of many image analysis operations that affect intensity value 

roperties (e.g., intensity value range, amount of noise) and spatial 

roperties (i.e., origin, direction, spacing, size). While the intensity 

alue properties are no longer of interest after DL model infer- 

nce, spatial properties typically propagate to the generated seg- 

entation masks to correspond with the model’s input. However, 

hese spatial properties often differ from the ones of the original 

ICOM image series, and restoring the original DICOM image se- 

ies spatial properties is inevitable for having segmentation masks 

ligned with the original DICOM image series. Post-processing pre- 

ominantly concerns segmentation mask modifications and qual- 

ty enhancements, such as excluding minor false-positive segmen- 

ation errors for single instance structures. In summary, the route 

o developing radiotherapy-oriented, DL-based auto-segmentation 

olutions that operate directly on clinical DICOM data contains nu- 

erous challenges that must be overcome before clinic deploy- 

ent is feasible. However, to the best of our knowledge, there 

s currently no Python package that addresses these challenges 

olistically. 

Despite this, some projects address specific challenges in build- 

ng auto-segmentation solutions. While some projects address 

ICOM-RTSS-specific challenges, others aim at closing the gap be- 

ween data science and its clinical application in a holistic ap- 

roach by providing a profound general-purpose DL inference 

ramework for medical applications. For converting discrete medi- 

al images to DICOM-RTSS and vice versa, the RT-Utils [13] and the 

icomRTTool [14] packages provide essential functionality. How- 

ver, both packages are constrained to a simple 2D-based con- 

ersion algorithm that causes DICOM-RTSS contours to appear 

ynthetic (i.e., pixelated contours), which may limit the accep- 

ance of generated DICOM-RTSS contours in clinics. Regarding the 
2 
ata loading, pre-processing, and post-processing, multiple medical 

maging frameworks are available, such as the Insight Toolkit (ITK) 

15] or its simplified version, the Simple Insight Toolkit (SimpleITK) 

16] . These imaging frameworks are on a technically mature level, 

rovide a rich feature set, and are well-accepted by the commu- 

ity. However, while these frameworks are usually able to load DI- 

OM image series, they lack importing functionality for DICOM- 

TSS. Nevertheless, their tremendous functionality and robust de- 

ign provide a well-established basis for implementing new pack- 

ges. 

Specific packages for data pre-processing are also publicly avail- 

ble, such as TorchIO [17] , which focuses on data pre-processing 

nd augmentation for DL model training with PyTorch [18] . In ad- 

ition, TorchIO provides functionality for DL model inference and 

mage transformation invertibility but lacks processing capabilities 

or DICOM-RTSS. Although TorchIO may be extendable for process- 

ng DICOM-RTSS data, structured handling of DICOM image series 

etadata would nonetheless be challenging because the required 

ata structures and mechanisms are missing. 

MONAI (Medical Open Network for AI) [19] follows a more 

olistic approach by providing DL model training and inference 

unctionality, including training routines, neural network architec- 

ures, and loss functions. In addition, MONAI provides a bundle 

alled MONAI Deploy suited for deploying DL-based applications 

n a clinical production environment. However, MONAI Deploy is 

urrently unable to export DICOM-RTSS files limiting its applica- 

ility to radiotherapy segmentation tasks. Furthermore, the MONAI 

ramework, while getting to be a de-facto standard in DL for medi- 

al imaging, is specifically designed for the PyTorch DL framework, 

hus, limiting fast switching between DL frameworks and deploy- 

ng existing DL models to radiotherapy clinics. 

A further project following a holistic approach is DeepNeuro 

20] , which provides a TensorFlow-based [21] DL model deploy- 

ent system suited for segmentation that lacks DICOM-RTSS con- 

ersion capabilities. Unfortunately, this project is not actively 

aintained anymore as of October 2022. 

In summary, many open-source projects aim to resolve chal- 

enges in bringing DL techniques into clinics. However, holistic 

rojects, such as MONAI or DeepNeuro, lack DICOM-RTSS conver- 

ion functionality that is challenging to extend due to metadata 

ropagation. On the other hand, projects focusing exclusively on 

enerating DICOM-RTSS provide solely 2D-based conversion ap- 

roaches leading to pixelated structures that may limit result ac- 

eptance by physicians and do not provide additional functionality 

or DL model inference. 

In this paper, we present PyRaDiSe, an open-source Python 

Py) package for developing deployable, radiotherapy-oriented (Ra), 

ICOM-based (Di) auto-segmentation (Se) solutions. PyRaDiSe is 

L framework-independent but can easily integrate most DL 

rameworks, such as PyTorch or TensorFlow. The package addresses 

he following challenges for building radiotherapy-oriented auto- 

egmentation solutions: handling DICOM data, managing and con- 

erting DICOM-RTSS data (incl. a 2D-based and a 3D-based con- 

ersion algorithm), invertible pre-processing, and post-processing. 

n addition to building auto-segmentation solutions, PyRaDiSe al- 

ows for converting and curating DICOM image series and DICOM- 

TSS data to simplify segmentation training dataset construction. 

herefore, PyRaDiSe is highly flexible, allows for fast prototyping, 

nd facilitates a fast transition of data science research results into 

linical radiotherapy research. 

. Methods 

The intended use of PyRaDiSe is to close the gap between DL 

nd clinical radiotherapy research by providing a versatile and 

olistic Python package to build deployable DICOM-based auto- 
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Fig. 1. Schematic illustration of PyRaDiSe and its packages. The typical workflow is shown with solid lines and alternative and optional processing routes are depicted by 

dashed lines. 
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egmentation solutions and to evaluate corresponding research re- 

ults in a clinical environment. In addition, the functional scope 

f PyRaDiSe provides specific solutions such as converting clini- 

al DICOM and DICOM-RTSS data to various discrete medical im- 

ge file formats used for research purposes (e.g., NIfTI) or pre- 

rocessing DICOM data for training or dataset construction of DL 

odels. In combination with other tools such as Docker [22] and 

itHub 1 , PyRaDiSe facilitates and speeds up the development of 

ortable and version-controlled auto-segmentation solutions and 

enders fast evolution cycles feasible. Furthermore, due to its holis- 

ic approach, simple integration capabilities, and flexible exten- 

ibility, PyRaDiSe-based auto-segmentation solutions can be inte- 

rated into existing segmentation solutions or made available via 

he cloud to a broader community of users. In summary, PyRaDiSe 

ddresses three main challenges of auto-segmentation in clinical 

adiotherapy research: image data handling (incl. DICOM), conver- 

ion from and to DICOM-RTSS, and processing of clinical research 

ata with DL methods. 

The three main components of PyRaDiSe are the fileio package 

or data import and export, the data package for data handling, and 

he process package for pre-processing, DL model inference, and 

ost-processing ( Fig. 1 ). 

.1. FileIO package 

The fileio package provides highly automated, versatile, and 

asy-to-use functionality for data import, export, and DICOM- 

TSS conversion. First, automated because importing and convert- 

ng medical image data, particularly DICOM data, often is com- 

lex, confusing, and time-consuming due to references among the 

ntities (e.g., processing DICOM registration data with references 

o two DICOM image series) and varying data structures. Sec- 

nd, versatile because loading, converting, and serializing medi- 

al image data requires many computational resources, and thus 

 streamlined import and export process featuring low computa- 

ional complexity is essential. Furthermore, versatile because the 
1 https://github.com/ . 

c

t

3 
leio package can handle input and output data of various forms 

nd structures. Third, easy-to-use because data ingestion, conver- 

ion, and serialization should be as simple as possible for devel- 

pers, reducing development time and improving code readability 

isting 1 . 

Data import . In contrast to the standard way of loading data, 

here data loading is necessary before accessing series-associated 

etadata is possible, PyRaDiSe allows for retrieving and select- 

ng pre-loading information (so-called SeriesInfo ) before data 

oading. This approach reduces memory requirements (depending 

n the data to be loaded) and speeds up the subsequent loading 

rocedure. In order to retrieve the pre-loading information, a data 

rawler first searches for loadable files in the target filesystem 

ocation. Then it extracts the required information using its asso- 

iated metadata retrieval routines to generate the pre-loading in- 

ormation. Afterward, retaining selected pre-loading information is 

chieved using optional selection routines. For example, if retriev- 

ng data from filesystem hierarchies containing additional data, 

his selection step effectively allows for excluding unwanted files, 

uch as data from failed acquisitions where patients had moved 

r data not required for auto-segmentation (e.g., unused magnetic 

esonance (MR) imaging sequences). Subsequently, an appropriate 

oader ingests the selected data based on the pre-loading infor- 

ation and applies the required data conversion procedures. Fi- 

ally, the loaded data is available for further processing using the 

ata model described in the data package. 

DICOM metadata retrieval. The retrieval procedures for con- 

tructing the pre-loading information are highly automated; how- 

ver, some metadata may not automatically be deducible. In gen- 

ral, if working with DICOM data, all metadata is accessible and 

educible except for cases where multiple uni-modal DICOM im- 

ge series (e.g., two MR sequences) should be loaded. In these 

ases, discrimination between the uni-modal images is impossi- 

le because the DICOM standard provides just a coarse modality 

dentification (e.g., MR for magnetic resonance imaging) and lim- 

ted standardized modality-specific details, such as the X-ray tube 

urrent for computed tomography (CT) image series. Unfortunately, 

he limited standardization of this metadata and clinic-specific and 

https://github.com/
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Listing 1. DICOM-RTSS to NIfTI conversion example using PyRaDiSe. 
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2 The API reference (see https://pyradise.readthedocs.io/ ) provides implementa- 

tion examples for each extractor type. 
achine vendor-dependent naming of DICOM attributes introduces 

mbiguities in these cases and hinders robust discriminability. In 

rder to resolve the issue of restricted access to modality and ac- 

uisition details, the fileio package provides two approaches: ei- 

her use a separate modality configuration file per patient or im- 

lement a metadata extraction method. The approach selection is 

p to the user and may depend on the specific application and 

he data access. Below these two approaches are described in 

ore detail. 

• Modality Configuration File Approach. 

The modality configuration file approach requires a separate 

JSON configuration file per patient located in the patient’s data 

directory. This file specifies the modality name for each series 

of DICOM images and contains additional data for manual iden- 

tification of the corresponding DICOM image series. Neverthe- 

less, the skeleton of this configuration file can be generated au- 

tomatically by the appropriate Crawler . However, it must be 

modified by the user manually or via a separate script (exam- 

ple in Appendix A ). After configuration, the Crawler uses this 

configuration file to identify and discriminate the correspond- 

ing data. Therefore, this approach is better suited for applica- 

tions where modality details are inaccessible through a pro- 

grammable method. Furthermore, this approach is preferable to 
4 
generate reproducible results if processing the same data mul- 

tiple times is needed, such as during dataset construction and 

curation for DL training. 
• Modality Extractor Approach. 

The second approach, relying on a ModalityExtractor , re- 

quires the implementation of a prototype class that uses rule- 

based deduction, external data sources, or an artificial intelli- 

gence technique to identify the corresponding modality details 

upon runtime. In contrast to the modality configuration file ap- 

proach, this approach is better suited for applications where the 

required information is guaranteed to possess a standardized 

structure or is accessible via a third-party system by calling the 

appropriate API (e.g., an external database or a DL-based se- 

quence identification algorithm). 

Discrete image metadata retrieval. In the case of working with 

iscrete image data (e.g., NIfTI images), the required metadata (i.e., 

odality name, organ name, annotator name) is not retrievable 

utomatically because these image formats typically do not con- 

ain content-related metadata. However, in practice, this metadata 

s often accessible in varying formats, either in the filename, a 

ookup table, or another external data source such as a database. 

n order to render this metadata retrievable, the fileio package pro- 

ides separate extractor prototype classes for each metadata type 

i.e., Modality , Organ , Annotator ). The implementation of the 

xtractor prototypes 2 is straightforward and allows for maximum 

exibility. 

Data conversion. In addition to metadata such as references 

o DICOM images, DICOM-RTSS files consist of 3D point coordi- 

ate lists describing contour control points in the physical space, 

ith each list describing a contour of one anatomical structure 

n one image slice. The combination of multiple corresponding 

oordinate lists provides the spatial segmentation of an anatomi- 

al structure in space. Because most DL segmentation models and 

mage analysis methods operate exclusively on data in discrete 

paces, converting DICOM-RTSS data into discretized segmentation 

asks is required. In PyRaDiSe, the necessary converting routines 

re an extended version of the ones from the RT-Utils package and 

re called automatically during the loading of DICOM-RTSS data. 

 necessity for the DICOM-RTSS conversion is the availability of 

he referenced DICOM image series that hold additional informa- 

ion about the spatial orientation of the contours and references 

o the image slices. In PyRaDiSe, this is checked automatically by 

he provided conversion functionality, and the user does not need 

o assign the referenced DICOM image series to the correspond- 

ng converter. In addition, the DICOM-RTSS conversion routines 

heck for possible DICOM registrations (i.e., image transforms) as- 

igned to the referenced DICOM image series such that they are 

pplied to the DICOM-RTSS too. Besides converting DICOM-RTSS 

o segmentation masks, the fileio package also provides function- 

lity to convert one or multiple binary segmentation masks into 

 multi-structure DICOM-RTSS dataset that is readable by stan- 

ard RT planning tools. Similar to the opposite conversion direc- 

ion, this procedure requires a DICOM image series to establish 

eferences in the DICOM-RTSS file. In this regard for this conver- 

ion, PyRaDiSe provides two different conversion algorithms with 

istinctive advantages that operate on the slices (2D) or the vol- 

me (3D)(see Fig. 2 ). The 2D-based algorithm is an extended ver- 

ion of the RT-Utils packages algorithm that, among other things, 

llows for smooth contours in-plane. However, the extended al- 

orithm can not compensate for fast contour changes in neigh- 

oring slices. On the other hand, the volume-operating converter 

3D) can compensate for these remaining errors by mesh-based 

https://pyradise.readthedocs.io/
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Fig. 2. Schematic illustration of the available segment-to-contour conversion algorithms on a brain stem segmentation from an internal dataset. Optional processing steps 

are emphasized with dashed borders. 
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Fig. 3. Schematic illustration of the Subject and its associated components. 
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o

D smoothing coupled with a reslicing operation. This volumetric 

onversion provides naturally appearing geometries at the cost of 

rolonged computation time. Both conversion algorithms allow for 

ne-graded parameterization. 

Data export. Besides data import and conversion, the fileio 

ackage offers export capabilities to serialize data to various 

le formats, such as NIfTI or DICOM-RTSS. Especially, exporting 

ICOM-RTSS helps in scenarios where healthcare professionals are 

he intended audience of an auto-segmentation solution because 

hey may not possess the necessary tools and knowledge to con- 

ert discrete segmentation masks into DICOM-RTSS. In addition 

o the different export file formats, the fileio package allows spe- 

ific Writers to automate the combination of the original input 

nd the generated data in a single output directory or a Zip file. 

his combination process guarantees that the original input data 

r the input directory content remains unchanged and is avail- 

ble in the output. This feature is helpful when deploying an auto- 

egmentation solution in a Docker container with separate input 

nd output directories. 

.2. Data package 

The data package provides a lightweight, reproducible, and ex- 

ensible RT-oriented data model. First, lightweight because work- 

ng with medical image data requires large amounts of mem- 

ry; thus, the introduced functionality should consume a mini- 

um of additional memory. Second, reproducible because the data 

odel should not bias or influence the evaluation of different auto- 

egmentation models on the same data. Third, extensible so that 

dditional data entities (e.g., DICOM RT Dose) can be added in the 

uture to extend the functional scope of PyRaDiSe. 

Subject. The data model’s central component is the Subject 
 Fig. 3 ), which contains all loaded data from a single patient. The 

ontent of the Subject includes but is not limited to the pa- 

ient’s identification (i.e., the patient’s name or an anonymized 

dentifier), the patient-associated IntensityImage s (e.g., a CT 

can and multiple MR images), and SegmentationImage s (e.g., 
5 
oaded and converted segmentation masks from a DICOM-RTSS 

r segmentation masks generated by an auto-segmentation algo- 

ithm). Furthermore, the Subject allows the incorporation of ad- 

itional user-defined data related to the patient. 

For ease of use, the loading routines provided as part of the 

leio package automatically construct a Subject from the im- 

orted data such that the user does not need to construct it from 

he different data entities. After data loading and Subject con- 

truction, all downstream processing, including data export, takes 

lace on the Subject instance such that the different processing 

outines have access to all data on a subject level. 

Images. The main contents of a Subject instance are the im- 

ges associated with the patient. In contrast to the image types 

f well-known medical imaging libraries such as SimpleITK or ITK, 
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Listing 2. FilterPipeline construction and application to a Subject in- 

stance. 
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he PyRaDiSe image types hold additional information for identi- 

cation and discrimination purposes. PyRaDiSe differentiates be- 

ween IntensityImage s, such as CT, MR, or ultrasound images 

US), and SegmentationImage s, which contain either a man- 

ally or automatically generated segmentation mask. In addition 

o the image data, IntensityImage s include a Modality that 

rovides information about the imaging modality (e.g., CT, MR, 

r US) and acquisition parameters (e.g., T1-weighted (T1w), T1- 

eighted post-contrast (T1c), or fluid-attenuated inverse recovery 

FLAIR) for MR sequences) when the Subject contains multiple 

ni-modal IntensityImage s such that these can be differenti- 

ted. In contrast to IntensityImage s, SegmentationImage s 
ontain content-related data about the Organ depicted on the 

egmentation mask and information about the Annotator that 

enerated the segmentation. Although the Annotator ’s name 

s freely choosable, it can be anonymized or describe an auto- 

egmentation algorithm instead of a human expert. In addition 

o the image type-specific content, both image types contain a 

echanism called TransformTape that records modifications 

nd transformations of the image data to allow reproducibility and 

artial invertibility. Furthermore, this feature renders restoration of 

patial image properties (i.e., image origin, direction, spacing, and 

ize) feasible after applying one or multiple modification proce- 

ures to the image (e.g., image resampling and registration to an 

tlas before DL model inference). However, the inversion’s avail- 

bility is limited to filters that perform mathematically invertible 

perations (more details see Chapter 4 and Table 1 ). 

Content-related image information. The type of content- 

elated image information (i.e., Modality , Organ , and 

nnotator ) depends on the image type and allows discrim- 

nation between images, as mentioned earlier. For ease of use 

nd maximum flexibility, all image information types contain 

 name as a string that allows anonymization and enables the 

ncorporation of as much information as is desired by the user. 

Extensibility & flexibility. The design approach of the data 

odel is to keep things simple such that extensibility can be as- 

ured. Thus, the flat data hierarchy, strictly considering polymor- 

hism principles and utilizing type hints throughout the entire 

yRaDiSe package, ensures the straightforward implementation of 

ew data types, such as DICOM RT Dose. Furthermore, these design 

rinciples enable high flexibility for implementing new features. 

.3. Process package 

The process package offers a selection of pre-processing and 

ost-processing routines for manipulating IntensityImage s 
nd SegmentationImage s that incorporate functionality from 

opular imaging frameworks such as SimpleITK and ITK. For DL 

odel inference, the process package incorporates prototypes and 

mplementation examples to stay DL framework independent, al- 

owing for maximum flexibility and fast prototyping. Furthermore, 

he optional use of a DL framework drastically reduces the mem- 

ry footprint of PyRaDiSe itself, which is beneficial if PyRaDiSe is 

sed for conversion purposes only. 

The base components of the process package are Filter , 
ilterParams , and FilterPipeline , which allow for the 

onstruction of reproducible and invertible processing pipelines. 

he current version of the package includes the most often applied 

ilter s for building auto-segmentation solutions. In order to fa- 

ilitate user-driven extensions and implementations of additional 

omponents, abstract base types and implementation examples are 

iven and documented in the API reference 3 Listing 2 . 
3 https://pyradise.readthedocs.io/ . 

(

I

6 
Filter & filter parameters. Filter s are data modification 

outines parameterized by FilterParams . The design of the 

ilter s simplifies the processing because they operate directly 

n Subject instances, thus, reducing the amount of boilerplate 

ode and improving code readability. However, the Image s to 

hich the Filter ’s modification routine is applied are specifi- 

ble for most given Filters . In contrast to other medical im- 

ge analysis frameworks, the provided Filter s incorporate an in- 

ertibility feature if their operation is reversible. This feature also 

llows for reproducibility by logging the Filter applications to 

n Image on a TransformTape assigned to the corresponding 

mage . For inversion, the TransformTape can be played back on 

he corresponding Image to undo the modifications recorded. The 

nvertibility feature allows restoring spatial image properties after 

rocessing, typically at the end of an auto-segmentation pipeline, 

o that the generated segmentations align with the input images 

more details see Chapter 4 ). 

Table 1 enlists all Filter s provided in the package and the 

mage type they modify. 

https://pyradise.readthedocs.io/
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Table 1 

Overview of Filter s and FilterParam s implemented in the process package with indicators for the image type the Filter 
modifies (int. = IntensityImage s, seg. = SegmentationImage s). 

Module Filter / filter parameters ( ∗ = Filter or FilterParams ) Invertible Image type 

int. seg. 

Intensity ZScoreNorm ∗ � � –

ZeroOneNorm ∗ � � –

RescaleIntensity ∗ � � –

ClipIntensity ∗ – � –

Gaussian ∗ – � –

Median ∗ – � –

Laplacian ∗ – � –

Orientation Orientation ∗ � � � 

Registration IntraSubjectRegistration ∗ � � � 

InterSubjectRegistration ∗ � � � 

Resampling Resample ∗ � � � 

Modification AddImage ∗ – � � 

RemoveImageByOrgan ∗ – – � 

RemoveImageByAnnotator ∗ – – � 

RemoveImageByModality ∗ – � –

MergeSegmentation ∗ – – � 

Inference Inference ∗ – – � 

Post-Proc. SingleConnectedComponent ∗ – – � 

AlphabeticOrganSorting ∗ – – � 

Invertibility PlaybackTransformTape ∗ N/A � � 
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Filter pipeline. The FilterPipeline is an easy-to-use and 

aluable component for combining multiple filters into an exe- 

utable sequence, reducing boilerplate code upon Filter execu- 

ion. Furthermore, it allows for experimenting with different vari- 

nts of Filter combinations during development and enables a 

exible processing pipeline construction process. 

Extensibility & flexibility. The process package offers a 

et of selected Filter s that are, in our opinion, sufficient 

or building simple to intermediate auto-segmentation solu- 

ions. This set of Filter s includes, among others, function- 

lity for intensity value manipulation (i.e., intensity normaliza- 

ion), affine registration of IntensityImage s from the same 

i.e., IntraSubjectRegistrationFilter ) or two different 

ubject s (i.e., InterSubjectRegistrationFilter ) using 

impleITK functionality, and segmentation mask manipulation. 

onetheless, specific applications may require extending the cur- 

ent capabilities; this can be achieved easily by implementing task- 

pecific Filter s for which examples and descriptions are pro- 

ided in the API reference. These examples also illustrate the wrap- 

ing of SimpleITK and ITK filters such that the user can easily 

euse and combine existing, community-proven processing rou- 

ines. Furthermore, these examples and explanations also allow 

or straightforward implementation of other advanced registration 

hird-party tools, such as SimpleElastix [23] . 

. Results 

PyRaDiSe is hosted on the Python Package Index (PyPI) for 

traightforward installation of the latest version using the com- 

and pip install pyradise . In addition, the source code is 

ublicly available on GitHub 4 under the terms of the Apache 2.0 

icense, and the documentation is hosted on Read the Docs 5 , in- 

luding descriptions of the classes and functions. Furthermore, ex- 

mples in the documentation demonstrate the intended use of 

yRaDiSe in small parts covering isolated functionality and more 
4 https://github.com/ubern-mia/pyradise . 
5 https://pyradise.readthedocs.io/ . 

c

r

t

p

7 
xtensive examples encompassing complete use cases. The offered 

xamples are available on GitHub or directly rendered in the doc- 

mentation. In all examples, MR images and segmentations of the 

ead of five subjects from the TCIA [24] “Segmentation of Vestibu- 

ar Schwannoma from Magnetic Resonance Imaging: An Open An- 

otated Dataset and Baseline Algorithm” [25,26] dataset are used. 

ach subject comprises a T1-weighted post-contrast (Gd) image, a 

2-weighted image, and manual segmentations of the tumor vol- 

me, the cochlea, and the skull. In contrast to the original dataset, 

he secondary DICOM-RTSS and all DICOM-RT Dose and DICOM-RT 

lans were removed, such that the example data does not contain 

ata unnecessary for the demonstrations. In addition to DICOM 

ata, the example data also contains all data in NIfTI format, which 

as converted with PyRaDiSe. Hence, executing both provided con- 

ersion examples is immediately possible after downloading the 

xample data. Furthermore, a PyTorch-based U-Net segmentation 

odel is provided for the inference example, which segments the 

kull based on the images given. This model was trained for 15 

pochs on images from 50 subjects of the original dataset with a 

earning rate of 0.0 0 01 and a binary cross-entropy loss. This model 

id not converge during training and is for demonstration purposes 

nly. 

The provided examples mimic different aspects of building an 

uto-segmentation pipeline for brain tumor segmentation. The fol- 

owing sections summarize the examples that cover the dedicated 

unctionality of PyRaDiSe. 

.1. Data conversion 

The examples DICOM to NIfTI Conversion and NIfTI to DICOM- 

TSS Conversion illustrate the conversion capabilities of PyRaDiSe. 

he first example demonstrates the conversion of DICOM images 

nd DICOM-RTSS to NIfTI. This conversion procedure results in a 

et of NIfTI files that either contains the intensity values of the 

orresponding DICOM image or a binary segmentation mask of the 

elated structure in the DICOM-RTSS ( Fig. 4 ). All images possess 

he same spatial properties inherited from the DICOM image files, 

reserving the alignment between the images and structures. Fur- 

https://github.com/ubern-mia/pyradise
https://pyradise.readthedocs.io/
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Fig. 4. Illustration of conversion result from DICOM-RTSS (red-filled structure) to NIfTI (green-filled structure) overlaid on the T1-weighted post-contrast image of subject 

VS-SEG-001 from the example dataset, as displayed by 3D Slicer [27] . 
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hermore, this example demonstrates both metadata retrieval ap- 

roaches – modality configuration file and extraction via a user- 

mplemented ModalityExtractor – that are required to dis- 

riminate between the two MR. 

In contrast to the first conversion example, the second demon- 

trates the conversion from NIfTI to DICOM-RTSS ( Fig. 5 ). Con- 

erting NIfTI to DICOM-RTSS requires partially loading the corre- 

ponding DICOM image series because DICOM-RTSS contains ref- 

rences to a specific DICOM image series. Therefore, this example 

lso demonstrates the DICOM image series selection mechanism 

o define the image series referenced in the DICOM-RTSS. Further- 

ore, this example demonstrates the implementation process of 

xtractor classes required to retrieve the Modality , Organ , 
nd Annotator while loading NIfTI files. 

.2. Data processing 

The example Data Processing demonstrates selected processing 

apabilities of the process package, including the built-in invertibil- 

ty feature ( Fig. 6 ). Visualized results are provided for each demon- 

tration in this example to facilitate maximum clearness. In a sepa- 

ate demonstration, building an invertible FilterPipeline is il- 
ustrated to exemplify a realistic use case in an auto-segmentation 

ipeline. The given demonstrations also highlight the limitations of 

he invertibility feature, raising sensitivity that the invertibility fea- 

ure should be used with appropriate caution. The demonstration 
ig. 5. Illustration of conversion result (2D-based algorithm) from NIfTI (green-filled st

ernelsize smooth = 32 ) overlaid on the T1-weighted post-contrast (Gd) image of subject VS-

8 
f experiencing an information loss after applying the invertibility 

eature is presented in Fig. 6 , where the intensity information at 

he posterior side of the skull gets removed by transforming the 

mage. The experienced information loss in this demonstration is 

ot retrievable because the invertibility feature does not track the 

ifferent image stages. 

.3. Inference 

The example DL-Model Inference Pipeline presents a full-featured 

uto-segmentation pipeline for segmenting the skull based on a 

1-weighted post-contrast (Gd) and a T2-weighted image. Similarly 

o clinical applications, the example ingests the appropriate DICOM 

mage series and outputs a combination of the utilized DICOM im- 

ge series and the newly created DICOM-RTSS such that the data 

s importable in a treatment planning system ( Fig. 7 ). For segmen- 

ation, this example relies on a 2D-U-Net implemented in PyTorch 

hat is provided in the example data GitHub repository, as men- 

ioned earlier. In addition, the implementation of the appropriate 

nferenceFilter for applying the model to the subject’s im- 

ges is demonstrated and explained. Furthermore, this example in- 

ludes specific pre-processing and post-processing steps, such that 

he image’s spatial and intensity value properties correspond with 

he expected model’s input. Finally, this example demonstrates the 

ssignment of customizable metadata to the DICOM-RTSS, such as 

he institution name, the operator’s name, or the series’ name. 
ructure) to DICOM-RTSS (red-filled structure) with default settings ( σsmooth = 2 . 0 , 

SEG-001 from the example dataset, as displayed by 3D Slicer [27] . 
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Fig. 6. Illustration of the invertibility feature experiences an information loss on the posterior side of the head. For the resampled image, a transformation via a 

ResampleFilter is applied on VS-SEG-001 of the example dataset. 

Fig. 7. Illustration of the segmentation result generated with the example DL-Model Inference Pipeline on subject VS-SEG-001 of the example dataset overlaid on the T1- 

weighted post-contrast (Gd) image, as displayed in 3D Slicer [27] . 
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In the introduction, dockerization of auto-segmentation solu- 

ions is mentioned as an easy-to-use and versatile deployment op- 

ion that allows for versioning and minimal setup on the target 

achine. In the tutorial Container-based Inference Pipeline , a recom- 

ended workflow for dockerization is suggested that provides de- 

ailed descriptions and refers to valuable resources such that typi- 

al dockerization challenges can be overwhelmed without frustra- 

ion. 

.4. Tutorials 

In addition to the examples, step-by-step tutorials for convert- 

ng well-known DICOM-RTSS-based segmentation datasets to dis- 

rete medical images are provided on the documentation website 

o reduce efforts for PyRaDiSe users. These tutorials include meta- 

ata handling (i.e., modality configuration file generation) and ba- 

ic conversion so that users can adapt the conversion scripts to 

heir specific scenarios. Hence, these tutorials also provide a good 

tarting point for building more elaborate conversion pipelines for 
9 
he respective dataset that, for example, include resampling to a 

ommon size and spacing. 

.5. Synthetic conversion experiment 

In addition to the aforementioned results, a set of ex- 

eriments was performed to demonstrate the conversion 

erformance of PyRaDiSe by repeatedly converting different 

ata between DICOM-RTSS and NIfTI. In the first experi- 

ent, a synthetic sphere of 20mm diameter was converted 

or ten cycles using both provided segmentation-to-DICOM- 

TSS converters (i.e., SegmentToRTSSConverter2D and 

egmentToRTSSConverter3D ). The selection of the sphere 

s a representative geometrical primitive is motivated by the fact 

hat it contains large curvature in all dimensions that correspond 

ith the geometrical properties of anatomical structures. Fur- 

hermore, converting a geometrical body with a high curvature 

s more challenging than it is for one with a slight curvature. 

n addition, the sphere diameter has been selected to be similar 

o many small segmentation structures, such as the eye globes, 
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Fig. 8. Graphical illustration of the repetition experiment results over 10 repetition cycles. 
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Table 2 

Results overview of the synthetic conversion experiment using the 3D-based 

conversion algorithm. 

Metric Unit 

Repetition 

1 2 3 4 5 

DSC – 0.998 0.997 0.997 0.996 0.996

HD95 mm 0.100 0.100 0.100 0.100 0.100 

HD100 mm 0.300 0.300 0.300 0.300 0.300 

6 7 8 9 10 

DSC – 0.995 0.995 0.995 0.995 0.994

HD95 mm 0.100 0.100 0.100 0.100 0.100 

HD100 mm 0.300 0.300 0.300 0.300 0.300 
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hich are more sensitive to the selected evaluation metrics than 

tructures with larger volumes. For the evaluation of the arising 

egmentation masks, we chose the Dice coefficient (DSC) [28] , the 

5th-percentile Hausdorff distance (HD95) [29] , and the 100th- 

ercentile Hausdorff distance (HD100) to account for overlap and 

istance to the ground truth segmentation mask. 

For constructing the DICOM-RTSS at each conversion cycle, 

n artificial DICOM image series was created with a native size 

f [500 × 500 × 500] voxels and spacing of [0 . 1 mm × 0 . 1 mm ×
 . 1 mm ] . For the conversion procedure using the 2D-based con- 

ersion algorithm (i.e., SegmentToRTSSConverter2D ), the de- 

ault smoothing of the input segmentation mask was disabled 

uch that precise contours are generated that remain unmodified 

or visualization. Similarly, all smoothing operations for the con- 

ersion procedure using the 3D-based conversion algorithm (i.e., 

egmentToRTSSConverter3D ) were disabled. 

The obtained quantitative results ( Fig. 8 ) reveal that the 2D- 

ased conversion algorithm produces perfect results that do not 

xperience any quantitative deterioration in any metric used. 

owever, the qualitative checking of the generated DICOM-RTSS 

howed that contours contain pixelation characteristics (i.e., con- 

ected straight line segments from a finite set of angles) due to 

he omitted smoothing of the segmentation mask before contour 

xtraction. On the other hand, using the 3D-based conversion al- 

orithm resulted in a slight and propagating deterioration of the 

egmentation masks over multiple conversion cycles (DSC: 0.994, 

D95: 0.100 mm, HD100: 0.300 mm after ten conversion cycles). 

owever, over the ten conversion cycles, only the DSC was affected 

y the propagating deterioration, while the distance-based metrics 

i.e., HD95 and HD100) experienced degradation only during the 

rst conversion cycle. Correspondingly, the visual examination of 

he converted segmentation masks revealed that repetitive conver- 

ion with the 3D-based algorithm causes tiny changes located ex- 

lusively at the segmentation’s boundary. Hence, this demonstrates 

hat discretization and meshing lead to irreversible information 

oss increasing over multiple conversion cycles. Nonetheless, the 

egradation of the segmentation masks is slight and slowly in- 

reasing, demonstrating for practical applications the high con- 

ersion performance of PyRaDiSe’s 3D-based conversion algorithm. 

etailed results for the 3D-based conversion algorithm are pro- 

ided in Table 2 . 

.6. 2D-based conversion tool comparison 

In a second experiment, the 2D-based conversion algorithm 

f PyRaDiSe was compared with the conversion algorithm of the 
10 
T-Utils package that initially provided the basis for the 2D- 

ased conversion algorithm in PyRaDiSe. Similar to the first ex- 

eriment, the data was converted for ten cycles between DICOM- 

TSS and NIfTI, and the segmentation performance was compared 

sing the same segmentation metrics (i.e., DSC, HD95, HD100). 

owever, in contrast to the first experiment, manually gener- 

ted segmentations of the brain stem, the left cochlea, and the 

eft hippocampus from ten arbitrarily chosen glioblastoma pa- 

ients, of an in-house DICOM-RTSS dataset, were used to demon- 

trate the conversion performance on clinical data. These anatom- 

cal structures were selected due to their volume and shape 

iversity. 

Because this experiment used raw clinical DICOM data, the se- 

ected data contained slight variations in the number of slices per 

atient but identical slice image sizes of [256 × 256] voxels. Fur- 

hermore, patients were selected so that all associated DICOM im- 

ges have a similar spacing of [1 mm × 1 mm × 1 mm ] . 

The quantitative results ( Tables B.3 –B.5 ) obtained with both 

onversion algorithms demonstrated a near-lossless and identical 

onversion performance in all selected metrics for the left cochlea 

nd the left hippocampus. However, using the RT-Utils algorithm 

or converting the brain stem resulted in higher HD100 distances 

han the PyRaDiSe algorithm. The analysis of the qualitative results 

nraveled that for one subject, the RT-Utils algorithm generated a 

ingle voxel segmentation in the initial conversion from DICOM- 

TSS to NIfTI due to a small artifact in the original DICOM-RTSS. 

ue to its small size, the resulting single voxel segmentation di- 

inished in the subsequent conversion cycles. However, the ini- 

ial segmentation mask containing the single-voxel segmentation 

as used as the reference for evaluating the segmentation masks 

ecause the computation of the metrics requires discretized seg- 

entation masks. Thus, the segmentation masks generated during 

he repetitive conversion (those without the single-voxel segmen- 
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ation) were compared to the initial segmentation mask containing 

he single-voxel segmentation, which ultimately led to an increase 

n HD100. The PyRaDiSe conversion algorithm, on the other hand, 

ontains an optional post-processing routine for hole-filling and 

ingle-voxel-segmentation-removal that successfully removed the 

rtifact during conversion from DICOM-RTSS to NIfTI. This removal 

xplains the lower HD100 values obtained with the PyRaDiSe algo- 

ithm. However, if the mentioned post-processing routine remains 

nactivated, the increase in HD100 is identical to that experienced 

ith the RT-Utils algorithm. 

In order to understand the reason for the minimal deterioration 

n DSC and HD100, we analyzed the segmentation masks visually. 

ur analysis showed that segmentation errors, besides the debated 

ase, are exclusively located at the boundary of the segmentation 

nd arise after the first conversion cycle. These errors do not exac- 

rbate beyond the first conversion cycle, indicating an error satura- 

ion effect. Furthermore, our observations indicate that the errors 

rise due to the information loss experienced during the discretiza- 

ion of the continuously-spaced DICOM-RTSS contours. Nonethe- 

ess, the conversion performance of both examined conversion al- 

orithms is nearly perfect and allows precise conversion from and 

o DICOM-RTSS. 

.7. 3D-based conversion tool comparison 

Similar to the second experiment comparing two different 2D- 

ased conversion algorithms on clinical data, the third compares 

wo 3D-based conversion algorithms on a subset of the clinical 

ata used in the previous experiment. For this third experiment, 

he conversion performance of PyRaDiSe’s 3D-based algorithm was 

ompared with the performance of the 3D Slicer [27] and its ex- 

ension for processing DICOM-RTSS called SlicerRT [30] . In contrast 

o PyRaDiSe, 3D Slicer is a full-featured medical image analysis ap- 

lication intended for interactive use, thus, providing limited API 

apabilities. Due to this limitation, the ten conversion procedures 

ere executed manually on a reduced set of five glioblastoma pa- 

ients using the same anatomical structures as in the second ex- 

eriment. 

The 3D Slicer application, combined with the SlicerRT ex- 

ension, provides capabilities for converting binary segmentation 

asks directly to DICOM-RTSS or using 3D meshes to convert to 

ICOM-RTSS. Because we aimed to simulate a 3D-based conver- 

ion, we meshed the binary segmentation masks before conversion 

o DICOM-RTSS. This procedure is similar to the procedure imple- 

ented in PyRaDiSe, thus, representing a fair comparison of both 

lgorithms. 

The meshing of segmentation masks and the potential sub- 

equent smoothing are sensitive procedures for obtaining high- 

uality conversion results. Thus PyRaDiSe provides a profound set 

f settings for controlling these procedures. At the same time, we 

ould not identify such settings for the standard way of meshing 

n 3D Slicer, which demonstrates a limitation for the comparison. 

herefore, we kept the default settings of the PyRaDiSe algorithm 

or this experiment which may not be optimal for producing the 

est possible conversion results. 

The quantitative results ( Tables C.6 –C.8 ) obtained in this exper- 

ment showed that the PyRaDiSe algorithm provides better results 

n each metric and for all anatomical structures when compared 

o the results obtained with 3D Slicer. However, limitations apply 

ue to missing settings for the 3D Slicer algorithm that may reduce 

ts conversion performance. The qualitative analysis of the segmen- 

ation masks yielded that the 3D Slicer application generally pro- 

uced smoother segmentations. Therefore, the 3D Slicer segmenta- 

ions lost some shape details still observable in the segmentations 

enerated by PyRaDiSe’s algorithm. Furthermore, the 3D Slicer- 

enerated segmentations experience easily observable changes in 
11 
olume over multiple conversion cycles, which are noticeable as an 

ncrease in HD100. These volume changes were predominantly ob- 

ervable in areas of high curvature where smoothing significantly 

ffects the shape accuracy. As a result of the repetitive smooth- 

ng, the anatomical shapes will eventually develop into geometric 

rimitives of constant curvature, such as spheres. The same effect 

ith much less magnitude was observable for the PyRaDiSe algo- 

ithm, which applies less smoothing on the mesh using default set- 

ings. However, changing the smoothing settings will result in the 

ame effect. 

In addition, we observed that after three conversion cycles of 

he left cochlea using the 3D Slicer application, the cochlea’s vol- 

me collapsed for all five subjects. The PyRaDiSe algorithm, in con- 

rast, preserved the segmentation of the left cochlea for all five 

ubjects and over ten conversion cycles. This volume collapse ex- 

erienced with 3D Slicer is assumed to be caused by repetitive 

moothing leading to a volume reduction. 

For some conversions with 3D Slicer, we observed artifacts in 

he discrete segmentation masks, such as small holes in the middle 

r partially missing slices. However, these errors propagated only 

artially due to the meshing and the intense mesh smoothing that 

emoved some of these errors or established connections between 

artially missing slices to construct a coherent mesh volume. Such 

rrors were not observable with PyRaDiSe. 

While PyRaDiSe’s algorithm provided a better conversion per- 

ormance in this experiment, it remains still unclear if 3D Slicer 

ould be competitive when smoothing would be reducible to 

 comparable amount. However, under current circumstances, 

yRaDiSe provides a significantly better conversion performance. 

urthermore, the amount of smoothing is controllable for the 

yRaDiSe algorithm, so conversion accuracy can be compensated 

or generating more naturally appearing conversion results. 

. Discussion 

We developed PyRaDiSe, a Python package that aims to facili- 

ate the development of automated medical image analysis tools, 

xplicitly targeting the challenges of working with DICOM-RTSS 

ata for radiotherapy treatment. Specifically, the PyRaDiSe pack- 

ge offers a highly customizable set of tools to implement DL 

ramework-independent auto-segmentation solutions for clinical 

esearch allowing shorter deployment cycles and easy prototyp- 

ng. Thus, this new package aims to close the gap between DL re- 

earch and its clinical research application. Furthermore, our devel- 

pment provides profound methods for data conversion from and 

o DICOM-RTSS, allowing easy and reproducible construction of cu- 

ated datasets, for example, for training DL models or other med- 

cal image analysis tasks. Therefore, our package includes partially 

nvertible and reproducible processing routines for medical image 

odification to guarantee consistent results. 

The fileio package enables flexible, highly automated, and ver- 

atile importation and exportation of DICOM image series, DICOM- 

TSS, and other discretized medical image formats. Its flexibility 

anifests in the multitude of methods provided to retrieve pre- 

oading and metadata, exclude non-required pre-loading informa- 

ion, load a variety of image file formats, and export the data in 

arious ways, including copying the source data to a target direc- 

ory. Furthermore, the given functionality is highly automated such 

hat managing the complexity of DICOM data is reduced to a min- 

mum, and PyRaDiSe users do not require in-depth DICOM knowl- 

dge. However, the modular design of the fileio package also al- 

ows versatility and extensibility by providing a well-designed ar- 

hitecture that does not need to compensate for automation due 

o its design. Therefore, the fileio package integrates smoothly into 

ther frameworks to render DICOM image series and DICOM-RTSS 

mportable and exportable. 
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The data model provided in the data package is specifically de- 

igned for the demands of the radiotherapy workflow that com- 

only works with a multitude of DICOM images and multiple 

rgans and target segmentations. Collecting all images in a joint 

tructure (i.e., a Subject instance) allows for handling an ar- 

itrary number of patient-associated images and segmentations 

hile also managing additional user-defined data. In contrast to 

he standard image types found in other medical imaging libraries, 

he data package provides distinctive image types for intensity im- 

ges and segmentation masks, enabling type-specific metadata that 

s helpful for image identification. Although the data model dras- 

ically extends the image types’ functionality, it adds a neglectable 

verhead to the underlying image data, allowing for high mem- 

ry efficiency and fast data modification. In addition, extending the 

iven image types is achieved easily due to the consideration of 

olymorphous principles during development so that other image 

ntities, such as DICOM RT Dose images, can be integrated into the 

ata model. 

The processing functionality implemented in the process pack- 

ge enables the construction of reproducible and partially in- 

ertible image analysis pipelines that incorporate pre-processing, 

L model inference, and post-processing steps. However, in con- 

rast to other medical imaging libraries, PyRaDiSe allows ap- 

lying filters (e.g., ResampleFilter ) at the subject level on 

ll or a subset of the subject-associated images. Hence, it re- 

uces boilerplate code and speeds up the development of new 

ipelines. Furthermore, the implemented filter design allows for 

artial inversion depending on the filter’s operation. For exam- 

le, the ZScoreNormalizationFilter stores the original in- 

ensity value range that can be inverted such that the original im- 

ge can be restored. However, not all filters are invertible (e.g., 

ingleConnectedComponentFilter ), and attempting inver- 
Fig. 9. Web interface of a PyRaDiSe-based auto-segmentation 

12 
ion on non-invertible filters will result in the identity operation 

ith an optional warning to keep the user informed. In addition, 

he process package provides prototype and utility classes for 

L framework-independent model inference that allows the im- 

lementation of existing DL segmentation models into a PyRaDiSe- 

ased auto-segmentation solution. Therefore, PyRaDiSe users bene- 

t from maximum flexibility and low effort when integrating their 

odel into a deployable segmentation pipeline. 

The PyRaDiSe package was successfully used on research 

rojects at our institution for automated segmentation of brain 

tructures in brain tumor patients and expedited algorithm de- 

loyment for industrial projects ( Fig. 9 ). For industrial projects, the 

uto-segmentation tools were made available on the cloud as a 

ocker container that interacts with an interactive web-based in- 

erface. This interface allows clinical research collaborators to up- 

oad DICOM image series, predict and correct the generated seg- 

entations, and download the segmentation results as a DICOM- 

TSS file. Furthermore, PyRaDiSe was applied in combination with 

ymia [31] in multiple research projects for end-to-end data cu- 

ation, data conversion, and HDF5 dataset construction, allowing 

igh-speed data access during DL model training. However, these 

rojects are currently unavailable to the public due to licensing re- 

trictions or pending publication states. 

Based on the experience at our institution, we consider the 

urrent state of PyRaDiSe as stable and helpful for building auto- 

egmentation solutions that are deployable to clinical research fa- 

ilities and can efficiently be operated by clinical research person- 

el. 

Future plans for the PyRaDiSe package include extending the 

ackage to other radiotherapy-oriented DICOM Service-Object Pairs 

SOPs) classes (e.g., RT Dose Storage), implementing Standard- 

zed Uptake Value (SUV) support for Positron Emission Tomogra- 
solution deployed on the cloud using Docker containers. 
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Listing 4. Manually modified modality configuration file ready for loading the data. 
hy (PET) images, extending the set of built-in filters, increasing 

ode coverage by unit tests, reducing memory footprint by pro- 

ling memory usage, and extending the examples for other DL 

rameworks than PyTorch. However, with the expected increase in 

yRaDiSe users, feature requests will undoubtedly emerge, but we 

im to keep simplicity and modularity in mind for future releases. 

or instance, it would be beyond the scope of this package to im- 

lement neural network segmentation architectures, and training 

unctionality as projects like MONAI do. However, extending the 

et of built-in filters would be valuable for the intended use of 

yRaDiSe. 

In conclusion, PyRaDiSe was developed to close the gap be- 

ween medical image analysis and clinical radiotherapy research 

y speeding up the transition process and making the deploy- 

ent of auto-segmentation solutions straightforward. Furthermore, 

yRaDiSe facilitates fast and straightforward curation of DICOM- 

TSS data for DL dataset establishment. 
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A

B

D-based conversion algorithms of PyRaDiSe and RT-Utils. 

Repetition / mean & SD in DSC (n = 10) 

2 3 4 5 

 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 

 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 

98 ± 0 . 003 0 . 998 ± 0 . 003 0 . 998 ± 0 . 003 0 . 998 ± 0 . 003 

98 ± 0 . 003 0 . 998 ± 0 . 003 0 . 998 ± 0 . 003 0 . 998 ± 0 . 003 

 0 0 ± 0 . 001 1 . 0 0 0 ± 0 . 001 1 . 0 0 0 ± 0 . 001 1 . 0 0 0 ± 0 . 001 

 0 0 ± 0 . 001 1 . 0 0 0 ± 0 . 001 1 . 0 0 0 ± 0 . 001 1 . 0 0 0 ± 0 . 001 

7 8 9 10 

 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 

 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 

98 ± 0 . 003 0 . 998 ± 0 . 003 0 . 998 ± 0 . 003 0 . 998 ± 0 . 003 

98 ± 0 . 003 0 . 998 ± 0 . 003 0 . 998 ± 0 . 003 0 . 998 ± 0 . 003 

 0 0 ± 0 . 001 1 . 0 0 0 ± 0 . 001 1 . 0 0 0 ± 0 . 001 1 . 0 0 0 ± 0 . 001 

 0 0 ± 0 . 001 1 . 0 0 0 ± 0 . 001 1 . 0 0 0 ± 0 . 001 1 . 0 0 0 ± 0 . 001 

B

2D-based conversion algorithms of PyRaDiSe and RT-Utils. 

Repetition / mean & SD in HD95 (n = 10) 

2 3 4 5 

 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 

 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 

 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 

 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 

 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 

 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 

7 8 9 10 

 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 

 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 

 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 

 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 

 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 

 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 

B

e 2D-based conversion algorithms of PyRaDiSe and RT-Utils. 

Repetition / mean & SD in HD100 (n = 10) 

2 3 4 5 

 471 ± 1 . 771 1 . 471 ± 1 . 771 1 . 471 ± 1 . 771 1 . 471 ± 1 . 771 

00 ± 0 . 300 0 . 900 ± 0 . 300 0 . 900 ± 0 . 300 0 . 900 ± 0 . 300 

00 ± 0 . 490 0 . 400 ± 0 . 490 0 . 400 ± 0 . 490 0 . 400 ± 0 . 490 

00 ± 0 . 490 0 . 400 ± 0 . 490 0 . 400 ± 0 . 490 0 . 400 ± 0 . 490 

00 ± 0 . 490 0 . 600 ± 0 . 490 0 . 600 ± 0 . 490 0 . 600 ± 0 . 490 

00 ± 0 . 490 0 . 600 ± 0 . 490 0 . 600 ± 0 . 490 0 . 600 ± 0 . 490 

7 8 9 10 

 471 ± 1 . 771 1 . 471 ± 1 . 771 1 . 471 ± 1 . 771 1 . 471 ± 1 . 771 

00 ± 0 . 300 0 . 900 ± 0 . 300 0 . 900 ± 0 . 300 0 . 900 ± 0 . 300 

00 ± 0 . 490 0 . 400 ± 0 . 490 0 . 400 ± 0 . 490 0 . 400 ± 0 . 490 

00 ± 0 . 490 0 . 400 ± 0 . 490 0 . 400 ± 0 . 490 0 . 400 ± 0 . 490 

00 ± 0 . 490 0 . 600 ± 0 . 490 0 . 600 ± 0 . 490 0 . 600 ± 0 . 490 

00 ± 0 . 490 0 . 600 ± 0 . 490 0 . 600 ± 0 . 490 0 . 600 ± 0 . 490 
ppendix B. Results 2D-based conversion tool comparison 

1. Segmentation performance results in DSC 

Table B.3 

Results in DSC for the conversion tool comparison using the 2

Structure Algorithm 

1 

Brainstem RT-Utils 1 . 0 0 0 ± 0 . 0 0 0 1 . 0

Brainstem PyRaDiSe 2D 1 . 0 0 0 ± 0 . 0 0 0 1 . 0

Cochlea left RT-Utils 0 . 998 ± 0 . 003 0 . 9

Cochlea left PyRaDiSe 2D 0 . 998 ± 0 . 003 0 . 9

Hippocampus left RT-Utils 1 . 0 0 0 ± 0 . 001 1 . 0

Hippocampus left PyRaDiSe 2D 1 . 0 0 0 ± 0 . 001 1 . 0

6 

Brainstem RT-Utils 1 . 0 0 0 ± 0 . 0 0 0 1 . 0

Brainstem PyRaDiSe 2D 1 . 0 0 0 ± 0 . 0 0 0 1 . 0

Cochlea left RT-Utils 0 . 998 ± 0 . 003 0 . 9

Cochlea left PyRaDiSe 2D 0 . 998 ± 0 . 003 0 . 9

Hippocampus left RT-Utils 1 . 0 0 0 ± 0 . 001 1 . 0

Hippocampus left PyRaDiSe 2D 1 . 0 0 0 ± 0 . 001 1 . 0

2. Segmentation performance results in HD95 

Table B.4 

Results in HD95 for the conversion tool comparison using the 

Structure Algorithm 

1 

Brainstem RT-Utils 0 . 0 0 0 ± 0 . 0 0 0 0 . 0

Brainstem PyRaDiSe 2D 0 . 0 0 0 ± 0 . 0 0 0 0 . 0

Cochlea left RT-Utils 0 . 0 0 0 ± 0 . 0 0 0 0 . 0

Cochlea left PyRaDiSe 2D 0 . 0 0 0 ± 0 . 0 0 0 0 . 0

Hippocampus left RT-Utils 0 . 0 0 0 ± 0 . 0 0 0 0 . 0

Hippocampus left PyRaDiSe 2D 0 . 0 0 0 ± 0 . 0 0 0 0 . 0

6 

Brainstem RT-Utils 0 . 0 0 0 ± 0 . 0 0 0 0 . 0

Brainstem PyRaDiSe 2D 0 . 0 0 0 ± 0 . 0 0 0 0 . 0

Cochlea left RT-Utils 0 . 0 0 0 ± 0 . 0 0 0 0 . 0

Cochlea left PyRaDiSe 2D 0 . 0 0 0 ± 0 . 0 0 0 0 . 0

Hippocampus left RT-Utils 0 . 0 0 0 ± 0 . 0 0 0 0 . 0

Hippocampus left PyRaDiSe 2D 0 . 0 0 0 ± 0 . 0 0 0 0 . 0

3. Segmentation performance results in HD100 

Table B.5 

Results in HD100 for the conversion tool comparison using th

Structure Algorithm 

1 

Brainstem RT-Utils 1 . 471 ± 1 . 771 1 .

Brainstem PyRaDiSe 2D 0 . 900 ± 0 . 300 0 . 9

Cochlea left RT-Utils 0 . 400 ± 0 . 490 0 . 4

Cochlea left PyRaDiSe 2D 0 . 400 ± 0 . 490 0 . 4

Hippocampus left RT-Utils 0 . 600 ± 0 . 490 0 . 6

Hippocampus left PyRaDiSe 2D 0 . 600 ± 0 . 490 0 . 6

6 

Brainstem RT-Utils 1 . 471 ± 1 . 771 1 .

Brainstem PyRaDiSe 2D 0 . 900 ± 0 . 300 0 . 9

Cochlea left RT-Utils 0 . 400 ± 0 . 490 0 . 4

Cochlea left PyRaDiSe 2D 0 . 400 ± 0 . 490 0 . 4

Hippocampus left RT-Utils 0 . 600 ± 0 . 490 0 . 6

Hippocampus left PyRaDiSe 2D 0 . 600 ± 0 . 490 0 . 6
14 
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A

C

D-based conversion algorithms of PyRaDiSe and 3D Slicer. 

Repetition / mean & SD in DSC (n = 5) 

2 3 4 5 

 976 ± 0 . 003 0 . 971 ± 0 . 004 0 . 968 ± 0 . 004 0 . 965 ± 0 . 004 

 991 ± 0 . 001 0 . 989 ± 0 . 001 0 . 987 ± 0 . 001 0 . 985 ± 0 . 001 

 365 ± 0 . 128 0 . 122 ± 0 . 116 n/a n/a 

 973 ± 0 . 004 0 . 969 ± 0 . 007 0 . 967 ± 0 . 010 0 . 966 ± 0 . 012 

923 ± 0 . 007 0 . 902 ± 0 . 009 0 . 884 ± 0 . 012 0 . 868 ± 0 . 017 

979 ± 0 . 002 0 . 973 ± 0 . 003 0 . 968 ± 0 . 003 0 . 964 ± 0 . 004 

7 8 9 10 

62 ± 0 . 004 0 . 959 ± 0 . 005 0 . 956 ± 0 . 005 0 . 955 ± 0 . 005 

83 ± 0 . 002 0 . 982 ± 0 . 002 0 . 981 ± 0 . 002 0 . 980 ± 0 . 002 

n/a n/a n/a n/a 

 964 ± 0 . 015 0 . 964 ± 0 . 015 0 . 964 ± 0 . 015 0 . 964 ± 0 . 015 

 839 ± 0 . 026 0 . 826 ± 0 . 031 0 . 813 ± 0 . 036 0 . 801 ± 0 . 039 

58 ± 0 . 006 0 . 955 ± 0 . 007 0 . 953 ± 0 . 008 0 . 951 ± 0 . 009 

C

3D-based conversion algorithms of PyRaDiSe and 3D Slicer. 

Repetition / mean & SD in HD95 (n = 5) 

2 3 4 5 

46 ± 0 . 293 1 . 247 ± 0 . 494 1 . 449 ± 0 . 708 1 . 290 ± 0 . 580 

 0 0 ± 0 . 0 0 0 0 . 600 ± 0 . 490 1 . 0 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 

39 ± 0 . 131 3 . 018 ± 0 . 472 n/a n/a 

 0 0 ± 0 . 0 0 0 0 . 0 0 0 ± 0 . 0 0 0 0 . 200 ± 0 . 400 0 . 200 ± 0 . 400 

 0 0 ± 0 . 0 0 0 1 . 166 ± 0 . 203 1 . 712 ± 0 . 262 2 . 142 ± 0 . 116 

 0 0 ± 0 . 0 0 0 0 . 400 ± 0 . 490 1 . 0 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 

7 8 9 10 

 0 0 ± 0 . 0 0 0 1 . 903 ± 1 . 606 2 . 832 ± 2 . 093 2 . 832 ± 2 . 093 

 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 

n/a n/a n/a n/a 

00 ± 0 . 400 0 . 200 ± 0 . 400 0 . 200 ± 0 . 400 0 . 200 ± 0 . 400 

45 ± 0 . 322 3 . 238 ± 0 . 560 3 . 634 ± 0 . 443 4 . 053 ± 0 . 614 

 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 1 . 0 0 0 ± 0 . 0 0 0 

C

e 3D-based conversion algorithms of PyRaDiSe and 3D Slicer. 

Repetition / mean & SD in HD100 (n = 5) 

2 3 4 5 

 482 ± 1 . 464 7 . 360 ± 1 . 904 7 . 533 ± 1 . 859 8 . 442 ± 1 . 155 

 776 ± 0 . 217 2 . 094 ± 0 . 116 2 . 184 ± 0 . 169 2 . 232 ± 0 . 142 

 474 ± 0 . 280 3 . 843 ± 0 . 477 n/a n/a 

 0 0 0 ± 0 . 0 0 0 1 . 083 ± 0 . 166 1 . 083 ± 0 . 166 1 . 083 ± 0 . 166 

 133 ± 0 . 885 4 . 017 ± 1 . 125 4 . 964 ± 1 . 167 5 . 735 ± 1 . 054 

 0 0 0 ± 0 . 0 0 0 1 . 166 ± 0 . 203 1 . 331 ± 0 . 166 1 . 541 ± 0 . 156 

7 8 9 10 

 237 ± 0 . 870 7 . 804 ± 1 . 581 7 . 295 ± 2 . 716 7 . 316 ± 2 . 735 

 474 ± 0 . 280 2 . 625 ± 0 . 330 2 . 770 ± 0 . 360 2 . 858 ± 0 . 480 

n/a n/a n/a n/a 

 083 ± 0 . 166 1 . 083 ± 0 . 166 1 . 083 ± 0 . 166 1 . 083 ± 0 . 166 

 417 ± 0 . 997 8 . 136 ± 0 . 901 8 . 826 ± 0 . 840 9 . 533 ± 0 . 722 

 876 ± 0 . 281 1 . 876 ± 0 . 281 1 . 876 ± 0 . 281 1 . 876 ± 0 . 281 
ppendix C. Results 3D-based conversion tool comparison 

1. Segmentation performance results in DSC 

Table C.6 

Results in DSC for the conversion tool comparison using the 3

Structure Algorithm 

1 

Brainstem 3D Slicer 0 . 983 ± 0 . 002 0 .

Brainstem PyRaDiSe 3D 0 . 994 ± 0 . 0 0 0 0 .

Cochlea left 3D Slicer 0 . 728 ± 0 . 033 0 .

Cochlea left PyRaDiSe 3D 0 . 982 ± 0 . 002 0 .

Hippocampus left 3D Slicer 0 . 946 ± 0 . 003 0 . 

Hippocampus left PyRaDiSe 3D 0 . 987 ± 0 . 001 0 . 

6 

Brainstem 3D Slicer 0 . 963 ± 0 . 004 0 . 9

Brainstem PyRaDiSe 3D 0 . 984 ± 0 . 002 0 . 9

Cochlea left 3D Slicer n/a 

Cochlea left PyRaDiSe 3D 0 . 965 ± 0 . 013 0 .

Hippocampus left 3D Slicer 0 . 854 ± 0 . 021 0 .

Hippocampus left PyRaDiSe 3D 0 . 961 ± 0 . 005 0 . 9

2. Segmentation performance results in HD95 

Table C.7 

Results in HD95 for the conversion tool comparison using the 

Structure Algorithm 

1 

Brainstem 3D Slicer 1 . 0 0 0 ± 0 . 0 0 0 1 . 1

Brainstem PyRaDiSe 3D 0 . 0 0 0 ± 0 . 0 0 0 0 . 0

Cochlea left 3D Slicer 1 . 0 0 0 ± 0 . 0 0 0 1 . 8

Cochlea left PyRaDiSe 3D 0 . 0 0 0 ± 0 . 0 0 0 0 . 0

Hippocampus left 3D Slicer 1 . 0 0 0 ± 0 . 0 0 0 1 . 0

Hippocampus left PyRaDiSe 3D 0 . 0 0 0 ± 0 . 0 0 0 0 . 0

6 

Brainstem 3D Slicer 1 . 083 ± 0 . 166 1 . 0

Brainstem PyRaDiSe 3D 1 . 0 0 0 ± 0 . 0 0 0 1 . 0

Cochlea left 3D Slicer n/a 

Cochlea left PyRaDiSe 3D 0 . 200 ± 0 . 400 0 . 2

Hippocampus left 3D Slicer 2 . 426 ± 0 . 340 2 . 8

Hippocampus left PyRaDiSe 3D 1 . 0 0 0 ± 0 . 0 0 0 1 . 0

3. Segmentation performance results in HD100 

Table C.8 

Results in HD100 for the conversion tool comparison using th

Structure Algorithm 

1 

Brainstem 3D Slicer 5 . 633 ± 1 . 635 5 .

Brainstem PyRaDiSe 3D 1 . 312 ± 0 . 280 1 .

Cochlea left 3D Slicer 1 . 579 ± 0 . 329 2 .

Cochlea left PyRaDiSe 3D 1 . 0 0 0 ± 0 . 0 0 0 1 .

Hippocampus left 3D Slicer 1 . 903 ± 0 . 424 3 .

Hippocampus left PyRaDiSe 3D 1 . 0 0 0 ± 0 . 0 0 0 1 .

6 

Brainstem 3D Slicer 8 . 591 ± 1 . 093 8 .

Brainstem PyRaDiSe 3D 2 . 232 ± 0 . 142 2 .

Cochlea left 3D Slicer n/a 

Cochlea left PyRaDiSe 3D 1 . 083 ± 0 . 166 1 .

Hippocampus left 3D Slicer 6 . 620 ± 1 . 085 7 .

Hippocampus left PyRaDiSe 3D 1 . 696 ± 0 . 353 1 .
15 
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