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Abstract. Magnetic Resonance Spectroscopy (MRS) and Spectroscopic Imaging
(MRSI) are non-invasive techniques to map tissue contents of many metabolites
in situ in humans. Quantification is traditionally done via model fitting (MF), and
Cramer Rao Lower Bounds (CRLBs) are used as a measure of fitting uncertain-
ties. Signal-to-noise is limited due to clinical time constraints and MF can be very
time-consuming in MRSI with thousands of spectra. Deep Learning (DL) has
introduced the possibility to speed up quantitation while reportedly preserving
accuracy and precision. However, questions arise about how to access quantifi-
cation uncertainties in the case of DL. In this work, an optimal-performance DL
architecture that uses spectrograms as input and maps absolute concentrations of
metabolites referenced to water content as output was taken to investigate this in
detail. Distributions of predictions and Monte-Carlo dropout were used to inves-
tigate data and model-related uncertainties, exploiting ground truth knowledge in
a synthetic setup mimicking realistic brain spectra with metabolic composition
that uniformly varies from healthy to pathological cases. Bias and CRLBs from
MF are then compared to DL-related uncertainties. It is confirmed that DL is a
dataset-biased technique where accuracy and precision of predictions scale with
metabolite SNR but hint towards bias and increased uncertainty at the edges of the
explored parameter space (i.e., for very high and very low concentrations), even
at infinite SNR (noiseless training and testing). Moreover, training with uniform
datasets or if augmented with critical cases showed to be insufficient to prevent
biases. This is dangerous in a clinical context that requires the algorithm to be
unbiased also for concentrations far from the norm, which may well be the focus
of the investigation since these correspond to pathology, the target of the diagnostic
investigation.
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1 Introduction

Magnetic Resonance Spectroscopy (MRS) and Spectroscopic Imaging (MRSI) are non-
invasive methods for determining in-situ metabolic profile maps in humans or animals.
A chemical-composition-specific response is evoked from localized tissue regions using
an MRI scanner and allows the acquisition of a Voigt-damped time-domain signal,
which results from a superposition of multiple metabolite signals. The resonance line
patterns are metabolite-specific, reflecting the spin-systems, while their concentrations
are proportional to the signal amplitude [1] (Fig. 1).

Fig. 1. MRSI acquisition with zoom-in to a sketch of a noiseless MR spectrum (real part) and
relative spectral basis set outlined for five metabolites: N-Acetylaspartate (NAA), total-Creatine
(tCr), total-Choline (tCho), Lactate (Lac), and Glutathione (GSH).

Quantification is traditionally based on parameter estimation with Model Fitting
(MF), minimizing the difference between the data and a parameterized model function.
Despite many fitting approaches [2–5], robust and accurate measurement of metabo-
lite concentrations remains challenging [6, 7], mainly due to: (i) severely overlapping
metabolite patterns, (ii) poor signal-to-noise ratio (SNR), and (iii) unknown background
signals and peak lineshape (incomplete prior knowledge). As a result, the problem is
ill-posed, and current techniques still hamper translation to clinical routine.

Supervised Deep Learning (DL) exploits neural networks to find key properties con-
tained in large data sets and to generate complicated nonlinear mappings between inputs
and outputs [8]. It thus requires no prior knowledge or formal assumptions. However, it
is shown to be frequently biased towards the conditions prevalent in the datasets used in
training [9]. DL in MRS quantification is increasingly explored [10–12] and has shown
to speed up quantitation while reportedly preserving accurate estimates if compared to
MF. Still, questions regarding the reliability of DL quantification have arisen.

Uncertainty measures provide information about how reliably or accurately a given
algorithm performs a given task. This information in turn can be used to leverage the
decision-making process for a user (e.g., how much to trust the estimated concentration
of a metabolite) or to enable optimization of the acquisition technique or the algorithm
employed to estimate results (e.g., focusing on areas of high uncertainty [13]). Given
MRS restrictions to comply with clinical time frames, the repetition of multiple MRS
measurements to determine repeatability is forbidding. Thus, estimates of uncertainty
obtained from MRS model fitting of a single measurement are often taken as proxy:
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the Cramer Rao Lower Bounds (CRLBs) [14] estimate uncertainties as function of the
model (presumed to be true) and SNR; they represent the uncertainty limit for unbiased
estimators. It is fundamental to access a CRLB-comparable uncertainty measure for
MRSmetabolite quantification by DL [15]. Neural network uncertainties originate from
noise inherent in the data (aleatoric uncertainty) and uncertainty in the model parameters
(epistemic uncertainty) [16, 17]. In the current work, an optimal-performance Convo-
lutional Neural Network (CNN) architecture is designed to quantify metabolites, and
metrics based on bias and spread of predicted distribution of concentrations are used
to explain aleatoric uncertainties. Epistemic uncertainties are explored via Monte-Carlo
dropout [18]. The reliability of MRS quantification is then compared between the two
approaches. In-silico simulations guarantee knowledge of Ground Truth (GT).

2 Methods

2.1 Simulations

Spectral patterns were simulated for 16 metabolites recorded at 3T with a semi-LASER
protocol [19, 20; TE= 35 ms, 4 kHz spectral width, 4096 points. To mimic pathological
conditions, metabolite concentrations are varied independently and uniformly between
0 and twice a normal reference concentration for healthy human brain [1, 21–23]. A
constant downscaled water reference (64.5 mM) is added at 0.5 ppm to ease quanti-
tation. Macromolecular background (MMBG) signals and Gaussian broadening mimic
in vivo conditions and were independently and uniformly varied (shim 2–5 Hz, MMBG
amplitude ± 33%). Two datasets with 20’000 entries randomly split in training (80%),
validation (10%), and testing sets (10%) are generated: one with independent, realistic
white Gaussian noise realizations (time-domain water-referenced SNR 5–40), the other
noiseless (Fig. 2).

Fig. 2. Samples of realistic simulated spectra. SNR, shim, and MMBG intensity are indicated.
Concentrations reported for 3 major metabolites in mM. Downscaled reference peak indicated.

High-frequency-resolved spectrograms [24] were used as input for the CNNs. A
spectrogram is a complex, 2D time-frequencydomain representation of a spectrumwhere
each row reflects the frequency content of a specific time segment of the MRS signal.
It is calculated using the Short-Temporal Fourier Transform (STFT), which allows for
varying degrees of frequency and time resolution depending on the size of the Fourier
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analysis window. A large window size established through zero-filling is paired with a
tiny overlap interval to maximize frequency resolution while compromising temporal
resolution (Fig. 3).

2.2 Quantification via Deep Learning

Two Bayesian hyper-parameterized [25] shallow CNNs [26] were trained and tested
with the two datasets. They had emerged as optimal DL quantification methods from 24
tested scenarios with different architectures, input forms, and active learning data aug-
mentation. Relative concentrations are provided as output but referencing to the water
signal yields absolute concentrations (Fig. 3). Training and validation sets were ran-
domly assigned to train the CNN on a maximum number of 100 epochs and with batch
normalization of 50. The learning rate was modulated via the adaptive moment (ADAM)
estimation algorithm [27]. Mean-squared error (MSE) served as loss function. Visual-
ization of training and validation loss over epochs combined with the implementation
of early-stopping criterion monitoring minimization of validation loss with patience ten
was used as a reference for tuning the network parameter space.

Fig. 3. Shallow CNN architecture, sample of input spectrogram, and output vector description.

Aleatoric uncertainties were evaluated via bias of the DL predictions from GT and
spreadof these predictions, both as estimated for 20different bins that cover thewholeGT
concentration range of each metabolite (called Bin-Spread-Function in Fig. 4). Monte-
Carlo dropout consisted of testing the trained model 100 times with activated dropout
layers. Thus, the network structure slightly changed for each prediction (i.e., a different
set of neurons was switched off) although preserving its weights. The 100 predictions
yielded a distribution (called Point-Spread-Function in Fig. 4) for any sample in the test
set. The bias and spread of these distributions were then calculated for every test sample,
averaged for every GT value, and used as epistemic uncertainties. They highlight the
susceptibility of predictions to model variation.

2.3 Quantification via Model Fitting

The test set spectra were fitted using fitAID [5]. The model consisted of a weighted
sum of Voigt lines with fixed Lorentzian (GT value) and estimated Gaussian widths.
Areas of the metabolites were restricted in [−0.5 · μ,+ 2.5 · μ], where μ is the average
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concentration in the testing and training set distribution for each metabolite, aiming to
bound the fitting condition to knownprior knowledge,mimicking the implicit restrictions
of DL algorithms. Bias from GT and CRLB are used as uncertainty measures.

Fig. 4. Distribution of uncertainties: bias (�) represents a deviation from ground truth, and spread
(�) represents variability of predictions around their center: the expected value (E[·]).

Fig. 5. Training and validation curves. Reliability diagrams and expected calibration error.

3 Results

Results are reported for four metabolites with progressively lower relative SNR: NAA,
GSH, Asp, and Lac (c.f. Fig. 1). Figure 5 shows training and validation curves for both
networks.Network calibration is investigated for regression,where the design is assumed
to predict the Cumulative Distribution Function of relative metabolite concentrations
[28, 29]. Reliability diagrams are reported for realistic simulations. Quantification of
Lac and Asp is mildly overconfident for low concentrations and underconfident for high
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Fig. 6. Maps and marginal distribution of CNN predictions vs. GT for four metabolites and two
datasets (realistic, noiseless) and model estimates vs. GT for the realistic case.

concentrations. However, the network can be considered well-calibrated for every target
metabolite [13].

Figure 6 reports CNN predictions and MF estimates vs. GT values. A linear regres-
sion model is fit to estimate the quality of the prediction. Marginal distributions of GT
and predicted values are displayed. Ideal predictions would display as a diagonal line (y
= ax + q) with minimal spread (RMSE, σ). In line, distributions of predictions would
mirror the uniformGT distributions. Considering the realistic case in DL and going from
left to right, predicted distributions become less uniform and get more biased towards a
mean expected value of the training range. This phenomenon is reflected in lower a and
R2 values and is emphasized for metabolites with low relative SNR (e.g., GSH, Asp,
and Lac). Noiseless simulations show a significantly reduced bias. MF estimates show
a better spread over the concentration range with a → 1 and q → 0 even for metabolites
with low relative SNR. RMSE (σ) is lower in MF than DL for NAA but higher in the
case of GSH, Asp, and Lac.

Figure 7 maps aleatoric and epistemic uncertainties as function of GT values for DL.
Epistemic uncertainties indicate higher variability of predictions at the boundaries of the
concentration ranges, which is paired with higher biases for aleatoric uncertainties. In
the noiseless scenario, it is evident how the point-spread function is affected by a larger
spread at the edges (i.e., U-shape). Training and testing with noise show the same trend
if relative SNR is high enough. Model fitting appears unbiased (average bias as orange
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line) except for a small effect at the parameter boundaries and biased larger outliers
(blue line) for metabolites with low SNR. CRLB are concentration-independent (linear
fit parameter). Moreover, average CRLBs are confirmed to represent a lower bound to
standard deviation (σ) of the fit error.

Fig. 7. CNNs’ bias and spread of epistemic (green) and aleatoric (blue) uncertainties vs. GT
values. MF bias and CRLBs vs. GT: single values (blue) and interpolated (orange). Estimated
standard deviation (σ) of the bias can be compared to the estimated average (μ) CRLB. (Color
figure online)

4 Discussion

Predicted concentrations should be unbiased, thus returning uniform distributions for
uniform training and test data. However, our CNN predictions for real-world simulations
tend towards the mean of the test data. Predictions at the boundaries of the testing range
are folded back towards the mean value in case of strong uncertainty (i.e., lowmetabolite
SNR), given the lack of knowledge outside the boundaries. Indeed, it is found that
the prediction bias is influenced by the limited concentration ranges used in training:
epistemic uncertainties indicate higher variability of predictions at the boundaries of
the concentration ranges, which is paired with higher biases for aleatoric uncertainties.
Though not exploring the exact same architecture, it is suspected that previous DLMRS
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approaches may show similar deficiencies [10–12]. An ideal noiseless scenario also
shows similar findings: uncertainty is lower in absolute values compared to the realistic
case, but a similar dependency on the concentration range is found (U-shape), confirming
that the DL prediction constitutes a biased estimator with uncertainties that depend on
the placement of the test case in the training range. Training and testing with noise show
the same trend if relative SNR is high enough. Metabolites in high concentrations suffer
from comparable epistemic spread as those in low concentrations.

MF is confirmed to be unbiased on average. Individual estimates are mildly influ-
enced by restrained concentration ranges (i.e., prior knowledge). CRLBs are confirmed
to be a measure of variance that is independent of the estimated concentration.

The current study considers a limited synthetic dataset that does not cover the whole
range of possible in-vivo sources of variability despite its aim to mimic realistic per-
formances. Furthermore, a single CNN design tuned for metabolite’s quantification is
investigated, even if optimized via multiple iterations and with the best combination of
input/output spectroscopic information (i.e., spectrograms and relative concentrations),
it is not possible to draw general conclusion for MRS quantification via DL algorithms.
Uncertainty investigation is limited to two uncertainty measures, which must be taken
with their benefits, reliability, and limitations compared to other measures [13].

5 Conclusions

Four measures for aleatoric and epistemic uncertainties are provided, partly representing
accuracy and precision of predictions. They scale with metabolite SNR but hint towards
bias and increased uncertainty at the edges of the explored parameter space for (these)
DL methods in many cases, even at infinite SNR.

DeepLearningdoes not require feature selection by the user, but the potential intrinsic
biases at training set boundaries act like soft constraints in traditional modeling, leading
estimated values to an apparently precise (low mean deviation) estimate reflecting an
expectation value over the normal concentration range used in training. This is dangerous
in a clinical context that requires the algorithm to be unbiased to outliers, which may
well be the focus of the investigation corresponding to pathological data.

Further investigation to access more stable predictions is needed: (i) training with
even larger concentration ranges, such that the region of interest is well inside the training
range where uncertainties are limited, (ii) consider ensemble of networks to strengthen
network performances for outliers or (iii) implementation of Batch Nuclear-norm
Maximization to improve discriminability and diversity of the predictions [30].

6 Data Availability Statement

The simulated datasets and network architecture that support the findings of this study
are available at https://github.com/bellarude.
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