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Disclaimer

This is a continuous paper on limitations of commonly used metrics in im-
age analysis. The current version discusses segmentation metrics only, while
future versions will also include metrics for classification and detection tasks.
For missing references, use cases, other comments or questions, please contact
a.reinke@dkfz-heidelberg.de or 1.maier-hein@dkfz-heidelberg.de. Sub-
stantial contributions to this dynamic document will be acknowledged with a
co-authorship.

ABSTRACT

While the importance of automatic image analysis is increasing at an enormous
pace, recent meta-research revealed major flaws with respect to algorithm vali-
dation. Specifically, performance metrics are key for objective, transparent and
comparative performance assessment, but relatively little attention has been given
to the practical pitfalls when using specific metrics for a given image analysis
task. A common mission of several international initiatives is therefore to pro-
vide researchers with guidelines and tools to choose the performance metrics in
a problem-aware manner. This dynamically updated document has the purpose
to illustrate important limitations of performance metrics commonly applied in
the field of image analysis. The current version is based on a Delphi process on
metrics conducted by an international consortium of image analysis experts.
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1. Purpose

Metrics are key to assessing the performance of image analysis algorithms in an objec-
tive and meaningful manner. So far, however, relatively little attention has been given
to the practical pitfalls when using specific metrics for a given image analysis task.
An international survey (Maier-Hein et al., [2018), for example, revealed the choice
of inappropriate metrics as one of the core problems related to performance assess-
ment in medical image analysis. Similar problems are present in other fields of imaging
research (Correia & Pereira, [2006; Honauer, Maier-Hein, & Kondermann, [2015).

Under the umbrella of the Helmholtz Imaging Platform (HIP)EI7 three interna-
tional initiatives have now joined forces to address these issues: the Biomedical Image
Analysis Challenges (BIAS) initiativeEl, the Medical Image Computing and Computer
Assisted Interventions (MICCAI) Society’s challenge working group, as well as the
benchmarking working group of the MONAI frameworkﬂ A core mission is to pro-
vide researchers with guidelines and tools to choose the performance metrics in a
problem-aware manner. This dynamically updated document aims to illustrate impor-
tant pitfalls and drawbacks of metrics commonly applied in the field of image analysis.
The current version is based on a Delphi process (Brown, 1968]) on metrics conducted
with an international consortium of medical image analysis experts.

Thttps://www.helmholtz-imaging.de/
2https://www.dkfz.de/en/cami/research/topics/biasInitiative.html?m=1611915160&
3https://monai.io/
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2. Segmentation metrics

Image segmentation is one of the most popular image processing tasks. In fact, an
international meta-analysis revealed segmentation as the most frequent medical image
processing task in international competitions (challenges) (Maier-Hein et all [2018).
The chosen metrics in segmentation challenges radically influence the resulting rank-
ings (Maier-Hein et al.| 2018; Reinke et al., |2018)), and although several papers high-
light specific strengths and weaknesses of common metrics (Gooding et al.,2018; Kofler
et al.l Konukoglu, Glocker, Ye, Criminisi, & Pohl|, [2012; [Margolin, Zelnik-Manor,
& Tal, 20145 [Vaassen et al 2020)), researchers are missing guidelines for choosing the
right metric for a given problem (Maier-Hein et al., 2018]). To address this community
request, this document summarizes common pitfalls related to the most frequently used
metrics in medical image segmentation, namely the Dice Similarity Coefficient (DSC')
11945)), the Hausdorff Distance (HD) (Huttenlocher, Klanderman, & Rucklidge

1993)), and the Intersection over Union (loU) (Jaccard, |1912) (see Figure [I)). To this
end, the problems related to segmentation metrics are assigned to four categories,
namely (1) awareness of fundamental mathematical properties of metrics, neces-
sary to determine the applicability of a metric, (2) suitability for the underlying
image processing task, (3) metric aggregation to combine metric values of single
images into one accumulated score and (4) metric combination to reflect different
aspects in algorithm validation.

Most common segmentation metrics
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Figure 1 Most commonly used overlap-based (a/b) and contour-based (c) segmenta-
tion metrics: (a) the Dice Similarity Coefficient (DSC), (b) the Intersection over Union
(IoU) and (c) the Hausdorft Distance (HD), with |A| denoting the cardinality of set
A, AN B the intersection between sets A and B, AU B the union between sets A and
B and d(z,y) the distance between points = and y.




2.1. Fundamental mathematical properties

Awareness of the mathematical properties of a metric is crucial when determining its
suitability for a given application. In this section, we focus on the DSC and the HD,
but the properties also apply to other related metrics, such as the IoU (also called
Jaccard Indez (Jaccard, [1912)).

As illustrated in Figure [Th, the DSC was designed to measure the overlap between
two given objects and yields a value between 0 (no overlap) and 1 (full overlap). The
metric is straightforward to compute and interpret, but comes with several pitfalls
highlighted in the following paragraphs:

Small structures Segmentation of small structures, such as brain lesions, cells im-
aged at low magnification or distant cars, is essential for many image processing ap-
plications. In these cases, the DSC' may not be an appropriate metric, as illustrated
in Figure [2] In fact, a single-pixel difference between two predictions can have a large
impact on the metric difference. Given that the correct outlines (e.g. of pathologies)
are often unknown and taking into account the potentially high inter-observer variabil-
ity related to generating reference annotations (Joskowicz, Cohen, Caplan, & Sosna,,
, it is typically not desirable for few pixels to influence the metrics as much.

Problem: Small structures

Reference Prediction 1 Prediction 2
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Figure 2 Effect of structure size on the DSC. The predictions of two algorithms
(Prediction 1/2) differ in only a single pixel. In case of the small structure (bottom
row), this has a substantial effect on the corresponding metric value.




Noise/errors in the reference annotations Similar problems may arise in the
presence of annotation artifacts. Figure [3| demonstrates that a single erroneous pixel
in the reference annotation may lead to a substantial decrease in the measured per-
formance, especially in the case of the HD.

Problem: Noise and artifacts
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Figure 3 Effect of annotation errors/noise. A single erroneously annotated pixel may
lead to a large decrease in performance, especially in the case of the HD or in the case
of the DSC' when applied to small structures.




Shape unawareness Metrics measuring the overlap between objects are not designed
to uncover differences in shapes. This is an important problem for many applications,
such as radiotherapy. Figure [4 illustrates that completely different object shapes may
lead to the exact same DSC value.

Problem: Shape unawareness
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Figure 4 Effect of different shapes. The shapes of the predictions of five algorithms
(Prediction 1-5) differ substantially, but lead to the exact same DSC.

Oversegmentation wvs. undersegmentation In some applications such as au-
tonomous driving or radiotherapy, it may be highly relevant whether an algorithm
tends to over- or under-segment the target structure. The DSC metric, however,
does not represent over- and under-segmentation equally (Yeghiazaryan & Voiculescu,
. As depicted in Figure |5}, a difference of a single pixel in the outline yields dif-
ferent DSC scores (oversegmentation preferred). Other distance-based performance
values such as the HD are invariant to these properties.




Problem: Oversegmentation vs. undersegmentation

Reference Prediction 1 Prediction 2

DSC = 0.40 < DSC = 0.62
HD =2 HD =2

Figure 5 Effect of undersegmentation vs. oversegmentation. The outlines of the pre-
dictions of two algorithms (Prediction 1/2) differ in only a single pixel (Prediction 1:
undersegmentation, Prediction 2: oversegmentation). This has no effect on the HD, but
yields a substantially different DSC' score.

2.2. Suitability for underlying image processing task

Performance metrics are typically expected to reflect a domain-specific validation goal
(e.g. clinical goal). Previous research, however, suggests, that this is often not the
case. A common problem is that segmentation metrics, such as the DSC, are applied
to detection and localization tasks , as illustrated in Figure @ From a
clinical perspective, for example, the algorithm producing Prediction 2 and covering
all three structures of interest (e.g. tumors) would be clinically much more valuable
compared to the one producing a highly accurate segmentation for one structure but
missing the other two in Prediction 1. This is not reflected in the metric values, which
are substantially higher for Prediction 1. In general, the DSC' is strongly biased against
single objects, therefore not appropriate for a detection task of multiple structures
(Yeghiazaryan & Voiculescul, [2018).




Problem: Task/metric mism:
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Figure 6 Effect of using a segmentation metric for object detection. In this example,
the prediction of one algorithm only detecting one of three structures (Prediction 1)
leads to a higher DSC compared to that of a second algorithm (Prediction 2) detecting
all structures.

2.3. Metric aggregation

In international competitions (challenges), metric values are often aggregated over all
test cases to produce a challenge ranking (Maier-Hein et all [2018). Figures [7] and
illustrate why this may be problematic in the presence of missing values.

Problem: Missing values for metrics with fixed upper/lower bounds

0.94 NA 0.87 0.90 NA 0.89
Ignore NAs Set NAsto 0
Mean DSC: 0.90 Mean DSC: 0.60

Figure 7 Effect of missing values when aggregating metric values. In this example,
ignoring missing values leads to a substantially higher DSC compared to setting missing
values to the worst possible value (here: 0).

In the case of metrics with fixed boundaries, like the DSC or the IoU, missing values
can easily be set to the worst possible value (here: 0). For distance-based measures
without lower/upper bounds, the strategy of how to deal with missing values is not
trivial. In the case of the HD, one may choose the maximum distance of the image
and add 1 or normalize the metric values to [0,1] and use the worst possible value
(here: 1). Crucially, however, every choice will produce a different aggregated value
(Figure [§)), thus potentially affecting the ranking.



Problem: Missing values for metrics without fixed upper/lower bounds

Image Il I, I3 Iy I5 lg
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Figure 8 Effect of missing values when aggregating metric values for metrics without
fixed boundaries (here: HD). In this example, ignoring or treating missing values in
different ways leads to substantially different HD values.

2.4. Metric combination

A single metric typically does not reflect all important aspects that are essential for
algorithm validation. Hence, multiple metrics with different properties are often com-
bined. However, the selection of metrics should be well considered as some metrics
are mathematically related to each other (Taha & Hanbury, 2015} Taha, Hanbury, &
, . A prominent example is the IoU — the most popular segmentation
metric in computer vision — which highly correlates with the DSC' — the most popular
segmentation metric in medical image analysis. In fact, the JoU and the DSC are
mathematically related (Taha & Hanbury, 2015):

DSC 210U
- 2-DSC’ M) DSC = o0 @)
Combining metrics that are related will not provide additional information for a rank-
ing. Figure [9] illustrates how the ranking can change when adding a metric that mea-
sures different properties.

IoU



Problem: Related metrics

Raw metric values

Image|Algoriihm‘ DSC | loU | HD

Al 0.91 0.82 11.31 .
Rankings

| A2 0.94 0.89 1.10
1 Rank | Ranking 1: | Ranking 2: | Ranking 3:
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Figure 9 Effect of combining different metrics for a ranking. Mutually dependent
metrics (DSC and IoU) will lead to the same ranking, whereas metrics measuring
different properties (HD) will lead to a different ranking.

3. Conclusion

Choosing the right metric for a specific image processing task is a non-trivial task.
With this (dynamic) paper, we wish to raise awareness about some of the common
flaws of the most frequently used metrics in the field of image processing, encouraging
researchers to reconsider common workflows.
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