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a b s t r a c t 

Background: Fully automatic medical image segmentation has been a long pursuit in radiotherapy (RT). 

Recent developments involving deep learning show promising results yielding consistent and time effi- 

cient contours. In order to train and validate these systems, several geometric based metrics, such as Dice 

Similarity Coefficient (DSC), Hausdorff, and other related metrics are currently the standard in automated 

medical image segmentation challenges. However, the relevance of these metrics in RT is questionable. 

The quality of automated segmentation results needs to reflect clinical relevant treatment outcomes, such 

as dosimetry and related tumor control and toxicity. In this study, we present results investigating the 

correlation between popular geometric segmentation metrics and dose parameters for Organs-At-Risk 

(OAR) in brain tumor patients, and investigate properties that might be predictive for dose changes in 

brain radiotherapy. 

Methods: A retrospective database of glioblastoma multiforme patients was stratified for planning diffi- 

culty, from which 12 cases were selected and reference sets of OARs and radiation targets were defined. 

In order to assess the relation between segmentation quality -as measured by standard segmentation as- 

sessment metrics- and quality of RT plans, clinically realistic, yet alternative contours for each OAR of 

the selected cases were obtained through three methods: (i) Manual contours by two additional human 

raters. (ii) Realistic manual manipulations of reference contours. (iii) Through deep learning based seg- 

mentation results. On the reference structure set a reference plan was generated that was re-optimized 

for each corresponding alternative contour set. The correlation between segmentation metrics, and dosi- 

metric changes was obtained and analyzed for each OAR, by means of the mean dose and maximum 

dose to 1% of the volume (Dmax 1%). Furthermore, we conducted specific experiments to investigate the 

dosimetric effect of alternative OAR contours with respect to the proximity to the target, size, particular 

shape and relative location to the target. 

Results: We found a low correlation between the DSC, reflecting the alternative OAR contours, and dosi- 

metric changes. The Pearson correlation coefficient between the mean OAR dose effect and the Dice was 

-0.11. For Dmax 1%, we found a correlation of -0.13. Similar low correlations were found for 22 other 

segmentation metrics. The organ based analysis showed that there is a better correlation for the larger 

OARs (i.e. brainstem and eyes) as for the smaller OARs (i.e. optic nerves and chiasm). Furthermore, we 

found that proximity to the target does not make contour variations more susceptible to the dose effect. 

However, the direction of the contour variation with respect to the relative location of the target seems 

to have a strong correlation with the dose effect. 
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. Introduction 

For radiotherapy (RT) planning it is important to have accu- 

ate contours of the target as well as the organs that need to 

e spared. Contouring in clinical practice is predominantly per- 

ormed by manual segmentation. Unfortunately manual segmen- 

ation is subject to inconsistencies which are known as inter- 

nd intra-observer variability ( Mazzara et al., 2004 ; Deeley, 2011 ; 

isser et al., 2019 ). Manual contouring will thus be subject to in- 

ccuracies which are known to have a high impact on treatment 

uality ( Jameson et al., 2010 ; Marks, 2013 ; Stanley et al., 2013 ;

andström et al., 2016 ; Vinod et al., 2016 ; Cloak et al., 2019 ). In

ddition, manual segmentation of targets and organs at risk (OARs) 

s a very time consuming task, varying from 1 to 4 h depending on 

ocation and tumor extent ( Bondiau et al., 2005 ; Harari et al., 2010 ;

eeley, 2011 ; Voet et al., 2011 ). In the current RT era where daily

daptive treatment finds its way into the clinic ( Brock, 2019 ), the 

eed of fast and automated segmentation is increasing. Full auto- 

atic segmentation has therefore been one of the “holy grails” in 

T. 

Recent publications have shown that auto-segmentation can 

ield consistent and time efficient contours for different tumor 

ites, which is summarized by Cardenas, 2019 . Besides, for the 

ommon clinical practice, auto-segmentation can be a useful tool 

reating data for retrospective studies. With the large amount of 

igital imaging and dosimetric data, large retrospective studies on 

reatment outcome and toxicity can be performed.. 

The current state of the art auto-segmentation methods are 

ased on deep learning (DL) and more particular on convolutional 

eural networks ( Meyer et al., 2018 ). Ever more deep learning 

ased approaches are developed and are becoming clinically avail- 

ble through commercial products ( Brunenberg, 2020 ; van Dijk 

t al., 2020 ). This new generation of auto-segmentation meth- 

ds has outperformed the quality of atlas based and traditional 

achine learning based auto-segmentation approaches. The first 

ublished deep learning based auto-segmentation studies already 

howed results in terms of dice similarity coefficient (DSC) of well 

bove 0.8 ( Roth et al., 2015 ; Ben-Cohen, 2016 ; Hu et al., 2016 ;

illetari et al., 2016 ; Zhou, 2016 ; Litjens, 2017 ). Recent and more

ophisticated DL methods show DSCs in the range over 0.8, with 

ome reported cases exceeding 0.9, depending on the type of the 

AR ( Cardenas, 2019 ). Most recently Mlynarski et al. published im- 

ressive results in OARs of the brain by combining deep learn- 

ng with sophisticated post processing methods ( Mlynarski et al., 

020 ). 

Although these results are promising, a DSC of 0.8 still leaves 

 lot of room for errors, especially in larger OARs, that might 

ave a substantial impact on the treatment. More importantly, it 

s unknown when and where such an error occurs. Consequently, 

uto-segmentation results require thorough visual inspection by 

 trained professional, which again requires additional valuable 

ime. 

To solve this issue, one can aim to improve automatic segmen- 

ation results in terms of geometrical similarity parameters up to 

he point it reaches perfection (i.e. a dice of 1.0). This is an am- 
2 
a low correlation between segmentation metrics and dosimetric changes

ts. Results suggest that the current metrics for image segmentation in RT,

s employing such metrics, need to be revisited towards clinically oriented

 segmentation quality affects dose distribution and related tumor control

© 2021 The Author(s). Published by Elsevier B.V. 

icle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

itious task that is pursued by many. Since progress over the last 

ears have been incremental, it is uncertain if this goal can ever be 

chieved. Instead, in this study we focus on how we can validate 

uto-segmentation results in such a way that they can predict the 

uality of the treatment. 

The practical standard for validating automatic segmenta- 

ion is based on geometrical similarity indices of which the 

SC and the Hausdorff distance are the most popular. In the 

ase of RT we can think of other parameters that are perhaps 

ore clinically relevant. Current methods for validating auto- 

egmentation results have been criticized before ( Gooding et al., 

018 ; Maier-Hein et al., 2018 ; Nikolov, 2018 ; Vaassen et al., 2020 ).

ooding et al. (2018) suggest a qualitative measure of experts 

n the field being able to distinct auto-segmented contours from 

anually drawn contours. More recently, Kofler et al. suggested 

ew parameters for loss functions based on quality assessment 

y experts ( Kofler, 2021 ). Other parameters have been suggested, 

ike added path length ( Vaassen et al., 2020 ) or surface dice 

 Nikolov, 2018 ), to determine how valuable contours are for RT, in 

erms of manual adjustments time. Although the time required to 

djust auto-segmented results is important, the most relevant pa- 

ameter to look at in RT is treatment outcome. Treatment outcome 

n general is quantified by tumor control and toxicity, both re- 

ected by the dose distribution. Dose distribution is a readily avail- 

ble measure, provided one has access to an RT treatment planning 

ystem (TPS). 

Describing the correlation between contour variation and 

osimetry, to our knowledge has only been explored by Xian et al. 

 Xian and Chen, 2020 ). They studied the effect of systematic geo- 

etrical transformation to several c-shaped targets, and concluded 

hat dosimetric indices should be included in the assessment of 

ontour accuracy. However, in their assessment they only provided 

he plan of the reference contour and determined the dose pa- 

ameters of the geometrical transformations on the dose distribu- 

ion. Obviously, systematically moving the alternative target con- 

our away from the reference target will decrease both geometri- 

al similarity, as well as dose coverage. This does not exactly re- 

ect the dose effect of an incorrect contour, since for this mat- 

er you need to calculate a dose distribution for both the refer- 

nce target and the transformed target, and then determine the 

ifferences these both distributions have on the reference contour 

olume. 

In this study, we analyzed the correlation between the geomet- 

ic similarity parameters and the effect a specific change on an 

AR contour has on the dose distribution. To do so we focus on 

adiotherapy for intracranial diseases. A large amount of cancers 

ituated in the brain, such as metastasis, but also primary diseases 

s gliomas, are being treated with RT. The brain is a location with a 

arge amount of critical structures that are important to spare, and 

hus accurate delineation is of importance ( Scoccianti et al., 2015 ). 

ost of the structures are small and can only be distinguished on 

agnetic resonance imaging (MRI). Contouring is therefore a te- 

ious process. Deep learning methods for intracranial OAR segmen- 

ation are under development, but are up to date not yet commer- 

ially available. 

http://creativecommons.org/licenses/by/4.0/
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Fig. 1. Graphical description of the methodology as performed on a single alternative contour set containing 8 OARs. On the computed tomography (CT) and MRI imaging 

of a clinical case the OAR contours are defined (i.e., reference structures), as well as an alternative structure set defined by a second physician, from an auto segmentation 

method, or manual manipulation of the reference. The geometric metric (in this case DSC) is determined for the alternative OARs with respect to the reference. The two 

structure sets are used as input for an RT plan. The beam setup, dose prescription and the optimization criteria are set based on the reference plan. This generates two 

different dose distributions. The reference structure set is overlaid on the output dose distributions, and the dose volume histograms (DVH) of the reference and alternative 

plans are determined. The difference in dose between the alternative plan and the reference plan is plotted against their respective DSC. 
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It is our hypothesis that currently used geometrical indices are 

ot a good predictor of the quality of a segmentation for the pur- 

ose of intracranial RT. We analyzed the level of correlation be- 

ween dosimetry and geometrical metrics used to assess segmen- 

ation quality. As geometrical metrics, we have selected a set of 23 

ommonly used parameters. As geometrical similarity approaches 

 perfect metric (i.e. a DSC of 1.0), it is expected that dose effects

ill be minimal. On the other hand, if there is barely geometri- 

al similarity, it is questionable whether this information is clin- 

cally relevant at all. Consequently, we want to focus on analyz- 

ng contour variations that could present itself in a clinical situ- 

tion, regardless of how the contours are obtained. For this pur- 

ose, we want to stay away from contour alternatives that are 

ear perfect or on the other side, are obviously wrong. In terms of 

SCs however, the values depend heavily on the respective OAR, 

ainly influenced by its size. For readability, we focus on one spe- 

ific parameter throughout this manuscript, the DSC. We specifi- 

ally choose this metric since it is still the most used parameter 

nd is well interpreted by many professionals in the field. Further- 

ore, the DSC is a widely used parameter in loss functions in deep 

earning based auto-segmentation methods. We will come back to 

he other parameters in the results section. 

Additionally, we performed synthetic experiments to find what 

ther characteristics, that are not depicted by these geometric pa- 

ameters, have an effect on the dose distribution. Since we are fo- 

using on OARs, the goal of RT is to avoid dose as much as pos-

ible. The amount of dose an OAR receives is therefore dependent 

n its location relative to the target, dose constraints and optimiza- 

ion parameters. Furthermore, how the dose will be affected by a 

hange in contour is additionally dependent on the technique of 

ose delivery and the shape and nature of the specific changes to 

he contour. Is it an over-segmentation or an under-segmentation? 

re errors in the segmentation placing the OAR closer or more dis- 
c

3 
ant to the target? Does the size of the OAR have an influence? Are 

here specific outliers? Consequently, we are investigating charac- 

eristics as shape, size, distance to the target and relative location. 

ith these findings, we expect to contribute to a better under- 

tanding as to what quality of auto-segmentation is required to 

btain clinically acceptable treatments, as well as to foster with 

mplementing auto-segmentation into the clinics in a safe and se- 

ure way. 

. Materials and methods 

.1. Correlation on clinical cases 

To assess the correlation between the DSC metric and the 

ose effect in OARs of the brain, we have constructed RT plans 

or different sets of contours on a selection of cases from a co- 

ort of glioblastoma multiforme (GBM) patients. Fig. 1 presents a 

chematic overview of the methodology, which is detailed in the 

ubsections below. From the left to right: 1) Selection of clinical 

maging data and reference contours. 2) Creation of alternative sets 

f contours to mimic segmentation and dice metric variability. 3) 

alculation of DSC and other geometrical metrics used to assess 

egmentation. 4) Calculation of dose distributions on contour sets. 

) Assessment of dosimetric differences for the reference and the 

lternative contour sets. 6) Correlation analysis between dosimetric 

ifferences and DSC. 

.1.1. Clinical imaging data 

The clinical data for this study was selected from a retrospec- 

ive database of 100 post-operative GBM cases that have been 

reated with RT at the Inselspital, University Hospital Bern. All 

ases contained a planning computed tomography (CT) registered 
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Fig. 2. Selection and acquisition of the study data. From left to right it started with 100 post-operative glioblastoma multiforme cases. The 100 cases were stratified into 

4 categories. From each category, 3 cases were selected. For these selected cases, 5 alternative sets of OAR contours were composed. Each of the alternative contour sets 

contained 8 OARs. 
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o MRI images and a reference structure set containing OARs as 

ell as the target volumes. 

The planning target volume (PTV) was defined according to the 

STRO-ACROP guidelines ( Niyazi, 2016 ). The OARs are contoured 

ccording to Scoccianti et al. (2015) and verified by mutual con- 

ensus of three experienced radiation oncology experts. 

To obtain a representative selection of cases in terms of tumor 

ocation, the cohort of GBM cases was divided in 4 categories de- 

ending on how demanding a case is for radiotherapy planning in 

erms of the included OARs ( Fig. 2 ). 

• Category 1; is highly challenging, and is defined as the PTV 

overlapping with one or more critical OARs with a hard con- 

straint (brainstem or optic tract). 
• Category 2; is defined as the PTV overlapping with one of the 

hippocampi. 
• Category 3; are those cases where the PTV resides within 

20 mm of one or more OARs. 
• Category 4; the least challenging cases are defined as the PTV 

more than 20 mm away from any OAR or more than 10 mm in

the cranial direction from any OAR. Since planning is performed 

with co-planar volumetric modulated arc therapy (VMAT) tech- 

nique perpendicular to the body axis, OARs residing superior of 

the target are automatically spared. 

From each category, three cases were included to complete our 

tudy set of 12 cases. No additional analysis is performed on the 

tratification categories. 

.1.2. Alternative contours 

The reference structure sets comprise 8 selected OARs; the 

rainstem, the optic chiasm, the optic nerves (left and right), the 

yes (left and right) and the hippocampi (left and right). Other 

maller and peripheral located OARs such as the cochlea, lenses 

nd lacrimal glands were not included since the impact on the re- 

ultant dose distribution is typically limited due to size and loca- 

ion. 

Each of the 12 included cases received next to the 8 reference 

AR structures, five sets of alternative OAR contours. Within these 

lternative contours, we want to have realistic data from different 
4 
ources that does provide sufficient variety in relation to the ref- 

rence contours. Two radiation oncology physicians manually con- 

oured the OARs resulting in alternative contours modeling inter- 

ater variability. Furthermore, for each case an alternative struc- 

ure set was obtained by a standard version of an in-house de- 

eloped deep learning based auto-segmentation method based on 

he U-net architecture ( Isensee, 2021 ). We have specifically chosen 

or a standard version of the auto-segmentation method that did 

ot provide state of the art results, but instead provides us with a 

ider range of segmentation quality results. 

A version of the U-Net ( Ronneberger et al., 2015 ) was ad- 

usted to meet the needs of multi-organ automatic segmentation 

n multiple MRI sequences. In order to incorporate recent im- 

rovements we interleaved batch normalization [33] and a 10%- 

ropout [75] layer after each convolution layer. The resulting fea- 

ure maps of the up-sampling layer are then concatenated with 

he feature maps from the contractive path, which are provided 

y the skip connections. The ending sequence of the expanding 

ath consists of a 1 × 1 convolution and a softmax layer to get 

he probabilities for each OAR and the background. For training 

e used focal Loss (gamma = 2) [48] in combination with an 

DAM optimizer (betas = (0.99, 0.999)) [38]. The initial learning 

ate was 10e-3, which reduced to 4 × 10e-4 after 150 epochs, 

nd to 1.6 × 10e-4 after 250 epochs. The model was trained 

or 300 epochs in total, with a mini-batch size of 20 training 

xamples. 

Additionally, all 12 cases received two sets of alternative OAR 

tructures by means of controlled manual manipulation of the ref- 

rence contours. These manual manipulations were designed to 

urther increase the range of geometrical similarity, and study the 

atterns of correlations at a low regime of segmentation perfor- 

ance. This data will complement the data of the human raters 

nd the auto-segmentation results in order to obtain a wide distri- 

ution of possible alternatives. All structures were contoured in a 

esearch environment of the clinical version of Eclipse TPS (Eclipse, 

ersion 15.6, Varian, Palo Alto, United States of America). In sum- 

ary, every case had a set of reference OARs and 5 sets of alter- 

ative OAR contours. In total 60 alternative contour sets were cre- 

ted, resulting in 480 alternative OAR contours. 
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Table 1 

Structures and dose prescription. 

Dose prescription 

PTV (Reference only ∗) 60 Gy 

Constraint doses 

Brainstem Surface Max dose to 1% ≤ 60 Gy 

Brainstem Center Max dose to 1% ≤ 54 Gy 

Eye ( L + R ) Max dose to 1% ≤ 10 Gy 

Chiasm Max dose to 1% ≤ 55 Gy 

Optic Nerve ( L + R ) Max dose to 1% ≤ 55 Gy 

Hippocampus ( L + R ) Dose to 40% of volume ≤ 7.3 Gy 

Reference only ∗

Lens ( L + R ) Max dose to 1% ≤ 10 Gy 

Lacrimal gland ( L + R ) Mean dose ≤ 25 Gy 

Cochlea ( L + R ) Hard: Mean Dose ≤ 45 Gy 

Soft: Mean Dose ≤ 32 Gy 

Retina ( L + R ) Max dose to 1% ≤ 45 Gy 

Pituitary Hard: Mean Dose ≤ 45 Gy 

Soft: Mean Dose ≤ 20 Gy 

∗The structures labeled under reference only, do not have alterna- 

tive versions and are therefore not interchanged during the differ- 

ent dose calculations, since the dosimetric effect due to size and 

location is typically limited. 
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.1.3. Geometrical similarity indices 

To determine the DSC of each alternative structure with respect 

o the reference contour, the structure sets were exported from the 

PS in RT-Dicom format. They were converted to Nifti format in 

D slicer software ( www.slicer.org ). With the open-source python 

oftware pymia ( Jungo et al., 2021 ), the DSC for each alternative 

 reference contour pair was determined. Additionally, another set 

f 22 alternative segmentation parameters was determined using 

valuation tools provided by the Visual Concept Extraction Chal- 

enge in Radiology (VISCERAL, www.visceral.eu ) project. The list is 

upplemented with current popular measures as the average dis- 

ance and the normalized surface dice (NSD) ( Nikolov, 2018 ). 

.1.4. RT plan calculation 

For every case, a reference RT plan was generated based on the 

eference structures. The Clinical Target Volume (CTV) was defined 

s the resection cavity and remaining GBM, including peritumoral 

dema, as per ESTRO-ACROP guidelines ( Niyazi, 2016 ). A 3 mm 

argin was added, to form the PTV. According to clinical stan- 

ard, the prescription dose for the PTV was set to 60 Gray (Gy) in

 conventional scheme (30 × 2.0 Gy). The defined OARs and their 

espective hard and soft constraint doses can be found in Table 1 . 

A co-planar VMAT plan was set up, with a double full arc, and 

 megavolt X-ray flattening filter free beams, and optimized with 

he anisotropic analytical algorithm. The plan was accepted when 

ll constraints were met. The plans were normalized on the PTV so 

hat 100% of the prescribed dose covered 50% of the PTV. 

For the alternative structure sets, we wanted to create a new 

lan while keeping all treatment parameters except the OAR struc- 

ures the same. To do so we duplicated the reference plan and sub- 

tituted the reference OARs with the alternative OARs. The beam 

rientation, prescription, constraints and optimization weights, re- 

ained unchanged from the reference plan. Thereafter, the plan 

as re-optimized. This would result in a slightly different dose dis- 

ribution because of the different orientation of the defined OARs. 

hese plans are also normalized so that 100% of the prescribed 

ose covered 50% of the PTV. 

.1.5. Dose parameter analysis 

For all constructed RT plans (1 reference, 5 alternatives per 

ase), the dose to the OARs of the reference structure set was 

nalyzed. This reflects the dose the actual organ (i.e., reference) 

ould receive, when it is incorrectly contoured (i.e., alternative). 
5 
he difference in dose between the alternative plan and the ref- 

rence plan is referred hereafter as the dose effect or delta dose. 

e determined the delta dose for both the mean OAR dose and 

he maximum dose to 1% of the OAR volume (Dmax 1%). These are 

ypical metrics used to determine dose constraints to specific OARs 

 Emami, 2013 ). 

.1.6. Data analysis and statistics 

We analyzed the data in two ways: I). By the nature of 

ow the segmentation variability was established, divided into 

hree groups: intra-rater variability, manual adjustments, and auto- 

egmentation results. This is to show the variability in contour 

imilarity with respect to the reference for each of these groups. 

I). Per specific organ type. Since segmentation metrics are influ- 

nced by the volume of the segmentation, and inter-rater variabil- 

ty is OAR dependent, results might differ among different sizes of 

ARs. The specific organ types were divided in five groups; brain- 

tem, optic chiasm, optic nerves, eyes and hippocampi. 

The correlation for each of the groups was determined by the 

earson correlation coefficient. Additionally, the correlation with 

2 alternative segmentation parameters, listed in Table 3 , was de- 

ermined. The calculations of the metrics are performed with the 

pen-source python software pymia ( Jungo et al., 2021 ) and the 

pen source implementation of the surface DSC ( Nikolov, 2018 ), 

vailable from https://github.com/deepmind/surface-distance . All 

he distance parameters are computed while considering the voxel 

pacing. 

.2. Possible characteristics predictive for the dose effect 

Additional to the clinical data, synthetic experiments were per- 

ormed to assess the correlation between the effect of alternative 

AR contours and (i) the distance with respect to the target, (ii) 

he size of the OAR, (iii) their relative location with respect to the 

arget and the radiation beams, (iv) their specific shape. 

.2.1. Dice versus distance 

A synthetic spherical target and one reference OAR were de- 

ned in the center of the brain in the planning CT of one of the in-

luded subjects. Based on the reference OAR, 8 alternative contours 

ere constructed with different shapes and sizes. This resulted in 

 variety of DSC with respect to the reference OAR ( Fig. 3 ). This

et of 9 different OARs (reference plus alternatives) were dupli- 

ated at 5 different distances from the target starting from 1.5 cm, 

p to 6.5 cm, with 1.5 cm increments. For each of the 5 resulting 

istances a reference plan was constructed. The goal of the refer- 

nce plan was to obtain the lowest possible dose to the reference 

AR, without compromising the prescription dose to the target of 

0 Gy. For each of the 8 alternative OARs, the reference plan was 

uplicated while substituting the reference OAR for each of the al- 

ernative ones in the dose optimization step, in the same way as 

escribed in Section 2.1.4 . 

The obtained DSC of the alternative OARs with respect to the 

eference, are plotted against the dose-effect. The dose effect is de- 

ermined by the dose difference to the reference OARs between the 

eference and alternative plans similar as in Section 2.1.5 . 

.2.2. Dice versus size 

It is well known that the size of an OAR has influence on voxel 

ise similarity segmentation metrics such as the DSC metric. We 

anted to determine if the size of an OAR would correlate with the 

ose effect given a specific fixed DSC. For this purpose, we synthet- 

cally created 7 spherical reference OARs ascending in size from 1.0 

c to 64.4 cc, on the planning CT of an actual subject. All OARs 

ad the same minimum distance to the target. For each of the ref- 

rence OARs, we produced two alternative OARs, obtained by dis- 

lacements in two different directions, with a DSC with respect 

http://www.slicer.org
http://www.visceral.eu
https://github.com/deepmind/surface-distance
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Fig. 3. Synthetic experiment to assess the relationship of distance to the target on the dice-dose effect. On the left, axial slice representations of the 8 synthetic variations 

on the spherical reference contour with their respective dice similarity coefficient. On the right, the reference OAR and the alternatives are located at 5 different distances 

from the target (PTV, red circle), leading to a total of 45 synthetically generated alternative contours. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.). 

Fig. 4. Synthetic experiment to assess the influence of the size of the OAR on the dose effect with respect to the DSC metric. On the left we see the 7 reference OARs 

with different sizes (in green). On the right, an example of a reference OAR is shown accompanied with the respective alternative contours in blue and orange. The target is 

shown in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 
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o the reference OAR of respectively 0.55 and 0.58 (see Fig. 4 ). 

 reference plan was constructed on each of the reference OARs. 

he goal of the plan is the same as in Section 2.2.1 . This ref-

rence plan was duplicated and re-optimized for the alternative 

AR contours. The dose difference for the reference OAR between 

eference and alternative plan was determined for each of the 

 sizes. 

.2.3. Dice versus location 

To determine the effect a specific location might have on the 

ose-effect, another synthetic experiment was designed. A spheri- 
6 
al target and a single OAR reference contour, as well as an alter- 

ative OAR were defined on the planning CT of an actual subject. 

he alternative OAR had a DSC of 0.46 with respect to the ref- 

rence OAR. The two OARs were duplicated to different locations 

ith respect to the target, while keeping the same distance from 

he target ( Fig. 5 ). The locations are posterior, medial, lateral and 

uperior of the target. A reference plan was constructed for each of 

he reference OARs. This plan was duplicated and re-optimized on 

he alternative OAR contours, similar as in Section 2.2.1 . The dose 

ifference for the reference OAR between reference and alternative 

lan was determined for each location. 
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Fig. 5. Assessing the relationship of location relative to the target, on the dice-dose 

effect. Transversal, frontal sagittal and a 3D view of a human subject’s head are 

depicted. The red circle represents the PTV. The pink circle is the reference OAR and 

the blue structure is the alternative OAR structure. The pair of OARs is duplicated 

in locations A, B and C. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.). 

Fig. 6. Representation of the dice versus shape synthetic experiment. The red circle 

represents the PTV. The pink circle represents the reference OAR. At the same lo- 

cation, 4 alternative OARs with similar DSC to the reference were constructed with 

different shapes and size then the reference OAR. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.). 
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.2.4. Dice versus shape 

The fourth synthetic experiment consisted of a spherical target 

nd one reference OAR. Four alternative OARs were constructed 

ith different shape or size, but with the same arbitrary DSC of 

.66 with respect to the reference OAR ( Fig. 6 ). A reference plan

as calculated and optimized based on the target and the refer- 

nce OAR. This plan was duplicated and re-optimized while sub- 

tituting the reference OAR for any of the alternative OARs. The 

ifference in dose to the reference OAR and target, between the 

lternative and the reference plan, are compared to assess the cor- 

elation of different shapes of alternative OAR contours on the dose 

istribution. 
7 
. Results 

.1. Segmentation dose-effect correlation on clinical cases 

In total, we have constructed 60 alternative structure sets for 

he 12 reference cases. Including the 12 reference plans we cal- 

ulated 72 plans, and created 480 single pairs of DSC and their 

orresponding � mean dose and � Dmax 1%. Depending on the 

ethod the alternative contours were produced, results are pre- 

ented in three categories: (i) human-rater variability, (ii) explicit 

anual manipulation and (iii) auto-segmentation results. Addition- 

lly, an organ specific analysis is performed. 

.1.1. Human rater variability 

For the human rater variability, the median DSC was 0.83 (inter- 

uartile range [IQR]: 0.13) The median � mean dose to the refer- 

nce OAR was 0.25 (IQR: 0.80) Gy, and the median � Dmax 1% 

as 0.4 (IQR: 1.1) Gy. The Pearson’s correlation coefficient for the 

ean dose difference and the maximum dose difference with the 

SC was −0.11 and −0.08, respectively. The � mean dose, and the 

Dmax 1%, are plotted against their corresponding DSC in Fig. 7 A 

nd D. 

.1.2. Explicit manual manipulations 

The manual manipulations resulted in a median DSC of 0.68 

IQR: 0.22). The median � mean dose was 0.30 (IQR: 0.8) Gy and 

he median � Dmax 1% was 0.50 (IQR: 1.22) Gy. The Pearson’s cor- 

elation coefficient for the � mean dose and the � Dmax 1% with 

he DSC was −0.17 and −0.13, respectively. The � mean dose, and 

he � Dmax 1%, are plotted against their corresponding DSC, and 

hown in Fig. 7 B and E. 

.1.3. Auto-segmentation results 

The auto-segmentation results had a median DSC of 0.70 (IQR: 

.33) with respect to the reference contours. The median � mean 

ose was 0.40 (IQR: 1.6) Gy and the median � Dmax 1% was 0.75 

IQR: 1.95) Gy. The Pearson’s correlation coefficient for the � mean 

ose and the � Dmax 1% with the DSC, was −0.31 and −0.13 

espectively. The � mean dose and the � Dmax 1% are plotted 

gainst their corresponding DSC, and shown in Fig. 7 C and F. 

.1.4. Segmentation dose-effect per OAR type 

The segmentation results differ slightly over the different OARs. 

he results are summarized in Table 2 and displayed as scatter- 

lots in Fig. 8 . The similarity for the chiasm and optic nerves were

elatively low with a median DSC of 0.67 and 0.66 respectively. The 

rainstem and the eyes showed relatively better similarity with a 

edian DSC of 0.85 and 0.84 respectively ( Table 2 ). The dose ef- 

ects among the different OARs did not show much difference. The 

ighest observed median � mean dose was 0.70 Gy for the op- 

ic chiasm and for the � Dmax 1% dose 0.75 for the Hippocampi. 

he Pearson correlation coefficient is very low for the smaller OARs 

s the optic nerves and optic chiasm. However, it can be a lot 

igher for larger OARs as the brainstem and the eyes. Interestingly 

he Pearson correlation for the brainstem is very low for the delta 

ean dose, but relatively high for the delta max dose ( Table 2 ). 

.1.5. Correlation of all alternative contours combined 

The correlation of the DSC and the dose effect of the three cate- 

ories combined, as well as for 22 additional segmentation param- 

ters can be found in Table 3 . 

.2. Possible characteristics predictive for the dose effect 

.2.1. Dice versus distance 

A total of 40 plans were calculated, on the eight alternative 

ARs, at five different distances from the target ( Fig. 3 ). The mean
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Fig. 7. Scatter plots of the DSC versus the dose effect. The dose effects of the three different natures of alternative contours are plotted against their respective DSC. From 

left to right, the human-rater alternatives, the manually manipulated alternatives and the auto-segmented alternatives. The � mean dose results are located in the upper 

plots while the � Dmax 1% results are shown below. 

Table 2 

Results of the organ specific analysis of the correlation of the DSC and the dose effect (Median and IQR). 

Mean volume (cc) DSC Delta mean dose 

(Gy) 

Pearson correlation 

- � Mean dose and 

DSC 

Delta max dose 

(Gy) 

Pearson correlation 

- � Max dose and 

DSC 

Brainstem 26.5 0.849 (0.097) 0.2 (0.8) −0.013 0.5 (1.3) −0.387 

Eyes 8.38 0.843 (0.145) 0.2 (0.6) −0.396 0.3 (0.7) 0.312 

Optic Chiasm 0.24 0.674 (0.207) 0.7 (1.5) −0.04 0.4 (1.8) −0.072 

Hippocampi 1.85 0.733 (0.268) 0.3 (0.8) −0.289 0.75 (1.3) −0.147 

Optic Nerves 0.36 0.659 (0.245) 0.4 (1.0) −0.063 0.6 (1.5) −0.006 

Table 3 

Pearson correlation coefficients for additional segmentation parameters. The used metrics are a collection of segmentation metrics composed by the VISCERAL evaluation 

software (www-visceral.eu) complemented by some new popular metrics as the average distance and NSD ( Nikolov, 2018 ). 

Correlation coefficient with: � Mean dose � Maximum dose 

Similarity 

measures 

Dice −0.112 −0.137 

Jaccard −0.134 −0.152 

Area under curve −0.117 −0.140 

Cohen kappa −0.134 −0.164 

Rand index 0.015 −0.102 

Adjusted rand index −0.134 −0.164 

Interclass correlation −0.134 −0.164 

Volumetric Similarity Coefficient −0.055 −0.035 

Mutual information −0.102 0.054 

Normalized Surface Dice 0.075 0.010 

Distance 

measures 

Hausdorff distance 0.186 0.184 

Average HDD 0.160 0.175 

Average Distance −0.011 0.080 

Mahanbolis Distance 0.083 0.168 

Variation of info −0.031 0.091 

Global consistency error −0.023 0.097 

Probabilistic distance 0.103 0.202 

Classic 

Measures 

Sensitivity −0.117 −0.140 

Specificity 0.071 −0.027 

Precision −0.108 −0.141 

F-Measure −0.134 −0.164 

Accuracy 0.015 −0.102 

Fallout −0.071 0.027 
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ose and Dmax 1% received by the reference OARs are plotted 

gainst the DSC, for each distance, in Fig. 9 . From Fig. 9 A and C

e observed that the dose effect to the OAR, does not seem to be

irectly influenced by the distance between target and OAR. The 

ose versus dice plots do not seem to lead to more variation as 

he distance to the target is decreased. The absolute dose differ- 
8 
nces ( Fig. 9 B and D), show that proximity to the target does not

ecessarily lead to a larger dose effect. Where we expect to see in- 

reasing dose effects with decreasing distance to the target, we ac- 

ually see that specific alternative contours, characterized by their 

SC on the x-axis, show a lot of dose variation (indicated by the 

sterisks in Fig. 9 B). On the other hand, the other alternative con- 
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Fig. 8. Scatter plots of the DSC versus the dose effect for the 5 different or gan types. The mean dose (blue dots) and the max dose (orange dots) effects, in Gy, are plotted 

against their respective DSC on the x-axis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 
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ours show almost no dose variation at all, regardless of the dis- 

ance to the target. 

.2.2. Dice versus size 

The different reference OAR sizes and their alternative contours 

ith DSC values of 0.55 and 0.58 respectively, show different re- 

ults in the mean dose effect and the Dmax 1% dose effect. It is 

bserved that when the size of the OAR increases, the maximum 

ose increases and the mean dose decreases. This is a logical con- 

equence, since a larger OAR results in less room for the dose to 

void the OAR near the target and simultaneously the volume re- 

eiving less dose is increasing due to the increased size of the OAR. 

he dose-effect seems to follow a different trend, which increases 

ith increasing size of OAR but seems to stabilize and slowly de- 

reases as a specific size is reached ( Fig. 10 ). 

.2.3. Dice versus location 

The mean dose and the Dmax 1% to the reference OARs, are 

hown in Fig. 11 A and B. The difference in dose due to the planning

n the alternative OAR, differs with the respective location to the 

arget. This data shows that one single specific contour deviation 

f an OAR can lead to both an increase in dose, a decrease in dose,

r to no change in dose at all, depending on its relative location to 

he target. The same effect can also be seen for the coverage of the 

TV ( Fig. 11 C and D). 

.2.4. Dice versus shape 

The five plans, optimized for the 5 different OARs, have been 

nalyzed. In Fig. 12 , the mean dose and Dmax 1% to the reference
9 
AR are depicted for each of the plans. Despite having the same 

SC with respect to the reference OAR, the mean dose to the ref- 

rence OAR can vary up to 7.7 Gy between different alternatives. 

he largest difference in Dmax 1% among the alternative plans was 

1.2 Gy. The target coverage is stable among all plans ( Fig. 12 , cen-

er). 

. Discussion 

This study shows the correlation between current segmenta- 

ion parameters and dosimetric effects in a selection of GBM cases 

reated with VMAT RT. It was our hypothesis that geometric simi- 

arity might not be a good method to validate, or qualify contours, 

or the purpose of radiotherapy. The same question has previously 

een investigated by other authors, but with a slightly different 

otivation. Gooding et al. used an adapted Turing test for the clin- 

cal validation of auto-segmented contours ( Gooding et al., 2018 ). 

his approach was motivated by the benchmark trap, which is cre- 

ted by comparing results to a ground truth that does not actually 

xist. Vaassen et al. also proposed a different contouring valida- 

ion scheme by claiming that correction time is clinically more im- 

ortant than geometrical similarity ( Vaassen et al., 2020 ). This re- 

ulted in a new parameter that is better able to predict the amount 

f manual adjustment time. Although manual adjustment time is 

linically relevant, it assumes that all contours require correction. 

owever, our data suggest that many OAR contours do not need 

orrection at all. 

In this study, we looked at contour validation through a more 

linical end goal perspective of radiotherapy. Hence, we looked at 
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Fig. 9. Represented are the doses to the reference OARs at different distances as shown in Fig. 3 . The dots represent the plan based on the specific alternative OAR with the 

corresponding DSC on the x-axis. The upper plots show the results for the mean dose to the OAR (A) and the absolute difference with respect to the reference plan (B). The 

lower plots show the Dmax 1% of the OAR (C) and the absolute difference in Dmax 1% (D). The asterisks in B indicate cases that show a lot of dose effect variation among 

the different distances. 

Fig. 10. The influence on the size of an OAR on the dosimetric effect for a two fixed alternative contours with a respective DSC of 0.55 (alternative A) and 0.58 (alternative 

B). The dose difference of the reference plan and the plan optimized on the specific alternative is plotted against the size of the volume in cubic centimeter (CC). The 

absolute dose difference is given in Gy. 
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he dosimetric effects, which are directly related to the treatment 

utcome. We asked ourselves the questions: How incorrect does a 

ontour need to be for it to start influencing the dose? Are there 

arameters able to predict the dose effect? In these regards, we as- 

essed the correlation between the geometrical similarity and the 

ose effect in OARs of the brain, and found a low correlation. Not 

nly for the DSC metric but also for other well-known segmen- 

ation assessment metrics as well as recently introduced improved 

etrics. As expected, some amount of correlation was found. How- 

ver, if the geometrical similarity gets worse, we found a low cor- 
10 
elation to a certain dose effect. In conclusion, the predictive value 

f current segmentation parameters for corresponding dose effect 

s inadequate for segmentation tasks in brain radiation therapy 

lanning. It cannot be determined if a specific contour would be 

linically unacceptable based on the analyzed segmentation met- 

ics. 

These results are different than the conclusions made by Xian 

t al. ( Xian and Chen, 2020 ) who also looked at the correlation 

f contour variation and dose. We see some significant differences 

n the experimental design of our study and theirs. They specifi- 
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Fig. 11. Influence of location on the dose effect to a specific alteration in OAR contour. Bar graphs represent the dose effect to the OAR (A, B) and the PTV (C, D) for the 

reference plans (pink) and the alternative plans (blue), for the 4 different locations shown in Fig. 5 . (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.). 

Fig. 12. Influence of shape and volume of an alternative OAR contour on the dose effect. The bar plots represent the dose received by the reference OAR (pink, in Fig. 5 ) for 

the reference plan and the 4 alternative plans. The colors and the shape above the bars correlate with the shapes and colors from Fig. 5 . The middle bar graph represents 

the dose coverage (D95%) to the PTV. 
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ally looked at the correlation of geometrical similarity and dosi- 

etric indices to target structures, while we focused on OARs. Even 

hough they concluded that geometrical similarity is not sufficient 

or clinical contour validation, they showed strong correlations in 

heir results. A good reason for this could be the fact that they ana-

yzed targets. The target is a structure where all the dose is pointed 

owards and has a steep dose fall-off. Consequently, systematically 
11 
ransforming this target contour over the existing dose distribution 

ill lead to a correlating effect. 

This method was also used by Beasley et al. when they looked 

t the correlation of DSC between “ground truth” and auto- 

egmented parotid and larynx contours ( Beasley et al., 2016 ). They 

id not re-optimize the plans based on the alternative contour but 

ather overlaid both “ground truth” and alternative contour on the 
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xisting dose distribution to determine the dose effect. In line with 

ur results, they did find a weak correlation between segmenta- 

ion metrics and dose effect that was OAR dependent. However, it 

hould be mentioned that they only had 10 data pairs per OAR to 

etermine this correlation. 

In this study, we are looking at large number of alternative 

AR contours in the brain, where the target area varies in location. 

any more factors are involved in determining the dose effect to 

 specific OAR, Increasing the complexity of predicting which fac- 

ors will have an effect and to what extent. We investigated a few 

haracteristics that have an influence on the dose effect to OARs in 

he brain. Notably, we found that the distance from a target does 

ot directly influence the dose effect; however, change in a spe- 

ific direction does seem to have a more prominent effect. In ad- 

ition, the relative location of the OAR and its contour variation 

ith respect to the target could be of large influence. Furthermore, 

e noticed that the size of a specific OAR could have an influ- 

nce on the dose effect and shows that the dosimetric parameters 

ill depend on the size as well. I.e. the difference in mean and 

ax dose is substantially small for small OARs but can be large 

or larger OARs. Nevertheless, size is a disturbing factor in vol- 

me based similarity metrics. Variability of these metrics can differ 

argely among different types of OARs. Fig. 8 shows that this vari- 

bility is also present in our test data. The variability of smaller 

ongitudinal structures as the optic nerves and chiasm is larger 

s that of larger more spherical structures as the eyes and the 

rainstem. 

Although we cannot attribute any conclusions due to the syn- 

hetic nature of the experiments, it does show the complexity of 

ow dose is affected in OARs. Moreover, it presents how many pa- 

ameters and factors are involved determining the final dose distri- 

ution. Since many critical OARs are in close proximity within the 

rain, they can also influence the dose to each other (i.e. a change 

n contour to OAR A could lead to a dose effect in OAR B). Which

s something we did not account for in the current study and ne- 

essitates more investigation. 

As mentioned, the dose effect is also dependent on how the 

ose is delivered and how the optimization is performed. In this 

tudy we worked with a clinical protocol delivering a co-planar 

MAT technique using a dose prescription where the constraint 

oses to the OARs where prioritized. Different delivery techniques 

nd different optimization approaches will therefore lead to differ- 

nt dosimetric outcomes. Although we used stratification to have a 

iverse distribution of cases, it has to be mentioned that dosimetry 

s very case-specific and many specific situations are not covered 

y our study data. The results from this study are therefore only 

alid for this particular type of RT delivery to the brain region. On 

he other hand, the general rationale and experimental setup to 

nvestigate whether geometrical similarity metrics are not a good 

redictor of RT quality, could be valid for different types of RT in 

ifferent regions, and is worth investigating. 

As additional follow up, we believe it is important to find char- 

cteristics that do reflect treatment quality. In other words, to find 

ood predictor parameters of the dose effect. A parameter like this 

ould be very helpful for clinical validation of contours that are 

erived from manual contouring or any type of auto-contouring, as 

ong as there is a reference to compare against. Additionally, such 

 parameter would be very useful as part of the cost function for 

esigning and optimizing deep learning based auto-segmentation 

ethods ( Ma et al., 2021 ). Kofler et al. proposed incorporating 

ualitative measures into the loss function of a tumor segmen- 

ation method ( Kofler, 2021 ). This can lead to several improve- 

ents. First, validating a contouring system on a robust treatment 

uality is expected to improve the clinical implementation of such 

ools. Secondly, if one is able to determine that changes to dose ef- 

ects are negligible despite geometrical differences, one can estab- 
12 
ish a more clinically oriented performance objective for an auto- 

egmentation method. 

For clinical RT it could mean that we do not have to visually 

nspect and manually adjust all OAR contours. If we can predict 

hat segmented outcomes do not have a dose effect, we can skip 

he inspection and correction part for these cases. Another sce- 

ario could be to predict which specific contours have an effect 

n the dose distribution. In this case, the visual inspection and 

anual correction step, which is often required when using auto- 

egmentation, could be made significantly more efficient. 

Looking at the results from our data, we observed that a large 

umber of alternative contours do not lead to a significant dose ef- 

ect ( Figs. 7 and 8 ). However, the question is if this is also clinically

nsignificant. This is not an easy question to answer. In general, any 

ncrease in dose to an OAR is undesired. However, due to the op- 

imization process in RT, an increase in dose to a specific region 

ften results in a decrease somewhere else. This can be beneficial 

f this region is a critical organ as well, however, it will be detri- 

ental if it comes at the expense of the target coverage. There- 

ore, it is difficult to say that a certain increase to a specific organ 

s affecting the overall treatment quality. Furthermore, an absolute 

ncrease in dose is difficult to quantify. At what increase, either 

n absolute or relative numbers is a change significant. Should it 

e absolute dose or relative dose or should it be relative to its 

pecific dose constraint? Besides, it is important which parameter, 

ean dose or Dmax 1%, is used. For instance, if one looks at the 

rbitrary threshold of 2.0 Gy absolute dose effect, from the 960 

arameters analyzed in this study, 79 exceeded this threshold. Of 

hese 79, in 46 the dose increased, while in the other 33 the dose 

ecreased. 

A solution for this problem might be found in normal tissue 

omplication probability models ( Yorke, 2001 ). Provided that valid 

odels are available for the specific OARs in the brain, one is able 

o determine the trade-off between sub-optimal contours and the 

ncrease in chance of developing a specific complication. 

Even though our data included a wide variety of geometrical 

imilarity values, i.e. an average DSC of 0.71 ± 0.19, the dose ef- 

ect to the large majority of cases showed to be limited. This in- 

ormation is indeed encouraging for exploring new approaches to 

mprove and implement auto-segmentation methods. 

In conclusion, currently used segmentation assessment param- 

ters, which are mainly based on geometrical similarity, are not 

ell correlated with dosimetric changes on OARs in the brain. 

ur results also show that in the brain the majority of imper- 

ect contours, whether resulting from manual segmentation, auto- 

egmentation or deliberate manipulations, do not lead to clinically 

elevant dose changes. In order to find specific contour variations 

hat do lead to dose changes, other characteristics, such as rela- 

ive distance and orientation to the target and the shape and na- 

ure of the contour variation seem to have an influence. These re- 

ults suggest that the current evaluation metric for medical image 

egmentation in radiation therapy, as well as the training of deep 

earning systems employing such metrics, need to be revisited to- 

ards clinically oriented metrics that more accurately reflect how 

egmentation quality affects dosimetry and related tumor control 

nd toxicity. 

eclaration of Competing Interest 

The authors declare the following financial interests/personal 

elationships which may be considered as potential competing in- 

erests: Stefan Scheib is a full time employee of Varian Medi- 

al Systems, Imaging Laboratory GmbH, Dättwil, Switzerzland. The 

ther Authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 



R. Poel, E. Rüfenacht, E. Hermann et al. Medical Image Analysis 73 (2021) 102161 

C

m

m

M

p

v

A

a

R

B

B

B

B

C

C  

N

B

v

E

D  

G

H

H

I

J  

J  

L

M

M

M

M

M

M

M

K

N

R

R

S

S  

S

V

V

V

V

Y

X

Z

RediT authorship contribution statement 

Robert Poel: Conceptualization, Methodology, Validation, For- 

al analysis, Investigation. Elias Rüfenacht: Software. Evelyn Her- 

ann: Data curation. Stefan Scheib: Resources. Peter Manser: 

ethodology, Supervision. Daniel M. Aebersold: Methodology, Su- 

ervision. Mauricio Reyes: Conceptualization, Methodology, Super- 

ision. 

cknowledgement 

This work was supported by Innosuisse grant number 31274.1 

nd the Swiss Cancer League. 

eferences 

easley, W.J., et al., 2016. The suitability of common metrics for assessing parotid 

and larynx autosegmentation accuracy. J. Appl. Clin. Med. Phys. 17 (2), 41–49. 

doi: 10.1120/jacmp.v17i2.5889 . 
ondiau, P.Y., et al., 2005. Atlas-based automatic segmentation of MR images: vali- 

dation study on the brainstem in radiotherapy context. Int. J. Radiat. Oncol. Biol. 
Phys. 61 (1), 289–298. doi: 10.1016/j.ijrobp.2004.08.055 . 

rock, K.K. , 2019. Adaptive radiotherapy : moving into the future. Semin. Radiat. 
Oncol. 29 (3), 181–184 doi: 10.1016/j.semradonc.2019.02.011.Adaptive . 

runenberg, E.J.L., et al., 2020. External validation of deep learning-based contouring 

of head and neck organs at risk. Physics and Imaging in Radiation Oncology 15 
(June), 8–15. doi: 10.1016/j.phro.2020.06.006 , Elsevier . 

ardenas, C.E., et al., 2019. Advances in auto-segmentation. Seminars in Radiation 
Oncology 29 (3), 185–197. doi: 10.1016/j.semradonc.2019.02.001 , Elsevier Inc. . 

loak, K., et al., 2019. Contour variation is a primary source of error when delivering
post prostatectomy radiotherapy: results of the trans-Tasman radiation oncology 

group 08.03 radiotherapy adjuvant versus early salvage (RAVES) benchmarking 

exercise. J. Med. Imaging Radiat. Oncol. 63 (3), 390–398. doi: 10.1111/1754-9485. 
12884 . 

ikolov, S. et al. (2018). Deep learning to achieve clinically applicable segmentation 
of head and neck anatomy for radiotherapy. ArXiv, pp. 1–31. Available at: http: 

//arxiv.org/abs/1809.04430 . 
en-Cohen, A. et al. (2016). Fully Convolutional Network for Liver Segmentation 

and Lesions Detection, in Deep Learning and Data Labeling for Medical Applica- 

tions. DLMIA 2016, LABELS 2016. Lecture Notes in Computer Science, vol. 10 0 08. 
Springer, Cham., pp. 77–85. doi: 10.1007/978-3-319-46976-8. 

an Dijk, L.V., et al., 2020. Improving automatic delineation for head and neck 
organs at risk by deep learning contouring. Radiother. Oncol. 142, 115–123. 

doi: 10.1016/j.radonc.2019.09.022 , The Authors . 
mami, B. (2013). Tolerance of normal tissue to therapeutic radiation’, 

1(1), pp. 35–48. Available at: https://cdn.neoscriber.org/cdn/serve/eb/27/ 
eb27adb334594d3093f4ed1b7d088c0a7a390f0b/4316- 13810- 1- PB.pdf . 

eeley, M.A. , et al. , 2011. Comparison of manual and automatic segmentation meth-

ods for brain structures in the presence of space-occupying lesions: a multi-ex- 
pert study. Physics in Medicine & Biology 56 (14), 4557 . 

ooding, M.J., et al., 2018. Comparative evaluation of autocontouring in clinical prac- 
tice: a practical method using the Turing test. Med. Phys. 45 (11), 5105–5115. 

doi: 10.10 02/mp.1320 0 . 
arari, P.M., Song, S., Tome, W.A., 2010. Treatment planning in head and neck can- 

cer. Int. J. Radiat. Oncol. Biol. Phys. 77 (3), 950–958. doi: 10.1016/j.ijrobp.2009. 

09.062 . 
u, P., et al., 2016. Automatic 3D liver segmentation based on deep learning 

and globally optimized surface evolution. Phys. Med. Biol. 61 (24), 8676–8698. 
doi: 10.1088/1361-6560/61/24/8676 . 

sensee, F. , et al. , 2021. nnU-Net: self-adapting framework for U-Net-based medical 
image segmentation. Nat. Methods (2) 203–2011 . 

ameson, M.G., et al., 2010. A review of methods of analysis in contouring studies

for radiation oncology. J. Med. Imaging Radiat. Oncol. 54 (5), 401–410. doi: 10. 
1111/j.1754-9485.2010.02192.x . 

ungo, A., et al., 2021. pymia: a Python package for data handling and evaluation
in deep learning-based medical image analysis. Comput. Methods Prog. Biomed. 

198, 105796. doi: 10.1016/j.cmpb.2020.105796 , Elsevier B.V . 
13 
itjens, G., et al., 2017. A survey on deep learning in medical image analy- 
sis. Medical Image Analysis 42, 60–88. doi: 10.1016/j.media.2017.07.005 , Elsevier 

B.V.(December 2012) . 
a, J., et al., 2021. Loss odyssey in medical image segmentation. Med. Image Anal. 

71. doi: 10.1016/j.media.2021.102035 . 
aier-Hein, L., et al., 2018. Why rankings of biomedical image analysis competi- 

tions should be interpreted with care. Nat. Commun. 9 (5217), 1–13. doi: 10. 
1038/s41467- 018- 07619- 7 . 

arks, L.B., et al., 2013. Enhancing the role of case-oriented peer review to improve 

quality and safety in radiation oncology: executive summary. Practical Radia- 
tion Oncology 3 (3), 149–156. doi: 10.1016/j.prro.2012.11.010 , American Society 

for Radiation Oncology . 
azzara, G.P., et al., 2004. Brain tumor target volume determination for radiation 

treatment planning through automated MRI segmentation. Int. J. Radiat. Oncol. 
Biol. Phys. 59 (1), 300–312. doi: 10.1016/j.ijrobp.2004.01.026 . 

eyer, P., et al., 2018. Survey on deep learning for radiotherapy. Comput. Biol. Med. 

98 (May), 126–146. doi: 10.1016/j.compbiomed.2018.05.018 , Elsevier Ltd . 
illetari, F., Navab, N., Ahmadi, S.A., 2016. V-Net: fully convolutional neural net- 

works for volumetric medical image segmentation. In: Proceedings - 2016 4th 
International Conference on 3D Vision, 3DV 2016, pp. 565–571. doi: 10.1109/3DV. 

2016.79 . 
lynarski, P., et al., 2020. Anatomically consistent CNN-based segmentation of 

organs-at-risk in cranial radiotherapy. J. Med. Imaging 7 (1). doi: 10.1117/1.JMI. 

7.1.014502 . 
ofler, F. et al. (2021). Are we using appropriate segmentation metrics? Identifying 

correlates of human expert perception for CNN training beyond rolling the DICE 
coefficient., Arxiv Preprint. arXiv:2103.06205 . 

iyazi, M., et al., 2016. ESTRO-ACROP guideline target delineation of glioblastomas. 
Radiother. Oncol. 118 (1), 35–42. doi: 10.1016/j.radonc.2015.12.003 . 

onneberger, O., Fischer, P., Brox, T., 2015. U-net: convolutional networks for 

biomedical image segmentation. Lect. Notes Comput. Sci. 9351, 234–241. doi: 10. 
1007/978- 3- 319- 24574- 4 _ 28 , (including subseries Lecture Notes in Artificial In- 

telligence and Lecture Notes in Bioinformatics) . 
oth, H.R., et al.Navab, N., Hornegger, J., Wells, W., Frangi, A. (Eds.), 2015. DeepOr- 

gan: multi-level deep convolutional networks for automated pancreas segmen- 
tation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 

2015. MICCAI 2015. Lecture Notes in Computer Science , 9349, 556–564. doi: 10. 

1007/978- 3- 319- 24553- 9 . 
andström, H., et al., 2016. Assessment of organs-at-risk contouring practices in ra- 

diosurgery institutions around the world – the first initiative of the OAR Stan- 
dardization Working Group. Radiother. Oncol. 121 (2), 180–186. doi: 10.1016/j. 

radonc.2016.10.014 . 
coccianti, S., et al., 2015. Organs at risk in the brain and their dose-constraints in

adults and in children: a radiation oncologist’s guide for delineation in everyday 

practice. Radiother. Oncol. 114 (2), 230–238. doi: 10.1016/j.radonc.2015.01.016 , 
Elsevier Ireland Ltd . 

tanley, J., et al., 2013. The effect of contouring variability on dosimetric parameters 
for brain metastases treated with stereotactic radiosurgery. Int. J. Radiat. Oncol. 

Biol. Phys. 87 (5), 924–931. doi: 10.1016/j.ijrobp.2013.09.013 , Elsevier Inc. . 
aassen, F., et al., 2020. Evaluation of measures for assessing time-saving of auto- 

matic organ-at-risk segmentation in radiotherapy. Phys. Imaging Radiat. Oncol. 
13, 1–6. doi: 10.1016/j.phro.2019.12.001 , Elsevier(December 2019) . 

inod, S.K., et al., 2016. Uncertainties in volume delineation in radiation oncology: 

a systematic review and recommendations for future studies. Radiother. Oncol. 
121 (2), 169–179. doi: 10.1016/j.radonc.2016.09.009 , Elsevier Ireland Ltd . 

isser, M., et al., 2019. Inter-rater agreement in glioma segmentations on longitu- 
dinal MRI. NeuroImage 22, 101727. doi: 10.1016/j.nicl.2019.101727 , Elsevier(July 

2018) . 
oet, P.W.J., et al., 2011. Does atlas-based autosegmentation of neck levels require 

subsequent manual contour editing to avoid risk of severe target underdosage? 

A dosimetric analysis. Radiother. Oncol. 98 (3), 373–377. doi: 10.1016/J.RADONC. 
2010.11.017 , Elsevier . 

orke, E.D. , 2001. Modeling the Effects of Inhomogeneous Dose Distributions in Nor- 
mal Tissues. Seminars in Radiation Oncology 11 (3), 197–209 . 

ian, L. and Chen, L. (2020). Clinically oriented contour evaluation using geomet- 
ric and dosimetric indices based on simple geometric transformations. Research 

Square; 2020. DOI: 10.21203/rs.3.rs-19265/v3. 

hou, X. et al. (2016) . Three-Dimensional CT Image Segmentation by Combining 
2D Fully Convolutional Network with 3D Majority Voting. In Deep Learning 

and Data Labeling for Medical Applications. DLMIA 2016, LABELS 2016. Lec- 
ture Notes in Computer Science, vol. 10 0 08. Springer, Cham., pp. 111–120. doi: 

10.1007/978-3-319-46976-8. 

https://doi.org/10.13039/501100013348
https://doi.org/10.1120/jacmp.v17i2.5889
https://doi.org/10.1016/j.ijrobp.2004.08.055
http://refhub.elsevier.com/S1361-8415(21)00207-3/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00207-3/sbref0004
https://doi.org/10.1016/j.phro.2020.06.006
https://doi.org/10.1016/j.semradonc.2019.02.001
https://doi.org/10.1111/1754-9485.12884
http://arxiv.org/abs/1809.04430
https://doi.org/10.1016/j.radonc.2019.09.022
https://cdn.neoscriber.org/cdn/serve/eb/27/eb27adb334594d3093f4ed1b7d088c0a7a390f0b/4316-13810-1-PB.pdf
http://refhub.elsevier.com/S1361-8415(21)00207-3/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00207-3/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00207-3/sbref0008
https://doi.org/10.1002/mp.13200
https://doi.org/10.1016/j.ijrobp.2009.09.062
https://doi.org/10.1088/1361-6560/61/24/8676
http://refhub.elsevier.com/S1361-8415(21)00207-3/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00207-3/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00207-3/sbref0014
https://doi.org/10.1111/j.1754-9485.2010.02192.x
https://doi.org/10.1016/j.cmpb.2020.105796
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.media.2021.102035
https://doi.org/10.1038/s41467-018-07619-7
https://doi.org/10.1016/j.prro.2012.11.010
https://doi.org/10.1016/j.ijrobp.2004.01.026
https://doi.org/10.1016/j.compbiomed.2018.05.018
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1117/1.JMI.7.1.014502
https://doi.org/10.1016/j.radonc.2015.12.003
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24553-9
https://doi.org/10.1016/j.radonc.2016.10.014
https://doi.org/10.1016/j.radonc.2015.01.016
https://doi.org/10.1016/j.ijrobp.2013.09.013
https://doi.org/10.1016/j.phro.2019.12.001
https://doi.org/10.1016/j.radonc.2016.09.009
https://doi.org/10.1016/j.nicl.2019.101727
https://doi.org/10.1016/J.RADONC.2010.11.017
http://refhub.elsevier.com/S1361-8415(21)00207-3/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00207-3/sbref0038

	The predictive value of segmentation metrics on dosimetry in organs at risk of the brain
	1 Introduction
	2 Materials and methods
	2.1 Correlation on clinical cases
	2.1.1 Clinical imaging data
	2.1.2 Alternative contours
	2.1.3 Geometrical similarity indices
	2.1.4 RT plan calculation
	2.1.5 Dose parameter analysis
	2.1.6 Data analysis and statistics

	2.2 Possible characteristics predictive for the dose effect
	2.2.1 Dice versus distance
	2.2.2 Dice versus size
	2.2.3 Dice versus location
	2.2.4 Dice versus shape


	3 Results
	3.1 Segmentation dose-effect correlation on clinical cases
	3.1.1 Human rater variability
	3.1.2 Explicit manual manipulations
	3.1.3 Auto-segmentation results
	3.1.4 Segmentation dose-effect per OAR type
	3.1.5 Correlation of all alternative contours combined

	3.2 Possible characteristics predictive for the dose effect
	3.2.1 Dice versus distance
	3.2.2 Dice versus size
	3.2.3 Dice versus location
	3.2.4 Dice versus shape


	4 Discussion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgement
	References


