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a b s t r a c t 

Predicting the final ischaemic stroke lesion provides crucial information regarding the volume of salvage- 

able hypoperfused tissue, which helps physicians in the difficult decision-making process of treatment 

planning and intervention. Treatment selection is influenced by clinical diagnosis, which requires delin- 

eating the stroke lesion, as well as characterising cerebral blood flow dynamics using neuroimaging acqui- 

sitions. Nonetheless, predicting the final stroke lesion is an intricate task, due to the variability in lesion 

size, shape, location and the underlying cerebral haemodynamic processes that occur after the ischaemic 

stroke takes place. Moreover, since elapsed time between stroke and treatment is related to the loss of 

brain tissue, assessing and predicting the final stroke lesion needs to be performed in a short period of 

time, which makes the task even more complex. Therefore, there is a need for automatic methods that 

predict the final stroke lesion and support physicians in the treatment decision process. We propose a 

fully automatic deep learning method based on unsupervised and supervised learning to predict the final 

stroke lesion after 90 days. Our aim is to predict the final stroke lesion location and extent, taking into 

account the underlying cerebral blood flow dynamics that can influence the prediction. To achieve this, 

we propose a two-branch Restricted Boltzmann Machine, which provides specialized data-driven features 

from different sets of standard parametric Magnetic Resonance Imaging maps. These data-driven feature 

maps are then combined with the parametric Magnetic Resonance Imaging maps, and fed to a Convo- 

lutional and Recurrent Neural Network architecture. We evaluated our proposal on the publicly available 

ISLES 2017 testing dataset, reaching a Dice score of 0.38, Hausdorff Distance of 29.21 mm, and Average 

Symmetric Surface Distance of 5.52 mm. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Stroke is the second leading cause of death worldwide 

 World Health Organization et al., 2014 ), being classified in two 

ypes: ischaemic and haemorrhagic ( Grysiewicz et al., 2008 ). Is- 

haemic stroke is the most common type, resulting from an oc- 

lusion of a vessel, which can be caused by thrombolysis, haemo- 

ynamic factors, or embolic causes ( Grysiewicz et al., 2008 ). Due 

o vessel occlusion, the insufficient supply of oxygenated blood to 

rain cells leads to hypoperfused brain tissue, triggering cellular 

echanisms to preserve the integrity of the cell. The hypoperfused 
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rea consists of tissue at risk that can be salvaged, being desig- 

ated penumbra. As time passes, in the absence of flow restoration 

r sufficient collateral blood flow supply, the hypoperfused tissue 

ventually reaches a non-salvageable state designated core or in- 

arct tissue ( Memezawa et al., 1992 ). 

Diagnosis and treatment of ischaemic stroke relies on neu- 

oimaging acquisitions, where Computed Tomography (CT) and 

agnetic Resonance Imaging (MRI) are the preferred imaging 

odalities ( Gonzalez et al., 2007 ). CT imaging remains the most 

sed acquisition due to its rapidity and availability ( Gonzalez et al., 

007 ). However, multi-parametric MRI provides a higher sensitiv- 

ty in detecting early ischaemic stroke and assessing the penum- 

ra region ( Gonzalez et al., 2007 ). Treatment consists in restor- 

ng tissue perfusion levels, also known as reperfusion, by perform- 

ng mechanical thrombectomy or thrombolysis. Since ischaemic 

troke is a dynamic process that evolves over time, the treatment 

https://doi.org/10.1016/j.media.2020.101888
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Fig. 1. ADC and Tmax parametric maps of two patient cases from ISLES 2017 training set, and the final lesion delineated at a 90-day follow-up, overlapped with the onset 

ADC: patient 0036 ( Fig. 1 a) with an unsuccessful reperfusion, and patient 0006 ( Fig. 1 b), where the clinical intervention was successful. 
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s only possible up to 24 h, where viable neurones still persist 

 El Tawil and Muir, 2017; Zivelonghi and Tamburin, 2018 ). So, ex- 

ert physicians must evaluate the benefits and risks of mechanical 

hrombectomy before an intervention, since it may cause haem- 

rrhage, vascular injury, and other complications ( Powers et al., 

018 ). If performed, the success of the intervention is assessed 

adiologically via angiography imaging and scored by a qualita- 

ive expert-generated scale designated the standardized Throm- 

olysis in Cerebral Infarction (TICI) scale ( Higashida et al., 2003 ). 

uring the decision-making process, the physician needs to as- 

ess the nature and location of the lesion alongside pathophysi- 

logical factors such as age, presence of comorbidities, and collat- 

ral circulation ( Liebeskind, 2003 ). The latter is of utmost impor- 

ance in ischaemic stroke. The presence of collateral circulation, 

here a secondary network of vessels is responsible for granting 

erebral blood flow to the lesioned tissue, increases the chances 

f a successful reperfusion ( Liebeskind, 2003 ). Asserting the po- 

ential efficacy of treatment can be time-consuming and prone 

o inter- and intra-variability among physicians, which is further 

otentiated when performed in a clinical emergency environment 

 Coutts et al., 2003 ). Moreover, since time is critical, MRI acquisi- 

ions are optimized for speed, which is accomplished by reducing 

he resolution ( González et al., 2011 ), making the prediction of the 

nal stroke lesion an intricate task. Thus, automatic prediction of 

 stroke lesion at a given time since stroke has a great potential to 

uide physicians in this time-critical decision-making process. 

We propose a novel automatic method based on unsupervised 

nd supervised deep learning. We utilize Restricted Boltzmann Ma- 

hines (RBMs) to jointly characterise the lesion and blood flow in- 

ormation through a two-pathway architecture, trained with two 

ubsets of standard parametric MRI maps. One subset encom- 

asses the Time-To-Peak (TTP), Mean Transit Time (MTT), Time-to- 

aximum (Tmax), and Apparent Diffusion Coefficient (ADC). The 

econd set contains the ADC, the relative Cerebral Blood Volume 

rCBV), and the relative Cerebral Blood Flow (rCBF). In a second 

tage, the feature maps computed by the RBMs are combined with 

he standard parametric MRI maps to form the input of a super- 

ised deep learning architecture composed by Convolutional Neu- 

al Networks (CNNs) and Recurrent Neural Networks (RNNs). The 

roposed architecture was evaluated using the publicly-available 

SLES 2017 dataset. 

.1. On the complexity of predicting the final infarct stroke lesion 

In acute ischaemic stroke, the clinical evaluation of the stan- 

ard parametric maps ( e.g . ADC and Tmax) can identify infarct tis- 

ue and tissue that will infarct in the absence of therapeutic inter- 

ention. In this analysis, the infarct tissue, is identified by the hy- 

ointense regions of the ADC map, which characterize tissue with 

imited diffusion ( Butcher and Emery, 2010a ). Hypoperfused tissue, 

.e . tissue that will infarct, is identified by hyperintense regions 

f the Tmax map, indicating an increased arrival time of contrast 

gent ( Butcher and Emery, 2010b ). However, to correctly predict 
2 
he final ischaemic stroke lesion, besides considering the complex 

ime-evolving transformation of hypoperfused tissue to infarcted 

issue, it is also necessary to appraise the impact of the clinical in- 

ervention, thrombectomy, on the underlying brain perfusion and 

iffusion. 

A successful thrombectomy should restore the perfusion levels, 

ecovering the hypoperfused tissue. However, several factors may 

ffect the reperfusion, limiting the degree of success of the in- 

ervention. To better understand the nuances of the clinical inter- 

ention, consider the cases presented in Fig. 1 . In the first case, 

ig. 1 a, the ADC does not present any hypointense region, so no 

nfarct tissue may be identified, and we should expect a complete 

ecovery of the hypoperfused tissue indicated by Tmax; however, 

he follow-up delineation obtained after thrombectomy presents 

 large final lesion, which is explained by an unsuccessful inter- 

ention. In the second case, Fig. 1 b, we observe a final infarct le- 

ion that is smaller than the hypointense region present in the 

DC ( Fig. 1 b arrow). This indicates reversible diffusion restriction, 

hich is a rare case ( Labeyrie et al., 2012 ) and was only possi-

le to identify by a follow-up T2-weighted acquisition. So, an auto- 

atic method for predicting the final stroke lesion has not only to 

apture the time-evolving process of diffusion and perfusion, but 

lso to consider directly or indirectly the degree of success of the 

hrombectomy, which may condition the final lesion either to be 

onfined to the hypointense region of the ADC map, or to grow to 

rain tissue areas that are hyperintense in the Tmax. Due to the 

ime-evolving process of diffusion and perfusion, the complexity 

f predicting the lesion will aggravate as we move from a target 

indow of some days to several months. 

The complexity of the evaluation process may be also observed 

n the inter-rater agreement of expert radiologists in ISLES 2017 

ataset, which obtained a Dice score of 0 . 58 ± 0 . 20 on delineat-

ng the lesion using a 90-day follow-up T2-weighted acquisition 

 Winzeck et al., 2018 ). 

.2. Previous work 

Contrary to stroke lesion segmentation, where several meth- 

ds have already been proposed ( Rekik et al., 2012; Maier et al., 

017 ), the complexity of predicting the final stroke lesion has only 

ecently attracted attention in the medical imaging community. 

or predicting the final stroke lesion several methods have been 

lready proposed based on multivariate linear regression models 

 Scalzo et al., 2012; Rose et al., 2001; Kemmling et al., 2015 ), de-

ision trees ( McKinley et al., 2017; Bauer et al., 2014 ), and CNNs

 Choi et al., 2016 ). Furthermore, with the release of Ischaemic 

troke LEsion Segmentation (ISLES) Challenge in 2016 and 2017, 

ew methods have been proposed. These aim to predict at a 90- 

ay time-window. 

Rose et al. (2001) proposed a two-stage method based on para- 

etric perfusion and diffusion MRI maps. On the first stage, the 

ethod defines a region of interest (ROI) based on the intensity 

ignal of the standard parametric maps, the MTT, Cerebral Blood 
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low (CBF), Cerebral Blood Volume (CBV), and Diffusion-Weighted 

maging (DWI). The second stage performs stroke tissue predic- 

ion using Gaussian mixture models trained in different sets of 

arametric maps. Bauer et al. (2014) used Random Forests to seg- 

ent or predict the final stroke lesion depending on whether acute 

troke imaging or three-month follow-up imaging was available, 

espectively. McKinley et al. (2017) also used a two-stage classi- 

cation approach as in Rose et al. (2001) for lesion characterisa- 

ion and lesion prediction, where each stage consists of two sets 

f Random Forests (RFs) classifiers. The first stage aims to define 

 ROI that encompasses the hypoperfused region. In the first set, 

ach classifier is trained with features extracted from different sets 

f MRI parametric maps. Having defined the location and extension 

f the lesion, a second set of two RFs performs stroke tissue pre- 

iction. Such classifiers were trained on different sets of patients, 

tratified by the TICI score. One classifier is trained in patients with 

nsuccessful reperfusion interventions, whereas a second classifier 

s trained in patients with successful reperfusion. The final pre- 

iction is obtained by combining the results of both classifiers, 

sing a logistic regression model. Scalzo et al. (2012) proposed 

 framework for stroke tissue prediction, which characterises the 

tate of the lesion four days after clinical intervention (thrombec- 

omy). From the Fluid Attenuation Inversion Recovery (FLAIR) MRI 

equence, ADC and Tmax MRI maps, the method applies a regres- 

ion model that learns the behaviour of neighbouring voxels within 

 cuboid. Kemmling et al. (2015) proposed a multi-modality ap- 

roach based on CT and MRI maps with non-imaging clinical meta- 

ata, namely the TICI score and the time to treatment of each pa- 

ient, to perform stroke tissue prediction. 

In another line of research, authors have investigated the use 

f deep learning ( Choi et al., 2016; Nielsen et al., 2018; Robben 

t al., 2020 ) for stroke tissue prediction. Choi et al. (2016) , the

inner approach at ISLES 2016 Challenge, proposed an ensem- 

le of twelve CNN architectures, grouped into two sets of net- 

orks. The first group comprehends four 3D U-Nets ( Ronneberger 

t al., 2015 ) performing voxel-wise tissue prediction. The second 

roup of networks uses two-pathway Fully Connected Networks 

FCNs) performing two types of patch-wise classification. One set 

f FCNs classifies a patch as lesion if it includes any lesion voxel. 

he other set of FCNs classifies a patch as lesion if the central voxel 

s a lesion. After merging the two pathway FCN, the method in- 

orporates meta-data by adding a dense layer of clinical predictors 

erged with the imaging output of each network. The final stroke 

esion prediction results from a weighted merging of all mod- 

ls. Mok and Chung (2017) applied deep adversarial training for 

troke tissue prediction in an ensemble of U-Nets. Monteiro and 

liveira (2017) proposed a method based on the V-Net architec- 

ure ( Milletari et al., 2016 ). The training was conducted with a 

ustom loss function that applies a weighted sum between Dice 

core and cross entropy. Lucas and Heinrich (2017) proposed the 

se of a U-Net architecture, which combines patches from the 

RI maps in the same slice, with patches from 3 neighbouring 

lices and 2 hemispheric flips. In the expanding path of the U- 

et, each level computes a Dice loss for the healthy tissue and 

or the final lesion, after the softmax activation. Afterwards, all 

osses are summed up, having the loss of the lesion and healthy 

issue weighted according to a prior probability ( Winzeck et al., 

018 ). Robben and Suetens (2017) employed a CNN-based ar- 

hitecture inspired by Kamnitsas et al. (2017) . The authors pro- 

osed to combine the MRI inputs with clinical meta-data, be- 

ore feeding them to each branch of a two-pathway 3D network. 

n the first branch the input is kept with the original resolu- 

ion, while in the second branch the input resolution was low- 

red by a factor of 3. The output of each branch is transformed 

o the same scale and merged by two fully connected layers. The 

etwork is trained with four different sets of hyper-parameters. 
3 
hese four networks are used as an ensemble, whose predic- 

ion is obtained by averaging the output of each one. Similarly, 

iu et al. (2018) used multiple scales of overlapping 3D patches 

o capture local and global spatial information. In the review pa- 

er of Winzeck et al. (2018) , Rivera et al.also built on the work 

f Kamnitsas et al. (2017) and Milletari et al. (2016) , by propos- 

ng a scheme to extract different patch resolutions, independent 

f each other, that are fed into four different paths. Afterwards, a 

ully connected layer combines all the outputs to perform stroke 

issue prediction. Pisov et al. (2017) employed an ensemble strat- 

gy by combining different CNN-based architectures to overcome 

he strong anisotropy of the data. As summarized by Winzeck 

t al. (2018) , the work of Yoon et al.proposed a two-stage gated 

NN. In a first stage, the authors perform lesion detection and 

elineation. Afterwards, based on the probability maps of the first 

tage, a second CNN architecture processes the regions where the 

robability maps of healthy tissue and lesion are close to each 

ther. Pinto et al. (2018b) made use of temporal perfusion imag- 

ng, the Dynamic Susceptibility Contrast-MRI, in a U-Net archi- 

ecture. This architecture aims to temporally process and extract 

eep features, which are then combined with a second feature 

tep of another U-Net network, which was trained on the stan- 

ard parametric maps. Using a large CT dataset, Robben et al. 

2020) predicted the final infarct stroke lesion with a temporal 

indow ranging from 24 h to 5 days. The authors considered 

patio-temporal CT perfusion as input to a deep neural network 

nspired in the architecture proposed by Kamnitsas et al. (2017) . 

dditionally, the model combines CT neuroimaging with clinical 

eta-data. Nielsen et al. (2018) proposed a method based on the 

egNet architecture ( Badrinarayanan et al., 2015 ), predicting on a 

0-day follow-up acquisition based on a private dataset. 

Principal and collateral blood flow has been considered either 

irectly by modelling the temporal perfusion imaging ( Pinto et al., 

018b ), or indirectly by perfusion and diffusion parametric maps 

 Choi et al., 2016; Maier et al., 2017; Scalzo et al., 2012 ), or through

linical information that characterises the success of the revascu- 

arization ( McKinley et al., 2017 ). We hypothesize that modelling 

he haemodynamics of the brain when artery occlusion occurs can 

e beneficial for predicting the final stroke lesion. So, in this work, 

e investigate the representation of the haemodynamics through 

n unsupervised learning model. Contrary to previous approaches, 

e propose grouping the input maps according to their subja- 

ent physical meaning and encoding each group separately with an 

BM. As groups, we investigated the time-resolved perfusion maps 

Tmax, TTP, MTT), and the blood-flow-dynamic related maps (rCBF, 

CBV) ( Butcher and Emery, 2010a; 2010b ). Our proposal of combin- 

ng features obtained unsupervisedly and supervisedly was moti- 

ated by the knowledge that unsupervised models learn structural 

eatures of the original image, while the supervised models learn 

eatures conditioned on the label, so there is potential for obtain- 

ng richer and more discriminative features by joining both types 

f models. 

.3. Contributions 

This work presents an automatic approach for predicting the fi- 

al stroke lesion, using onset neuroimaging data. The main contri- 

utions are: 

- The use of unsupervised models for extracting structural fea- 

tures of time-resolved perfusion and blood-flow-dynamic re- 

lated MRI maps for predicting stroke lesion. 

- The use of local and long spatial context provided by gated re- 

current neural networks for relating structural features and im- 

age information when learning features conditioned on the la- 

bel in a supervised model. 



A. Pinto, S. Pereira, R. Meier et al. Medical Image Analysis 69 (2021) 101888 

S

p

p

a

c

2

d

p

T

p

p

2

i

t

u

i

e

l

w

t

t

o

f

R

fl

h

i

2  

c

m

o

o

f

m

R

t

r

E

T

p

p

b

s

a

t

i

d

c

b

w

e

2

l

M

n

e

O

l

r

o

w

a

p

k

i

t

i

f

F

f

o

t

d

s

b  

f  

I

t

t

w

s

- The proposal of a competitive system which outperforms state- 

of-the-art methods to predict the final infarct stroke lesion, in 

ISLES 2017 Challenge dataset. 

The remainder of the paper is organized as follows. 

ection 2 describes the fundamental components of the pro- 

osed method. Section 3 describes the dataset, the evaluation 

rocedure and the setup. The results and the discussion are 

ddressed in Section 4 . Finally, in Section 5 we present the main 

onclusions. 

. Methods 

In this work, predicting the final infarct stroke lesion consists of 

elineating the lesion’s spatial extent at a 90-day follow-up time- 

oint, using multi-parametric MRI imaging, namely the ADC, MTT, 

TP, Tmax, rCBF, and rCBV, which are acquired at the onset time- 

oint. The architecture of the proposed system and its main com- 

onents are described in the following subsections. 

.1. Architecture 

The overall architecture of the proposed method can be divided 

nto two functional blocks, as shown in Fig. 2 . 

The first functional block performs unsupervised representa- 

ion learning using two unsupervised models, namely RBMs. This 

nsupervised block provides new features that represent structural 

nformation that complements the standard parametric MRI maps, 

nhancing the capacity of our model to predict the final infarct 

esion. In our approach, we aim to model the clinical procedure, 

hich first locates and delineates the lesion at current time, and 

hen considers the blood flow haemodynamic that might influence 

he final stroke lesion prediction. This procedure is encoded in 

ur two-path RBM. The first RBM is responsible for capturing in- 

ormation on lesion location and extension, referred to as the 

BM Lesion . The second RBM, RBM Haemo , aims to capture blood 

ow haemodynamics information ( e.g . collateral circulation), which 

as been identified as a key factor by physicians when assess- 

ng stroke final infarct lesion in clinical reports ( Berkhemer et al., 

016; Menon et al., 2015 ). On one hand, to locate the onset is-

haemic stroke lesion, the RBM Lesion considers standard parametric 

aps that characterise the arrival times and mean transit times 

f the contrast agent. In the presence of an ischaemic lesion, the 

ccluded vessel can decrease or interrupt the normal brain per- 

usion, translating into hyperintense regions on time-related para- 

etric maps ( Butcher and Emery, 2010b ). On the other hand, the 

BM Haemo considers standard parametric maps that characterise 

he amount of blood being delivered in unit of time, which cor- 

elates to the cerebral blood flow haemodynamics ( Butcher and 
Fig. 2. Overview of the proposed method for predicting the final stroke lesion. In the su

4 
mery, 2010b ). Thus, the RBM Lesion considers the MTT, TTP and 

max perfusion maps, while the RBM Haemo the rCBV and rCBF 

erfusion maps. Regarding the ADC standard diffusion map, it is 

resent in both RBM Lesion and RBM Haemo , since it provides higher 

rain structural information and allows the identification of tis- 

ue that is already infarcted. This separation of the input imaging 

llows the RBM to learn specific feature sets, which may enable 

he method to analyse difficult cases where information concern- 

ng the blood flow can have a favourable impact on the lesion pre- 

iction. 

The second functional block consists of a deep learning ar- 

hitecture that comprehends 2D convolutional blocks in a U-Net- 

ased structure, alongside recurrent blocks. As imaging input data, 

e combine the standard parametric maps with feature maps from 

ach RBM, totalling 18 input feature maps. 

.2. Restricted Boltzmann machines 

The RBM is an undirected graphical model constituted by two 

ayers of nodes: a visible layer and a hidden layer ( Rumelhart and 

cClelland, 1986 ). Each node has a weighted connection to all 

odes in the other layer ( Rumelhart and McClelland, 1986 ). How- 

ver, there are no connections among nodes of the same layer. 

riginally, Rumelhart and McClelland (1986) proposed the RBM to 

earn from binary data on both layers. However, this does not rep- 

esent well continuous real-valued input data, which is the case 

f MRI data. Therefore, we model the visible nodes as linear units 

ith independent Gaussian noise. The hidden nodes are modelled 

s Noisy Rectifier Linear Units (NReLU), since they have been re- 

orted to be suitable for feature extraction ( Hinton, 2012 ). This 

ind of RBM was previously used in segmentation tasks, such as 

n Pereira et al. (2019) . Mapping the input data into a feature vec- 

or is performed through the interaction of states between the vis- 

ble and hidden units, which is learned by minimizing an energy 

unction. 

The complete pipeline of the unsupervised block is shown in 

ig. 3 and detailed in Section 3.4 . The RBM Lesion and RBM Haemo 

unction as feature generators that output two complementary sets 

f feature maps N 1 and N 2 . These features characterise the struc- 

ure of the images; however, we are interested only on the most 

istinctive details. So, after training the RBMs, we perform feature 

election to reduce the generated feature space, obtaining smaller 

ut representative feature sets M 1 and M 2 , such that |M i | � |N i | ,
or i ∈ [1 , 2] , where the operator | . | denotes the cardinality of a set.

n the feature selection, we would like to select the features from 

he RBM that encodes the MRI maps, but also that correlates with 

he stroke prediction. Since the RBM is an unsupervised method, 

e compute the Normalized Mutual Information to quantify the 

tatistical dependence between each generated feature and the 
pervised learning block, the input data dimensions are defined for each operation. 
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Fig. 3. Overview of the proposed unsupervised learning block. For each RBM of the unsupervised learning block, the selected features were M 1 = M 2 = 6 . 
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espective input MRI map, as defined by Eq. (1) ( Vinh et al., 2010 ):

M I sum 

(M RI x , F eat y ) = 2 

M I(M RI x , F eat y ) 

H(MRI x ) + H(F eat y ) 
, (1) 

here MI(. ) is the mutual information between an MRI paramet- 

ic map, MRI x , and an output feature, F eat y ; H(. ) defines the en-

ropy of a map, namely, MRI x and F eat y . To relate the features of

he RBM with the class label, we could use a classifier supervisedly 

rained. Since the neural network is trained iteratively, we use a RF 

lassifer trained with the Mean Decrease Impurity (MDI) as a sur- 

ogate to make the feature selection tractable. After, we compute 

he MI RBM 

and and MDI RF , normalize the MI RBM 

by the maximum 

alue, add both ranks and sort decreasingly. The best set will be 

he first M i features. Our selection method was inspired on the 

ork of Pereira et al. (2018) ; however, their method cannot be di- 

ectly applied, since it would generate too many features for our 

roblem. 

.3. Convolutional and recurrent neural networks 

Our supervised functional block is based on the U-Net architec- 

ure as proposed by Ronneberger et al. (2015) . The input of the 

-Net considers the concatenation of standard parametric maps 

ith the sets of feature maps extracted from the unsupervised 

lock. In the first level of our encoder architecture we use four 

D convolutional blocks with kernel size of 3 × 3 and 32 chan- 

els. Afterwards, the output of the final convolutional block is 

own-sampled by a factor of 2, starting the second encoding level 

ormed by two convolutional blocks with equal kernel size but 

oubling the number of feature maps. The third level of encod- 

ng follows the same pattern. The decoder level mimics the en- 

oder counterpart. As in Ronneberger et al. (2015) we only used 

ong skip connections among encoder and decoder levels. These 

ncoder-decoder deep CNNs provide high levels of abstraction from 

he input data, increasing the global notion of context as the net- 

ork grows deeper. However, it comes at a cost of a high recep- 

ive field ( Zeiler and Fergus, 2014 ). Thus, we used a 2D architec-

ure in the plane with the highest resolution, since the acquisi- 

ion resolution is anisotropic in the dataset. Also, in the end of 

he decoding path we expanded our learning block with Gated 

NNs. Due to their nature, Gated RNNs can capture short- and 

ong-term spatial relations, by retaining information from previous 

odes encoded in the time-steps. Hence, Gated-RNNs consider in- 

ormation from all previous nodes when analysing the current one. 
5 
his property, when applied to imaging data, allows considering 

ntra-slice contextual dependencies. In our work, we used a par- 

icular Gated-RNN, namely the Long-Short Term Memory (LSTM) 

 Hochreiter and Schmidhuber, 1997 ). However, the LSTM was in- 

rinsically developed to process 1D data ( Hochreiter and Schmid- 

uber, 1997 ) ( e.g . time-series). To be applicable to 2D data, we 

eveloped an online 2D Partition layer that transforms a grid- 

tructure input ( e.g . an image) into a one-dimensional sequence. 

nspired by Visin et al. (2016) , the 2D Partition layer was prede- 

ned with a neighbourhood of 2 × 2 , where each time-step is char- 

cterised by a feature space of four voxels. After, two Bidirectional 

STM layers are employed along the left-right and frontal-dorsal 

irections followed by an up-sampling layer. These four layers, re- 

erred as the Gated Recurrent block, are shown in Fig. 2 . In our su-

ervised functional block, two Gated Recurrent blocks were used, 

here the Bidirectional LSTMs have 64 and 32 hidden layers, re- 

pectively. The impact of the main components is evaluated in an 

blation study in the experiments. 

. Experimental setup 

We evaluated the proposed approach on the publicly available 

SLES 2017 dataset and on a private dataset. ISLES has an online 

enchmark platform ( Kistler et al., 2013 ) that performs automatic 

valuation ( SMIR Online Platform, 2017 ). In this section we de- 

cribe the dataset, the training and evaluation, and the main hyper- 

arameters of our method. 

.1. Data 

ISLES 2017 dataset encompasses 75 ischaemic stroke patients, 

hich are separated into two sets: training ( n = 43 ) and test- 

ng ( n = 32 ). Both sets have patients that underwent mechanical 

hrombectomy. Each patient is characterised by six 3D paramet- 

ic MRI maps: diffusion ADC map, perfusion rCBF, rCBV, TTP, MTT 

nd Tmax maps. In addition to the standard parametric maps, each 

ase is also characterised by a manual delineation of the lesion. 

his refers to the 90-day stroke lesion delineated with access to 

he follow-up T2-weighted acquisition. However, the manual delin- 

ation is only available for the training set, while the follow-up T2- 

eighted imaging is not disclosed for any set. All parametric MRI 

aps are already co-registered and skull-stripped ( Winzeck et al., 

018 ). Fig. 4 (top row) shows an example of MRI maps, alongside 

he manual lesion delineation, the Ground Truth (GT), of a patient. 
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Fig. 4. Onset parametric maps of patient case 0011 in ISLES 2017 training set, alongside the final stroke lesion, at a 90-day follow-up, over the onset ADC map. The 

subsequent rows show the RBM features selected from the RBM Lesion , RBM Haemo and RBM Single , respectively. The last column shows the normalized mutual information, 

across whole dataset, among features of the same RBM. 
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The private dataset considers 23 acute ischaemic stroke patients 

hat underwent clinical therapy, acquired at Bern University Hospi- 

al in Switzerland. As in ISLES 2017, each patient is characterized 

y the same six parametric maps, being the final lesion manu- 

lly delineated at 90-day follow-up T2. The parametric maps were 

o-registered followed by skull-stripping with FSL BET2 on the co- 

egistered follow-up T2 image ( Jenkinson et al., 2012 ). 

.2. Evaluation metrics 

We evaluated our proposal with five metrics, which are the 

ame ones computed by the online ISLES 2017 benchmark plat- 

orm: Dice Similarity Score, Hausdorff Distance (HD), Average Sym- 

etric Surface Distance (ASSD), Precision, and Recall ( Kistler et al., 

013 ). 

Dice score measures the spatial overlap between two volumes. 

D corresponds to the highest distance between surface points of 

ifferent volumes, which characterise spatial outliers in the predic- 

ion. ASSD quantifies the average distances between the volumes’ 

urface. Precision quantifies the proportions of correctly classified 

ases within a class, while Recall corresponds to the proportion of 

ositive cases correctly identified as such. 
6 
.3. Image pre- and post-processing 

Since MRI acquisitions were acquired from different centers 

nd configurations ( Winzeck et al., 2018 ), for each patient we re- 

ized all maps to a common volume of dimension of 256 × 256 ×
2 . Afterwards, the ADC maps were clipped between [ 0 , 2600 ] ×
0 −6 mm 

2 /s and the Tmax maps were clipped to [ 0 , 20 s ] , since val- 

es beyond these ranges are known to be biologically meaningless 

 McKinley et al., 2017 ). Finally, a linear scaling was applied across 

ll maps, to the range [ 0 , 255 ] . The images are resized to its origi- 

al size, after we perform the prediction. 

We applied a morphological filtering as post-processing, but 

ince the final stroke lesion presents a wide range of lesion vol- 

mes ( Winzeck et al., 2018 ), we removed only small connected 

omponents with less than 250 voxels. This step was kept fixed 

or all the evaluated models. 

.3.1. Data augmentation 

Data augmentation can be used to increase the number of train- 

ng samples and reduce over-fitting ( Krizhevsky et al., 2012 ). Due 

o the relatively small size of the training dataset, we employed 
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Table 1 

Model training parameters for the unsupervised and supervised functional blocks. 

Functional 

Block Parameter Description 

Unsupervised Optimizer SGD with momentum ( lr = 1 × 10 −5 ) 

Patch shape 7 × 7 × 3 

Batch size 32 

Supervised Optimizer ADAM ( lr = 1 × 10 −5 ) 

Patch shape 84 × 84 

Batch size 4 
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rtificial data augmentation in the supervised portion of our pro- 

osal. For each sample, we applied rotations of 90 ◦, 180 ◦, 270 ◦. 

.4. Settings and model training 

Unsupervised functional block The unsupervised functional block 

as trained by optimizing the negative log-likelihood of the data. 

owever, since computing the gradient is generally intractable, we 

erformed the training by approximating the gradient with Con- 

rastive Divergence with one step of alternating Gibbs sampling 

 Hinton, 2012 ). The training process of an RBM can be difficult if 

ne tries to learn the parameter σi of the energy function, which 

orresponds to the standard deviation of the Gaussian noise of a 

isible node i ( Hinton, 2012 ). According to Hinton (2012) , we nor-

alize each component of the data with zero mean and unit vari- 

nce, and define σi = 1 . In Table 1 , we present the settings used

or training the unsupervised model. 

For training each RBM, we randomly extract 3D patches of 

hape 7 × 7 × 3 from the respective input set of MRI maps, C. Then, 

he 3D patches are reshaped into a 1D vector and fed into the visi-

le layer of the RBM, having an input of size m = 7 × 7 × 3 × |C| , as

hown in Fig. 3 . After training, we extract features from the NReLU 

nits noise-free activations. These units exhibit intensity equivari- 

nce when the bias has zero value, and they are noise free units 

 Nair and Hinton, 2010 ). Due to the large number of extracted 

eature maps ( |N 1 | = |N 2 | = 600 ), we perform a feature selection

tep, as described in Section 2.2 , where M 1 = M 2 = 6 . The most

ppropriate cardinality of M is discussed in Section 4.1.1 . 

Supervised functional block As for the supervised functional 

lock, the complete settings of the training are given in Table 1 . 

or each subject, 350 patches were randomly sampled. The training 

omprehended 36 subjects, while the remaining 7 subjects were 

sed for validation. The settings were optimized through cross- 

alidation in a previous work ( Pinto et al., 2018a ). For training, we

sed soft Dice loss function ( Milletari et al., 2016 ). It is defined

s: 

oft Dice loss = 

∑ | V | 
i 

p i g i 
∑ | V | 

i 
p 2 

i 
+ 

∑ | V | 
i 

g 2 
i 

. (2) 

In the soft dice loss, the sum occurs over the set V of voxels 

elonging to the predicted output patch, where p i ∈ P denotes the 

robability of a voxel i in the output patch and g i ∈ G corresponds 

o the respective ground-truth label voxel. 

The method was implemented using Keras with Tensorflow 

ackend, in a workstation equipped with a GTX 1080 Ti 11 GB. Pre- 

iction time takes around 20s per patient. 1 
1 Additional details of setting and model training are provided in the supple- 

entary material. Also, the source code for reproducing the segmentations, the 

odels’ weights and segmentations can be found at: https://github.com/apinto92/ 

troke _ prediction.git . 
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7 
. Results and discussion 

In this section, we discuss the impact of the main contribu- 

ions, namely, the incorporation of unsupervised learning with su- 

ervised learning and the Gated Recurrent blocks. Then, we com- 

are our method with the state of the art in ISLES 2017 Challenge. 

inally, we delve on the difficulty of predicting the final infarct 

troke lesion. 

.1. Ablation study 

The ablation study aims to gradually measure the importance of 

he main components and consequently assert on the contribution 

f each component to the overall performance. Thus, we start by 

valuating the importance of the unsupervised feature generator 

nd the proposed input grouping. After, we focus on the use of the 

ated Recurrent block and the choice of the dimensionality of the 

patial context. 

.1.1. Unsupervised feature generation 

We hypothesize that grouping the parametric MRI maps accord- 

ng to their physical meaning and encoding each group with an 

BM has potential to extract better features to characterise the 

troke lesion and the blood haemodynamics. We perform several 

xperiments to corroborate this working hypothesis. In all experi- 

ents, the parametric MRI maps are also used as input to the su- 

ervised block. The results are presented in Table 2 . Fig. 4 presents 

eature maps encoded by the RBMs and the respective MRI maps. 

Grouping all parametric MRI maps in a single group 

We considered, first, the effect of encoding all parametric maps 

sing a single RBM. We varied the number of selected features 

rom the RBM, observing that in all cases, the average Dice score 

s equal or lower than using only the parametric maps as input to 

he supervised block. Also, using 12 features presented the lowest 

verage Dice score. The use of 3 or 6 obtained the same average 

ice score, having the second a lower average Hausdorff distance. 

o, based on the metrics, we may conclude that there is no clear 

ain in using the features generated by the RBM, at least, when we 

ncode all the parametric maps with a single RBM. 

Since, the selection of 6 features also includes the previous top 

 features, we compared the normalized mutual information be- 

ween them. As shown in Fig. 4 , the top 3 features have low val-

es of normalized mutual information in relation to the additional 

 features, which indicates that there is additional information. For 

his reason, we chose 6 as the number of features in the subse- 

uent experiments. 

Grouping parametric MRI maps according to the subjacent physical 

eaning 

In this experiment, we grouped the parametric maps accord- 

ng to their underlining physical meaning together with ADC map 

n each group. Each group was encoded with an RBM. Compar- 

ng isolatedly the use of each group of features, we verify that 

BM Lesion had a higher average Dice score compared to using only 

he parametric maps as input to the supervised block. The in- 

rease in the average Dice score was obtained by a higher aver- 

ge Recall. Also, we observe an improvement in all distance met- 

ics. The experiment of using RBM Haemo presented the lowest av- 

rage Dice and Recall, as well as higher average distance met- 

ics. However, RBM Haemo presented higher average Precision, con- 

rary to RBM Lesion , which motivated the study on the combination 

f features from RBM Haemo with RBM Haemo besides the paramet- 

ic maps. The results of this experiment are presented in Table 2 . 

e may observe that this combination obtained the highest aver- 

ge Dice and Precision, as well as the lowest average distance met- 

ics. However, this improvement could have been originated from 

he combination of maps according to a specific common property, 

https://github.com/apinto92/stroke_prediction.git
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Table 2 

Results obtained with different configurations of the unsupervised feature generator block in ISLES 2017 testing set. Each metric represents the mean ± standard deviation. 

Underlined values correspond to the highest mean. 

Unsupervised Block Supervised Block Dice HD ASSD Precision Recall 

FCN G-RNN 

– U-Net LSTM 0.30 ± 0.21 36.58 ± 16.62 6.96 ± 5.08 0.30 ± 0.26 0.55 ± 0.31 

RBM Single (3 Feat.) U-Net LSTM 0.30 ± 0.21 38.93 ± 18.80 6.55 ± 4.22 0.29 ± 0.24 0.61 ± 0.31 

RBM Single (6 Feat.) U-Net LSTM 0.30 ± 0.21 36.94 ± 19.19 6.72 ± 4.43 0.29 ± 0.24 0.59 ± 0.31 

RBM Single (12 Feat.) U-Net LSTM 0.28 ± 0.20 41.07 ± 18.67 6.81 ± 3.88 0.24 ± 0.21 0.65 ± 0.30 

RBM Haemo U-Net LSTM 0.28 ± 0.24 38.50 ± 22.78 11.09 ± 14.79 0.35 ± 0.30 0.44 ± 0.34 

RBM Lesion U-Net LSTM 0.31 ± 0.21 35.38 ± 15.75 6.44 ± 4.43 0.30 ± 0.24 0.59 ± 0.30 

RBM Lesion + RBM Haemo U-Net LSTM 0.38 ± 0.22 29.21 ± 15.04 5.52 ± 5.06 0.41 ± 0.26 0.53 ± 0.29 

Two-RBMs Mixed U-Net LSTM 0.27 ± 0.21 40.89 ± 14.63 6.92 ± 3.64 0.25 ± 0.23 0.68 ± 0.28 

Three-RBMs a U-Net LSTM 0.35 ± 0.23 29.32 ± 14.33 5.27 ± 3.54 0.34 ± 0.27 0.59 ± 0.30 

a RBM Haemo/Less + RBM Lesion/Less + RBM ADC 

Table 3 

Results obtained when considering the Gated Recurrent block with and without the unsupervised learning block with ISLES 2017 testing set. Each metric represents the 

mean ± standard deviation. Underlined values correspond to the highest mean. 

Unsupervised Block Supervised Block Dice HD ASSD Precision Recall 

FCN G-RNN 

– U-Net – 0.30 ± 0.21 38.83 ± 21.10 7.08 ± 5.15 0.26 ± 0.23 0.64 ± 0.30 

U-Net LSTM 0.30 ± 0.21 36.58 ± 16.62 6.96 ± 5.08 0.30 ± 0.26 0.55 ± 0.31 

RBM Lesion + 

RBM Haemo [3D] 

U-Net – 0.32 ± 0.23 34.09 ± 16.51 7.60 ± 7.14 0.35 ± 0.27 0.48 ± 0.32 

U-Net LSTM 0.38 ± 0.22 29.21 ± 15.04 5.52 ± 5.06 0.41 ± 0.26 0.53 ± 0.29 
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ubjacent physical meaning of the parametric maps, in each group, 

r because we reduced the number of maps from 6 to 3 in each 

roup. And this reduction could have allowed a better training of 

he RBM. So, we performed two complementary experiments. In 

he first experiment, we formed two groups with similar size, but 

e randomly chose the parametric maps to include in each group. 

n the second experiment (Three-RBMs), we changed the groups of 

RI maps encoded in RBM Lesion and RBM Haemo by removing the 

DC map from each one. These two new groups were encoded in 

BM Lesion/Less and RBM Haemo/Less , respectively. The ADC was sepa- 

ately encoded in RBM ADC . As presented in Table 2 , the first exper-

ment presented the lowest average Dice score and higher average 

istance metrics, while the second experiment attained the second 

ighest average Dice score, thus showing the importance of split- 

ing the parametric perfusion maps and including the ADC map in 

oth the RBM Haemo and RBM Lesion . 

Considering these experiments together, we may draw some 

onclusions. First, although CNNs are very effective in generating 

eatures from raw data, they can generate even better features if 

ich and complementary information is provided. A similar conclu- 

ion was inferred by Oliveira et al. (2018) that observed improve- 

ent when the coefficients of the Wavelet were added as input 

n the problem of retinal vessel segmentation. Here, we observe a 

imilar effect, but using the encoding provided by an RBM trained 

nsupervisedly for the problem of stroke lesion prediction. Sec- 

nd, at least to the problem of stroke lesion prediction, when we 

ave data with different latent factors and we are able to group it, 

ccording to those factors, then there is potential to extract com- 

lementary information from each group, but to mix them all to- 

ether can be detrimental. 

.1.2. Context aggregation based on gated recurrent blocks 

In medical imaging segmentation, which is similar to our prob- 

em of inferring the extension of the lesion 90 days ahead, the use 

f a cascade of convolutional layers to elaborate the features is the 

revalent practise. However, as discussed previously, Gated-RNN 

ayers are able to capture long distance spatial relations among in- 

ut voxels, so we performed some experiments to evaluate its con- 

ribution. The results are presented in Table 3 . 
8 
Analysing Table 3 , we verify that when we just had paramet- 

ic maps as input to the supervised block, adding a LSTM layer in- 

reased the average Precision, but the average Recall decreased, re- 

ulting in the same average Dice score. But, a different behaviour is 

bserved when we added the features computed from the RBMs. In 

his scenario, we verify that using only CNN layers improved over 

aving just parametric maps, which came by a higher average Pre- 

ision. However, when we add the LSTM, we have an even higher 

mprovement, which is observed in a larger increase in the average 

recision, and a decrease in the average distance metrics. 

Based on these experiments, we may conclude that the CNN 

ayers were able to extract additional information from the RBM 

eatures; however, at least to the problem of inferring the exten- 

ion of the lesion months ahead, long and local distance spatial re- 

ations among input voxels introduced by Gated RNN was critical 

o reduce the detection of false positives, increasing substantially 

he average Dice score by 6% . 

.1.3. Spatial context: 2D or 3D? 

MRI images are 3D by nature, so the use of 3D filters would 

llow capturing more context, which has the potential to provide 

etter prediction. Since 2D filters are confined to a plane, unnat- 

ral discontinuous contour may occur in the perpendicular axis. 

owever, as presented previously, the resolution of MRI images in 

SLES dataset is not equal in all axis, being coarser along the axial 

xis. So, we studied the effect of the spatial context in our architec- 

ure. As we have two blocks, unsupervised and supervised blocks, 

he effect on each one was evaluated separately. The results are 

resented in Table 4 . Considering the results, we observe that us- 

ng 2D patches in both blocks has lower average Dice score, than 

sing only the parametric maps as input (baseline), because the in- 

rease in the average Precision was not enough to compensate the 

rop in the average Recall. Using 3D patches for both blocks had 

he same performance as our baseline. However, when we used 

D patches for the RBM but 2D blocks for the U-Net block, we 

mproved over our baseline. This is the model with the highest av- 

rage Dice score without LSTM. So, we may conclude that for our 

rchitecture, larger context using 3D patches was more effective 

or encoding features in the unsupervised block, while 2D patches 
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Table 4 

Evaluation metrics obtained with different spatial context configurations in the unsupervised and supervised learning blocks in ISLES 2017 testing set. Each metric represents 

the mean ± standard deviation. Underlined values correspond to the highest mean. 

Unsupervised Block Supervised Block Dice HD ASSD Precision Recall 

FCN G-RNN 

RBM Lesion + RBM Haemo [2D] U-Net [2D] – 0.27 ± 0.23 36.35 ± 14.89 9.14 ± 12.35 0.31 ± 0.28 0.53 ± 0.34 

RBM Lesion + RBM Haemo [3D] U-Net [2D] – 0.32 ± 0.23 34.09 ± 16.51 7.60 ± 7.14 0.35 ± 0.27 0.48 ± 0.32 

U-Net [3D] – 0.30 ± 0.21 34.17 ± 14.86 6.16 ± 3.82 0.32 ± 0.27 0.54 ± 0.30 

Table 5 

Results obtained by our proposal and baseline method in the private dataset. Each metric is represented by the mean ± standard deviation. Underlined values correspond to 

the highest mean, while bold values represent statistically significant values ( p-value < 0 . 05 ). 

Unsupervised Block Supervised Block Dice HD ASSD Precision Recall 

FCN G-RNN 

– U-Net [2D] – 0.32 ± 0.18 32.58 ± 20.09 5.17 ± 3.34 0.31 ± 0.26 0.68 ± 0.28 

RBM Lesion + RBM Haemo [3D] U-Net [2D] LSTM 0.36 ± 0.18 26.68 ± 15.60 3.88 ± 2.17 0.38 ± 0.30 0.68 ± 0.27 

Table 6 

Published methods in ISLES 2017 testing dataset and our proposal. Each metric is represented by the mean ± standard deviation. Underlined values correspond to the highest 

mean. 

Dice HD ASSD Precision Recall 

Ensemble Mok et al. ∗ 0.32 ± 0.23 40.74 ± 27.23 8.97 ± 9.52 0.34 ± 0.27 0.39 ± 0.27 

Kwon et al. ∗ 0.31 ± 0.23 45.26 ± 21.04 7.91 ± 7.31 0.36 ± 0.27 0.45 ± 0.30 

Robben et al. ∗ 0.27 ± 0.22 37.84 ± 17.75 6.72 ± 4.10 0.44 ± 0.32 0.39 ± 0.31 

Pisov et al. ∗ 0.27 ± 0.20 49.24 ± 32.15 9.49 ± 10.56 0.31 ± 0.27 0.39 ± 029 

Single Model Monteiro et al. ∗ 0.30 ± 0.22 46.60 ± 17.50 6.31 ± 4.05 0.34 ± 0.27 0.51 ± 0.30 

Pinto et al. (2018a) 0.29 ± 0.21 41.58 ± 22.04 7.69 ± 5.71 0.21 ± 0.21 0.66 ± 0.29 

Lucas et al. ∗ 0.29 ± 0.21 33.85 ± 16.82 6.81 ± 7.18 0.34 ± 0.26 0.51 ± 0.32 

Choi et al. ∗ 0.28 ± 0.22 43.89 ± 20.70 8.88 ± 8.19 0.36 ± 0.31 0.41 ± 0.31 

Niu et al. ∗ 0.26 ± 0.20 48.88 ± 11.20 6.26 ± 3.02 0.28 ± 0.25 0.56 ± 0.26 

Sedlar et al. ∗ 0.20 ± 0.19 58.30 ± 20.02 11.19 ± 9.10 0.23 ± 0.24 0.40 ± 0.29 

Rivera et al. ∗ 0.19 ± 0.16 63.58 ± 18.58 11.13 ± 7.89 0.27 ± 0.25 0.21 ± 0.17 

Islam et al. ∗ 0.19 ± 0.18 64.15 ± 28.51 14.17 ± 15.80 0.29 ± 0.28 0.25 ± 0.25 

Chengwei et al. ∗ 0.18 ± 0.17 65.95 ± 25.94 9.22 ± 6.99 0.37 ± 0.30 0.21 ± 0.23 

Yoon et al. ∗ 0.17 ± 0.16 45.23 ± 19.14 12.43 ± 11.01 0.23 ± 0.27 0.36 ± 0.32 

Baseline 0.30 ± 0.21 36.58 ± 16.62 6.96 ± 5.08 0.30 ± 0.26 0.55 ± 0.31 

Proposal 0.38 ± 0.22 29.21 ± 15.04 5.52 ± 5.06 0.41 ± 0.26 0.53 ± 0.29 

∗Methods presented in Winzeck et al. (2018) , whose results were retrieved from SMIR Online Platform (2017) . 
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Fig. 5. Boxplot of the top-10 ranking methods ordered by average Dice score in 

ISLES 2017 testing set. 

Fig. 6. One-side Wilcoxon signed rank test in ISLES 2017 testing set. Statistically 

significant tests are marked with the blue colour, while the red colour designates 

statistically non-significant tests. 
ere better suited for encoding features in the supervised U-Net- 

ased block. 

.2. Private dataset 

To further evaluate the generalization capacity of our proposal, 

e tested it on a private dataset and compare it with the baseline 

ethod. Table 5 presents the results obtained by the two methods. 

On the overall, our proposal was capable of surpassing the 

aseline model, attaining an higher average Dice, Precision and dis- 

ance metrics, which were statistically significant (Wilcoxon Signed 

anked test with p − v alue < 0 . 05 ). Comparing to ISLES 2017 test-

ng set, there was a slight decrease in performance. This could 

e explained by the shift on the intensity distribution of the MRI 

aps, due to different acquisition protocols or the differences in 

he preprocessing step. 

.3. State-of-the-art: ISLES 2017 challenge 

The results of published methods for final infarct stroke lesion 

rediction using ISLES 2017 testing set ( Winzeck et al., 2018 ), to- 

ether with our baseline and proposal methods are presented in 

able 6 . The metrics were computed by the online platform, so 

he ground-truth data, which was manually delineated based on a 

ollow-up T2 MRI acquisitions, are not disclosed for public access. 

Considering the results, we observe that our baseline is com- 

etitive with an average Dice, being among the top 3 methods, 
9 
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Fig. 7. Podium plot of each testing case in ISLES 2017. For each ISLES 2017 testing subject, defined by a coloured line with circles, the Podium plot orders decreasingly the 

Dice score obtained by each of the top 10 methods that are represented by coloured circles. 
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nd surpassing the ensemble methods of Pisov et al. (2017) and 

obben and Suetens (2017) . Our proposed method presented the 

owest distance metrics among all methods, especially for the 

ausdorff distance. It obtained the second-best average Precision 

core, being surpassed by Robben and Suetens (2017) . The authors 

roposed the integration of meta-data information, using a two- 

athway 3D network in an ensemble; however, our experiments 

id not indicate any improvement using 3D patches for the U-Net, 

t least for our architecture. So, this improvement could have 

ome from a combination of the effect of the ensemble and the 

eta-data. But we note that their method presented a lower 

verage Recall, which explains their lower average Dice score. 

egarding the average Recall score, our method was fourth, but 

hen we consider the top 3 methods, specially Pinto et al. (2018a) ,

e conclude that it was obtained with a much lower average Pre- 

ision, which means that to increase the true positive detections, 

hey had to increase substantially the false positives. So, com- 

aring with the state of the art, our method presented a better 

alance between Precision and Recall, which reflected into a 

igher average Dice score. 

Based on the results, we may conclude that the use of comple- 

entary features provided by the RBMs and the use of LSTM for a 

arger context allowed our baseline to surpass current state-of-the- 

rt methods. 

Results from Challenge R Benchmark 

The SMIR platform of ISLES 2017 provides a weekly benchmark 

eport of the current top-10 methods in the testing set, according 

o the average Dice score. So, some of the methods may not be 

ublished, lacking a description on their implementation, and, for 

his reason, were not included in the previous discussion. 

Fig. 5 presents the boxplots of each method considered in the 

eport. 

We observe that the top-10 methods failed to predict the lesion 

f one or more cases (lowest outliers), which may indicate the de- 

ree of complexity of predicting infarct stroke lesion 90 days ahead 

n ISLES 2017 Challenge dataset. But we verify that our method is 

he only one to have the first quartile above 0.20 in the Dice score. 

n Fig. 6 we have the significance maps of the pairwise signifi- 

ant test with one-side Wilcoxon signed rank test ( p-value = 0 . 05 ),

howing that our method reached higher Dice score statistically 
t

10 
ignificant when compared with other five ranked methods of the 

op-10. 

Fig. 7 shows the podium plot of each method for each case in 

he testing set, and its ranking. We observe that our proposal is 

he method, which ranked first most of the times, as well as sec- 

nd and third. Also, when we consider the methods ranked bel- 

ow fourth, our method is in general among those with the lowest 

ounts. Analysing the cases individually, we note two trends, for 

ome cases all methods presented similar performance, while for 

thers, we find a large variation from the first to the other meth- 

ds. The first trend may be found in the most difficult case, where 

ll methods had zero or a close value for the Dice score. In the 

econd trend, we observe that our method is ranked as first most 

f the cases. 

Based on the results of the benchmark, we may infer that our 

ethod is competitive among current state of the art, presenting 

he highest average Dice score and lowest average distance score. 

onsidering the ablation study, this performance was attained due 

o the combination of adding extra features obtained by encod- 

ng the parametric maps with RBMs, according to the underlining 

hysical meaning, and the elaboration provided by the long con- 

ext of the LSTM layers. 

. Conclusions 

In this work, we present a deep learning approach for predict- 

ng the final stroke lesion, based on unsupervised and supervised 

earning. We proposed to group the input maps according to the 

nderlying physical principle behind their creation, namely, the 

ime-resolved perfusion maps (Tmax, TTP, MTT), and the blood- 

ow-dynamic related maps (rCBF, rCBV). Each group was encoded 

sing an unsupervised model to obtain structural features specific 

o its underlying physical principle. These structural features to- 

ether with the standard parametric maps were fed to a super- 

ised model to learn features conditioned on the label, which in 

ur problem, means to condition on the results of the medical in- 

ervention — lesion at 90-days follow-up. We also investigated the 

se of Gated Recurrent Neural Networks to provide long spatial 

ontext, which were critical in relating the structural features to 

he information on input parametric maps. Our results showed that 
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ither the encoding or the long spatial context improved over our 

aseline. Also, these two together interacted positively increasing 

he performance when considering separately each one. 

When evaluating our proposal on ISLES 2017 testing dataset, 

e observe a prediction improvement over current state-of-the-art 

ethods. The proposed method obtained the first place in Dice and 

lso in HD and ASSD. 

Recent works ( Pinto et al., 2018a; Robben et al., 2020 ) have 

hown the importance of clinical meta-data to predict the final 

troke lesion in different revascularization scenarios. So as future 

ork, we aim to study how such meta-data ( i.e . TICI score) could 

e incorporated in our architecture, to consolidate the impact of 

he clinical intervention and to further improve the 90-day lesion 

rediction. 
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