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a b s t r a c t 

Machine learning systems are achieving better performances at the cost of becoming increasingly com- 

plex. However, because of that, they become less interpretable, which may cause some distrust by the 

end-user of the system. This is especially important as these systems are pervasively being introduced 

to critical domains, such as the medical field. Representation Learning techniques are general methods 

for automatic feature computation. Nevertheless, these techniques are regarded as uninterpretable “black 

boxes”. In this paper, we propose a methodology to enhance the interpretability of automatically ex- 

tracted machine learning features. The proposed system is composed of a Restricted Boltzmann Machine 

for unsupervised feature learning, and a Random Forest classifier, which are combined to jointly con- 

sider existing correlations between imaging data, features, and target variables. We define two levels of 

interpretation: global and local. The former is devoted to understanding if the system learned the rele- 

vant relations in the data correctly, while the later is focused on predictions performed on a voxel- and 

patient-level. In addition, we propose a novel feature importance strategy that considers both imaging 

data and target variables, and we demonstrate the ability of the approach to leverage the interpretability 

of the obtained representation for the task at hand. We evaluated the proposed methodology in brain 

tumor segmentation and penumbra estimation in ischemic stroke lesions. We show the ability of the 

proposed methodology to unveil information regarding relationships between imaging modalities and ex- 

tracted features and their usefulness for the task at hand. In both clinical scenarios, we demonstrate that 

the proposed methodology enhances the interpretability of automatically learned features, highlighting 

specific learning patterns that resemble how an expert extracts relevant data from medical images. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Machine learning approaches can be broadly divided into two

categories: those using hand-crafted features, and those relying

on Representation Learning techniques. Representation Learning

refers to a set of general machine learning methods for automatic
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earning and extraction of features directly from data. By contrast,

and-crafted features require expert knowledge on the problem,

ence making them more problem-dependent ( LeCun et al., 2015 ).

otwithstanding, there is usually a data representation mapping

tage that takes the input data and transforms it into a more dis-

riminative representation. 

Despite the success of Representation Learning-based methods

 Salakhutdinov et al., 2007; Krizhevsky et al., 2012; Pereira et al.,

016a; Kamnitsas et al., 2016 ), they are often regarded as uninter-

retable “black boxes”. This is due to the large number of layers,

r nodes, which makes it difficult to unveil the relations between

nputs and outputs. In fact, this undesirable characteristic is shared

ith other machine learning models, such as Random Forests (RFs)

ith many trees, or linear models with thousands of features
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 Ribeiro et al., 2016a; 2016b; Lipton, 2016 ). Thus, in general, there

s a trade-off between the capacity/complexity of the model and its

nterpretability. Nevertheless, while much of the focus on machine

earning has been dedicated to solve complex problems with high

erformance, the possibility of interpreting a decision of a model

s still a very desirable property of a predictive system, but has not

eceived much attention so far. This is especially important with

he pervasive adoption of machine learning-based models in criti-

al areas such as in radiology ( Wang and Summers, 2012 ), where

 prediction should not be blindly followed. “Black box” models

ay look untrustworthy in the sense that a decision cannot be ex-

lained, especially in case of failure. 

However, as stated by Lipton (2016) , trust and interpretabil-

ty may be ill-defined. We can understand trust as the confidence

n the model itself, or its prediction ( Ribeiro et al., 2016b; Fre-

tas, 2014 ). In the former, we can trust a model if we have con-

dence that it will behave as expected after deployment. We can

ase this trust on the measured performance. Yet, adversarial ex-

mples ( Szegedy et al., 2014; Nguyen et al., 2015 ) show us that

npredictable, or bizarre, behaviors may arise, even in highly ac-

urate systems. Trusting a prediction means that we have enough

onfidence that a given prediction is correct ( Ribeiro et al., 2016a;

016b; Lipton, 2016 ). Interpretability is a way to enhance trust

n a system. Understanding the predictions and how information

s encoded in a model can help us to comprehend as to why it

ails, and avoid the undesirable trial and error development pro-

edure ( Zeiler and Fergus, 2014 ). Interpretability can appear as an

nterpretation of the model itself, or as a post-hoc interpretation

f the model through its predictions. The former is hindered by

he complexity of the model, which is usually proportional to the

ifficulty of the task and model performance. On the other hand,

ost-hoc interpretability is based on a qualitative explanation of

n already trained system, by means of visualization, or study of

xamples. In this way, there is less need to sacrifice model’s per-

ormance/complexity for the sake of interpretability ( Ribeiro et al.,

016a; 2016b; Lipton, 2016 ). To further contextualize these ideas,

he state of the art in model interpretation is presented in the fol-

owing section. 

.1. Previous work 

We can broadly differentiate between two approaches for

odel interpretation: global and local interpretation. The global in-

erpretation of a machine learning model is aimed at understand-

ng how information extracted from the input data is used by the

odel to perform predictions. Local interpretation is aimed at un-

erstanding why a certain decision was made by the model at

and. 

In order to enable global interpretability, some authors pro-

osed to simplify, or transform the models ( Tibshirani, 1996; Olden

nd Jackson, 2002; Craven and Shavlik, 1996; Hara and Hayashi,

016 ). Tibshirani (1996) proposed Lasso to force some weights of

he model to be exactly 0, which enhances its interpretability.

raven and Shavlik (1996) converted a previously trained neural

etwork into a more interpretable decision tree. Olden and Jack-

on (2002) proposed a method to remove unimportant connec-

ions from a neural network. Hara and Hayashi (2016) interpreted

ree ensembles by approximating a simpler model derived from

he minimization of the KL-divergence between that simpler model

nd the more complex model. Gallego-Ortiz and Martel (2016) de-

uced rules from RFs and presented them for interpretation. These

roposals have been defined for particular models and attempt

o simplify models to make them globally interpretable. While

hese models provide information about how the model learned

he training data, they can be less practical when there are high-

imensional feature vectors. 
Another group of methods that are more model-agnostic treat

he model as “black boxes”, and bring understanding about their

ecisions. This is accomplished either by perturbation of the fea-

ures ( Cortez and Embrechts, 2011; Krause et al., 2016; Ribeiro

t al., 2016b ), or by fitting a simpler model to the predictions of

he more complex one ( Baehrens et al., 2010; Ribeiro et al., 2016a;

016b ). These approaches are post-hoc in the sense that they do

ot explain the inner workings of the model itself, but its pre-

ictions. Particularly, perturbing features ( Cortez and Embrechts,

011; Krause et al., 2016; Ribeiro et al., 2016b ) and observing its

mpact on the decision may provide an estimate of the feature

mportance, but it does not take into account correlations among

eatures. Additionally, it may be impractical for high-dimensional

eature vectors. Other approaches try to interpret the learning al-

orithm locally, i.e., its behavior in the vicinity of the test sam-

les ( Baehrens et al., 2010; Ribeiro et al., 2016a, 2016b ). To this

nd, Baehrens et al. (2010) approximated the predictions of the

odel under analysis with another model. Then, an explanation

ector was defined as the derivative of the probabilistic output

n relation to the data point. Explanation vectors provide infor-

ation about which features would affect more the prediction of

hat sample. Although the method by Baehrens et al. (2010) may

rovide some insight about the model, a human may not ex-

ract any interpretation from it, if the explanation vector is high-

imensional. Ribeiro et al. (2016b ) also pursued local interpretabil-

ty as a way to achieve model agnostic interpretation that could be

pplied even for very complex deep networks. For a given sample

n the feature space of the model, a set of synthesized examples in

he vicinity of the sample is created, whose prediction is obtained

rom the model under analysis. Then, a simpler model is fitted to

hese samples and interpreted. The simpler model does not rep-

esent the original complex model globally, but it is an approxi-

ation of its behavior in the vicinity of the given sample. Never-

heless, this approach is agnostic to the model being interpreted

nd robust to its complexity. Most of the previous proposals relied

n some sort of visualization to present the data for human inter-

retation, focusing on approximations of the model under analy-

is. Other approaches purely relied on visualizing the topology of

eural networks ( Hinton et al., 1986; Wejchert and Tesauro, 1989;

zeng and Ma, 2005 ). Zrihem et al. (2016) used t-SNE ( Maaten and

inton, 2008 ) in the context of deep reinforcement learning to re-

uce the dimensionality of neural activations of a Deep Q Network,

n order to study the policies of the agent at hand. Visualization in

he context of Convolutional Neural Networks (CNN) comes in the

orm of saliency maps that inform which region of the image was

mportant for a given class ( Simonyan et al., 2013 ), or deconvolv-

ng an activation and projecting it in the image space ( Zeiler and

ergus, 2014 ). The later involves coupling a deconvolutional neural

etwork to the CNN under analysis. 

High-dimensional feature vectors increase the computational

oad and complexity of a machine learning model, as well as the

isk of overfitting due to irrelevant features having spurious cor-

elations with the target variable. Furthermore, it may render the

nterpretability of a model more difficult ( Tibshirani, 1996 ). Hence,

eature selection may be seen as a prerequisite for enabling model

nterpretation. Univariate feature selection methods evaluate the

elationship of each feature with some condition of interest, but

annot detect interactions among features, which is the advantage

f multivariate methods. Some of the latter approaches are wrap-

ers around a learner that iteratively evaluate subsets of features

n relation to their predictive power ( Ganz et al., 2015 ). However,

hese recursive feature elimination methods may be unpractical for

ery large datasets. Random Forests also stand as a multivariate

pproach for feature selection ( Konukoglu and Ganz, 2014 ), due to

heir capability to measure feature importance through the mean

ecrease impurity (MDI), allowing us to rank features. The draw-
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back is that one still needs to choose a user-defined threshold on

the ranking, or, as proposed by Konukoglu and Ganz (2014) , on an

upper bound on false positive rates in selecting unimportant fea-

tures as relevant ones. 

Taking into account the aforementioned interpretability-related

studies, one can draw some conclusions. 1) Post-hoc approaches

provide tools to potentially interpret more complex models. This

copes with modern trends favoring powerful, yet complex, ap-

proaches, such as methods based on deep learning. 2) A model can

be agnostically, but locally, interpreted, providing insights regard-

ing each individual decision. This may allow us to infer about its

coherence and to reason about mistakes. 3) On the other hand, ap-

proaches that focus on a global interpretation can provide clues

about how the model learned to look at the data, however, they

are model-specific and lack the local interpretability necessary

to understand individual predictions. 4) High-dimensional feature

representations may pose difficulties for interpretation. Thus, ef-

fective feature selection methods might be required. 5) Visualiza-

tion tools are natural human understandable data exploration tools

for enhancing interpretability. 6) Interpretation is ultimately per-

formed by the human expert. For example, in radiology, clinical

experts tend not to trust machine decisions as the interpretability

and ultimately the trustworthiness of automatic algorithms tend

to be low ( Wang and Summers, 2012 ). If we want to increase trust,

we should devise methodologies for interpretability that are simple

and understandable by humans. Additionally, with interpretability

methodologies, we expect to retrieve hints to answer the follow-

ing questions: 1) How does a system use the input data to solve

the task at hand? 2) When a system fails, why does it fail? 3) Is

the system capturing the relevant relations in the data? For in-

stance, Ribeiro et al. (2016b ) found that a system that was accu-

rately detecting Husky dogs in pictures was basing its prediction

in the presence, or not, of snow and not in the dog itself. This

is an example of a system that bases its predictions on a feature

that does not coherently fit into the concept of the target variable

(Husky dog). 

1.2. Motivation and contributions 

Motivated by the current trend for favoring complex models at

the expense of interpretability, in this paper we propose to inter-

pret a machine learning system both globally and locally. In con-

trast to previous studies, we hypothesize that both global and lo-

cal interpretability provide complementary insights about the ma-

chine learning system at hand. The focus of this work is on the

interpretation of automatically learned features for lesion segmen-

tation in medical images. Particularly, we will study the interpreta-

tion of features stemming from Magnetic Resonance Imaging (MRI)

sequences. We propose to drive feature selection for the task at

hand by coupling a Restricted Boltzmann Machine-based data rep-

resentation model with a RF classifier, to jointly consider exist-

ing correlations between imaging data, features, and target vari-

ables. The contributions in this work are the following: i) We ex-

plore a strategy for global interpretability by inferring which parts

of the input data contributed the most for highly important fea-

tures in different segmentation tasks, thus indirectly interpreting

how a RBM encoded the data. ii) We interpret image segmenta-

tions locally through assessing the spatial relevance of the features

distributed in the image space. Finally, iii) in order to leverage in-

terpretability, we also evaluate a joint Mutual Information and RF

feature importance strategy for automatically selecting important

features. We evaluate the proposed approaches in brain tumor seg-

mentation and penumbra estimation in ischemic stroke lesions. In

an ischemic stroke, the closest tissues to the blocked blood ves-

sels are at high risk of infarction. Those tissues around this core

that suffer from the reduced blood supply, but are still salvage-
ble, form the penumbra region. The databases used in this study

or brain tumor segmentation and penumbra estimation are pub-

icly available and being actively used in recent research ( Menze

t al., 2015; Maier et al., 2017 ); thus, enabling future comparison

ith our proposal. 

The remainder of this paper is organized as follows. In

ection 2 , we introduce the two basic components used for our

nterpretable machine learning system. The proposed system, fea-

ure selection, and interpretability methodologies are presented in

ection 3 . In Section 4 we describe the databases and experimen-

al setup. Results are presented in Section 5 . Then, in Section 6 ,

e discuss our results. Finally, we draw the main conclusions in

ection 7 . 

. Preliminaries 

Our machine learning system is based on a Restricted Boltz-

ann Machine (RBM) ( Smolensky, 1986 ) to learn features, and a

F classifier ( Breiman, 2001 ) as discriminative model. RBMs are

enerative unsupervised Representation Learning techniques that

earn the intrinsic representation of the data without information

egarding any target variable ( Hinton et al., 2006 ). Hence, RBMs

an be trained on large unlabeled data sets, as typically found in

he clinics. This represents an advantage over supervised learn-

ng approaches, as manual labeling of large data sets is expensive,

ime-consuming, and prone to intra- and inter-observer variabil-

ty. Features extracted by these unsupervised models have proven

o be useful for texture classification ( van Tulder and de Brui-

ne, 2016 ) and volume estimation ( Zhen et al., 2016 ). Since RBMs

re an unsupervised method, after feature learning it is neces-

ary to employ a task-related supervised learning algorithm ( van

ulder and de Bruijne, 2016, 2015; Zhen et al., 2016 ), or su-

ervised fine-tuning stage ( Nair and Hinton, 2010 ) that learns

ow to map the learned features to the desired task. RFs are

ne of the possible supervised learning algorithms, which have

hown advantages as a classifier, such as being robust to overfit-

ing, and successfully dealing with high-dimensional feature vec-

ors by identifying and ranking relevant features ( Criminisi and

hotton, 2013 ). While this capability of RFs may be used to find

hich features better explain the target variables, or for feature

election ( Konukoglu and Ganz, 2014 ), getting unbiased feature

mportance measures is not trivial ( Louppe et al., 2013 ). Due to

ts advantages, RFs have been successfully used in medical image

nalysis, e.g. Criminisi and Shotton (2013) ; Meier et al. (2014a );

hen et al. (2016) ; Menze et al. (2016) ; Pereira et al. (2016b );

aier et al. (2017) ; Meier et al. (2016) ; McKinley et al. (2016) . 

Since high-dimensional feature vectors may impair the

nterpretability of a model, feature selection is required

 Tibshirani, 1996 ). Filter-based feature selection methods have

he advantages of scaling well and being computationally efficient.

utual Information (MI) is an information measure that can be

sed to assess feature relevance. Moreover, it has the advantage of

easuring any kind of relation among variables, even non-linear

nes ( Bennasar et al., 2015; Vergara and Estévez, 2014 ). Methods

ased on this measure evaluate the MI between features and

arget variables ( Peng et al., 2005; Battiti, 1994 ). However, there

s no involvement of the learning algorithm that is supposed to

mploy the selected features in the actual selection procedure. In

his paper, however, we use MI both between data and features,

s well as between features and task-related classes through a RF. 

. Methods 

In this work, we consider two main blocks: t he machine learn-

ng system, and the interpretability system ( Fig. 1 ). Taking into ac-

ount the previous work ( Section 1.1 ), feature selection is required
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Fig. 1. Proposed system. The machine learning system is composed of a representation mapping stage that generates the input features for a task-related learner, which 

computes the prediction. Feature selection is performed to enable an effective interpretation of the machine learning system. In order to enhance model interpretability, the 

combined use of global and local interpretability is proposed. Blue colored frames mark the modules representative of the main contributions in this paper. The visualization 

of the training stage of the machine learning system and feature selection is omitted for simplicity. We show an example application in brain tumor segmentation. 
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o enable an effective model interpretation. Thus, we will first in-

roduce our machine learning system and propose a methodology

or feature selection. Subsequently, we will present methods for

odel interpretation, which exploit the feature selection. 

.1. Machine learning system 

There are two main stages in a machine learning system:

 epresentation mapping and the task-related learner. The former

orresponds to the feature computation stage, which can be per-

ormed by representation learning or feature engineering. The lat-

er is the predictive model, which is task-dependent since it is a

upervised learning algorithm. 

.1.1. Representation mapping 

We use RBM ( Smolensky, 1986 ) to realize the representation

apping stage of our machine learning system. This is an undi-

ected graphical Representation Learning model. The nodes are

rganized into one visible and one hidden layer, whose states

re represented by the vectors v = [ v i : i = 1 , . . . , m ] , and h =
h j : j = 1 , . . . , n 

]
, respectively. All nodes in one layer are con-

ected to all nodes in the other layer with weights represented

y the matrix W = 

[
w i j 

]
. No intra-layer connections exist. In this

ork, the inputs to the visible layer are patches of shape d × d × d

xtracted from the set of available MRI sequences C. Then, the

atches are represented as a 1D vector and fed into the visible

ayer; thus, m = d · d · d · | C | ( Fig. 2 ). Originally, RBMs were pro-

osed to model binary data in both layers. However, image patches

re represented by a continuous range of values. Thus, the visible

nits are defined as linear units with independent Gaussian noise,

hich allows us to model continuous-valued inputs ( Hinton, 2012 ).

oisy Rectifier Linear Units (NReLU) are used to represent the hid-

en units, since they proved to be suitable for feature extraction

 Nair and Hinton, 2010 ). Thus, after receiving the input in the visi-

le layer, the RBM can compute the activations in the hidden layer,

hus mapping the input into a feature vector. The joint configura-

ion of the states of the visible and hidden units is represented by
n energy function defined as 

( v , h ) = 

∑ 

i 

( v i − a i ) 
2 

2 σ 2 
i 

−
∑ 

j 

b j h j −
∑ 

i, j 

v i 
σi 

h j w i j , (1)

here a i is the bias of the visible unit i, b j is the bias of the hid-

en unit j , and σ i represents the standard deviation of the Gaus-

ian noise of v i ( Hinton, 2012; Nair and Hinton, 2010 ). Having the

nergy function, the joint probability distribution over v and h is

 ( v , h ) = 

1 

Z 
e −E ( v , h ) , (2) 

here Z represents the partition function. Computing Z is imprac-

ical, but we can still sample in parallel the state of all the units

n one layer conditioned on the other layer, given that there are

o intra-layer connections. Thus, we sample the hidden and visi-

le units, respectively, as ( Nair and Hinton, 2010; van Tulder and

e Bruijne, 2015 ). 

 

(
h j | v 

)
= 

max 

( 

0 , 
∑ 

i 

w i j v i + b j + N 

( 

0 , sigm 

( ∑ 

i 

w i j v i + b j 

) ) ) 

, (3) 

 ( v i | h ) = N 

( ∑ 

j 

w i j h j + a i , σi 

) 

, (4) 

here N represents the Gaussian distribution and sigm the sig-

oid function. 

We use Contrastive Divergence ( Hinton, 2002 ) with one step of

lternating Gibbs sampling to train the model. Since learning σ is

ifficult, following Hinton (2012) , we normalize each component

f the data with zero mean and unit variance and consider σi = 1 .

e also employ momentum, and both L1 and L2 weight-decay. L1

nforces sparsity, which leverages interpretability ( Hinton, 2012 ),

imilarly to Lasso ( Tibshirani, 1996 ). After training, we compute

eatures as noise-free activations of the NReLU units. These units

xhibit intensity equivariance if they are noise free and have zero

iases ( b j = 0 ) ( Nair and Hinton, 2010 ). 
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Fig. 2. Machine learning system. We use RBM as Representation Mapping and RF classifier as Task-related Learner. Patches are extracted from each MRI sequence, flattened, 

and concatenated into one single 1D vector. The RBM receives the imaging data in the visible layer, and maps it into a feature vector, as activations of the hidden units. 

G y identify meaningful groups of visible units that receive data from a distinct MR sequence. The color in the connections identify weights that are linked to a given MRI 

sequence. The feature vector is fed into the RF classifier, which outputs a prediction for the central voxel of the patch (black dot). 
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3.1.2. Task-related learner 

The RBM learns features from data in an unsupervised way,

and without knowing the task for which the features will be used

for. So, we need a supervised learning algorithm to learn how

to make predictions out of those features. We use a RF classifier

( Breiman, 2001 ) as task-related learner, by training it in a super-

vised way. This model is an ensemble of Decision Trees, each one

trained on a randomly selected subset of the training set with re-

placement (bootstrap). Each training and testing sample is repre-

sented by the activations of the hidden layer of the RBM. So, each

sample is represented by a n -dimensional feature vector and fed

into the RF ( Fig. 2 ). As the samples traverse the trees, a subset

of features (randomly chosen during training) is evaluated in each

node. This characteristic, together with the number of trees, allows

the algorithm to deal with high-dimensional feature vectors. The

randomness in the algorithm allows it to be robust to overfitting.

At the same time, although RF can estimate the feature impor-

tance, getting unbiased measures is not trivial ( Louppe et al., 2013;

Criminisi and Shotton, 2013 ). For the reader interested in more de-

tails regarding the RF classifier, we refer to Breiman (2001) and

Criminisi and Shotton (2013) . 

3.1.3. Joint RBM-RF mutual information approach for feature selection

Usually, a feature represents the response of a feature detector

applied over the data. Having noise is harmful since the learning

algorithm may capture spurious correlations between the features

and the labels. Additionally, feature noise, arising from detectors

that enhance spurious variations in the data, may be adverse for

the learning algorithm ( Zhu and Wu, 2004 ). So, we hypothesize

that a good feature should correlate with the class labels, and

represent the data from which it was computed; hence, effec-

tively connecting data with class labels. If it holds true, then

interpreting a prediction may be more feasible in terms of which

input caused it. Since MI is a measure of statistical dependence,

we employ it to quantify the quality of the mapping between

data and labels, through the features. Our procedure consists of

the following steps: First, after training the RBM, we compute n

features (activations of the hidden units) for each of the s training

samples. Thus, for each k ∈ { 1 , . . . , n } feature, we define a vector

f k = [ f r : r = 1 , . . . , s ] that represents the values of feature k in

all the training samples. Then, in the case of multisequence MRI
ata, which is typically used in many clinical scenarios such as

he ones presented here, we measure MI between each feature f k 
nd the intensities of each c MRI sequence ( i c = [ i r ] ) to quantify

he statistical dependence between features and each sequence.

inally, for each feature, we combine the MI measure between f k 
nd each MRI sequence, as 

I k ( f k , i c ) = 

∑ 

c 

H ( f k ) + H ( i c ) − H ( f k , i c ) , (5)

here H corresponds to the Shannon entropy. We will refer to MI k 
s RBM-MI in order to express that the features are calculated by

he RBM. 

In RF, the contribution of each feature to decrease the impurity

f training samples as they traverse the RF nodes can be evaluated

ith the MDI metric ( Louppe et al., 2013 ). Although this estimate

ay be biased, it is still recommended, as obtaining unbiased fea-

ure importance estimations from tree-based ensemble methods is

uite impractical ( Louppe et al., 2013 ). MDI is computed using the

nformation Gain as splitting criteria in the nodes, which is equiv-

lent to measure MI between the decision in the nodes and the

lass of the samples ( Nowozin, 2012 ). We will denote this second

omponent as RF-MDI. 

The key idea in our proposal is to unify RBM-MI and RF-MDI

nto a common metric, in order to evaluate the overarching map-

ing between data and labels. Hence, for feature selection, we link

I measures between features and data (through RBM-MI) with MI

easures between features and classes (through RF-MDI). From ex-

eriments, we observe that when we plot the RF-MDI and RBM-MI

or feature k in descending order ( Fig. 3 , up) the curves are similar

n shape, with a steep initial decrease. Then, features are gradu-

lly less important. We want to find the point that corresponds to

he transition between important and unimportant features, both

n terms of data representation and class label characterization. To

his end, we measure the Pearson correlation coefficient between

he sorted RF-MDI and RBM-MI measures for increasingly larger

eature subsets; we note that the Pearson correlation coefficient is

omputed over the RF-MDI and RBM-MI measures, not the features

hemselves. Finally, the maximum in the Pearson correlation coef-

cient curve indicates the transition point γ between important

nd unimportant features ( Fig. 3 (b)). The final subset of selected

eatures corresponds to the union of the best γ features sorted ac-
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Fig. 3. Feature selection is based on RF-MDI and RBM-MI. a) RBM-MI (red) and RF- 

MDI (blue) of each feature are plotted in descending order. b) Pearson correlation 

coefficient between accumulating subsets of features MDI and MI. The dotted green 

vertical line marks the maximum of the Pearson correlation coefficient. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

Algorithm 1 Joint RBM-RF Mutual Information feature selection. 

function FeatureSelection ( mi , mdi ) 

Input: The vector sorted in descending order of RBM-MI values 

between each feature and the MRI sequences mi ; the vector sorted 

in descending order of RF-MDI mdi 

Output: The subset S ′ ⊆ S containing the index of selected fea- 

tures 

pc ← initialize _ zeros () 

for j ∈ S do 

pc j ← pearson _ correlation ( mi 0 , ... , j , mdi 0 , ... , j ) 

end for 

γ ← argmax ( pc ) 

S ′ ← get _ f eatures (S, mi , γ ) ∪ get _ f eatures (S, mdi , γ ) 

return S ′ 
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ording to RF-MDI and RBM-MI (c.f. Fig. 3 and Algorithm 1 ). As

oted in ( Ganz et al., 2015 ), using intersection instead of union can

esult in an empty set, although it can be prevented by including

omain-specific knowledge. The proposed approach has the advan-

age of not requiring any pre-defined threshold (e.g. on the number

f features). Still, if desired, one can define a minimum percentage
r number of features to be evaluated through MI and MDI, and

etrieve the union of those subsets. 

.2. Interpretability system 

The interpretability of a machine learning model can be de-

ned as the human reasoning on how a model captures the input

ata, and why a certain decision is made. In contrast to previous

orks, we acknowledge the relevance of both global and local in-

erpretability as providers of complementary information. 

Global interpretability is defined as the reasoning and iden-

ification of relevant inputs for the machine learning system as

 whole. Although less model agnostic, it may help us answer-

ng how a model captures the (training) input. In the context of

edical imaging, it is a description of what the system learns

rom a population . This may be used as a sanity check before

eployment of the given machine learning model, since the ex-

ert can infer whether the way the model is capturing the in-

ut data is coherent with his prior knowledge on the problem.

n addition, it is a valuable tool to unveil possible biases in the

atasets introduced by the population subjects selection or data

rocessing. 

We define local interpretability as the reasoning and identifica-

ion of the relevant inputs for a given decision, on a per-sample ba-

is. Thus, locality is more related to why a decision is made, which

ecomes more relevant after deployment, especially to study fail-

res. In the context of medical imaging, it can retrospectively help

n understanding model decisions for a particular subject . Since our

pplication is on image segmentation, local interpretability is at

he voxel level and thus also patient-level. 

Our approach is post-hoc in the sense that interpretation comes

t a later stage to model training, instead of being embedded

n the system itself. In this way, we avoid sacrificing complex-

ty/performance of the model in favor of interpretability. In the fol-

owing subsections we describe how global and local interpretabil-

ty are implemented in the proposed approach. 

.2.1. Global interpretability 

We propose to study the relationship between the input data

in our example applications, the different MRI sequences) and

he RBM features. We define first a set containing all available

 feature indices, i.e. S = { 1 , 2 , . . . , n } . Based on our feature se-

ection method presented in Section 3.1.3 , we can generate a re-

uced feature set S ′ ⊆ S, which is more suitable for model in-

erpretation than the complete set of features. Some visible units

ay be grouped into z subsets of meaningful groups G y , such that

 = {G y : y = 1 , 2 , . . . , z} . Each G y contains the indices of the visible

nits belonging to that meaningful group. For instance, when using

mage patches from multi-sequence MRI acquisitions we can group

isible units belonging to the same sequence. In other words, the

 -available image sequences define the groups G y (see Fig. 2 ). In

he extreme case where no meaningful groups can be defined, each

isible unit v i is a subset in itself. For interpretation, we compute

he squared L2-norm of the weights connecting a hidden unit to

he visible units of each group G y . This way, we determine the con-

ribution of each group G y to a hidden unit (i.e. feature). We repeat

his procedure for all hidden units. We compute the squared L2-

orm because a negative weight may still make a visible unit con-

ribute positively to the hidden unit response, since the inputs are

ormalized with zero mean and unit variance. Additionally, it de-

reases the contribution of very small valued weights that would

ontribute to noise, which may impair the interpretability through

isualization techniques. Algorithm 2 presents the complete pro-

edure. Taking brain tumor segmentation as example, we identify

he relevance of the different MRI sequences for a specific task (e.g.
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Algorithm 2 Squared L2-norm computation for global inter- 

pretability. 

function GlobalInterpretability ( W , S ′ , G) 

Input: The weight matrix W , the set S ′ ⊆ S containing the index 

of selected features (=output of algorithm 1), and the set of mean- 

ingful groups G 
Output: Matrix with shape [ | G | , ∣∣S ′ ∣∣] of squared L2-norms L = 

[ l y, j ′ ] 
for j ′ ∈ S ′ do 

for G y ∈ G do 

l y, j ′ ← 

∑ 

i ′ ∈G y w i ′ , j ′ 2 

end for 

end for 

return L 

Algorithm 3 Local test case specific feature selection. 

function LocalFeatSel (x, f (·) , n f eat , n x p , g(·) , S ′ ) 
Input: A test sample x , a model f (·) , the number of desired fea- 

tures n f eat , the number n x p of neighbors of x , and feature selection 

method g(. ) 

Output: Indices of the selected features S ′′ ⊆ S ′ {
x p , d x p 

}
← Per tur b(x, n x p ) 

y p ← f (x p ) 

S ′′ ← g(x p , y p , d x p , n f eat ) 

return S ′′ 
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Algorithm 4 Spatial feature relevance for local interpretability. 

function SpatialFeatureRelevance (I, S ′′ , C, W ) 

Input: the image space I , the selected features for each test sam- 

ple S ′′ (=output of algorithm 3), the set of (pre-aligned) MRI se- 

quences C (e.g. C = { T 1 , T 1 c , T 2 , F LAIR } ), and the weights matrix W 

Output: Images with the voxel-wise importance for each sequence 

H = { H c } 
H ← initialize _ zeros (I) 

W ← normalize _ weights ( W ) 

for x ∈ I do 

p ← get _ patch _ indices (x ) 

for j ′′ ∈ S ′′ do 

for c ∈ C do 

w c ← sequence _ weights ( W , j ′′ , c) 
for e ∈ p do 

H c (e ) ← H c (e ) + w c (e ) 

end for 

end for 

end for 

end for 

return H 

t  

s  

b

 

s  

s  

s  

f  

m  

w  

a  

e  

w  

I  

t  

t  

b  

t  

e  

f  

q  

i  

r  

A

 

R  

t  

s  

p  

i  

(  

s  

f  
segmentation of the complete tumor vs. normal tissues) by study-

ing the weights connecting the hidden units of the most and least

important features. 

To facilitate interpretability, we sort the selected features in de-

scending order of their importance (we took the RF-MDI as a mea-

sure of feature importance for the classifier itself). Then, we plot

the squared L2-norm of the weights connecting the hidden units

of the RBM to the subgroups of meaningful features (e.g. Fig. 4 ). 

3.2.2. Local interpretability 

We start by selecting the most meaningful features of a sample

x (e.g. voxel of interest) by examining its neighborhood. By ran-

domly perturbing the feature vector, which is the activations of the

hidden layer of the RBM, of the selected sample x , a set of π syn-

thetically generated samples ( X = { x p : p = 1 , . . . , π} ), with feature

vector f x p , is created. These synthetic neighbors are close to the

original sample in the feature vector space. Then, a classification

( y p ) for each neighbor is calculated with the classifier under anal-

ysis f ( ·) (RF in our machine learning system), as y p = f ( f x p ) . After-

wards, a Ridge regression model ( g ( ·)) is trained on the synthetic

set, using the output provided by the classifier under analysis as

target, to select a pre-defined number of explaining features, cor-

responding to those yielding the strongest responses to the input,

i.e. highest value of the product between the weights of the Ridge

regressor and features. The output of g ( ·) is a subset S ′′ of the

available feature indices contained in S ′ . Neighbors are weighted

according to their euclidean distance to the original test case ( d x p ).

Ridge regression has the advantage of being simple and extremely

efficient, which allows it to be applied voxelwise. 2 The procedure is

depicted in Algorithm 3 . Here, we consider S ′ provided by a previ-

ous feature selection procedure, which selects features that highly

correlate both with labels and the data. However, there is nothing
2 Instead of the proposed approach with Ridge, we could use stability selection 

with Lasso ( Nicolai Meinshausen, 2010 ), which can select the optimal number of 

features. However, it still needs a threshold above which a feature is considered rel- 

vant. Additionally, it works by training several models on randomly chosen subsets 

of the training set, making it much more computationally demanding than Ridge. 

t  

W  

g  

q  

t  

R

hat prevents Algorithm 3 from being applied while taking the full

et of features into consideration. Additionally, this procedure can

e used both in binary and multi-class problems. 

Having the selected features, we could generate L2-norm plots

imilar to the ones proposed for global interpretability for each test

ample. However, since we are dealing with images, it is more in-

ightful to observe which parts of an image are more important

or a given task, such as segmenting a particular tumor compart-

ent. After selecting the features that better explain a prediction,

e assume that all of those features must be equally taken into

ccount for interpretation. However, the weights may be in differ-

nt ranges. So, we independently normalize the absolute value of

eights connecting each hidden unit to the visible units to [0, 1].

n our case, we predict the class of each voxel x based on the fea-

ures computed by the hidden units of the RBM, which are ex-

racted from a patch p centered on that voxel. Thus, we proceed

y summing the weights connecting each selected hidden unit

o the visible units of each sequence for all corresponding vox-

ls contained in the patch centered on voxel x . By repeating this

or all voxels in the image space I, we obtain, for each MR se-

uence c ∈ C, a corresponding image H c that contains voxel-wise

mportance values. We denote this procedure as spatial feature

elevance for local interpretability. The procedure is described in

lgorithm 4 . 

The selection of locally relevant features is inspired by

ibeiro et al. (2016b ) and motivated by some features being impor-

ant for some classes, while other features may be important for

ome other classes. Thus, even though we selected a subset of im-

ortant features before, some of them are more relevant depend-

ng on the sample under analysis. Contrasting with Ribeiro et al.

2016b ), where a simpler, yet interpretable, model (Ridge regres-

ion in our case) serves as feature selector and explainer, we go

urther as to explain which parts of the input data mostly con-

ributed to the features response of the sample under analysis.

e realized this by projecting the MRI sequence relevance for a

iven feature back to the image space of the respective MR se-

uences. Additionally, we previously selected a subset of features

hat correlate both with the labels and the data, which differs from

ibeiro et al. (2016b ). 
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Fig. 4. Global interpretability on the BRATS model. Several segmentation tasks are studied: a) a ll tissues at once (multi-label), b) complete tumor vs. normal tissues, c) 

enhancing tumor vs. remaining tissues, and d) necrosis vs. remaining tissues. For each task we show: top) Squared L2-norm plots. Features are sorted from most to least 

important (left to right). Brighter means higher squared L2-norm of the weights connecting the hidden unit of a given feature to a given MRI sequence. Bottom) examples 

of pairs of MRI sequences (left) and feature maps (right). 



236 S. Pereira et al. / Medical Image Analysis 44 (2018) 228–244 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Hyperparameters of the RBM and RF of our machine learning system. In 

RF, when not indicated, default values were used. 

Database Algorithm Hyperparameter Value 

BRATS SPES RBM Hidden units 600 

Mini-batch 32 

Gibbs samp. steps 1 

W init. N 

(
0 , 1 × 10 −4 

)
a , b init. 0 

RF Trees 200 

Split. crit. Info. gain 

BRATS RBM Patch size 9 × 9 × 9 

Epochs 262 

Initial ε; Final ε 1 × 10 −4 ; 4 × 10 −7 

Initial η; Final η 0; 0.5 

L1; L2 1 × 10 −3 ; 2 × 10 −2 

SPES RBM Patch size 5 × 5 × 5 

Epochs 498 

Initial ε; Final ε 1 × 10 −3 ; 1 × 10 −5 

L1; L2 2 × 10 −4 ; 2 × 10 −4 
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4. Experimental setup 

4.1. Databases 

The proposed methodologies were applied to two segmentation

problems with multisequence MRI data: Brain tumor segmenta-

tion and penumbra estimation in acute ischemic stroke, for which

model predictions can be interpreted in the context of clinical ex-

pert knowledge and manual segmentation protocols ( Menze et al.,

2015; Maier et al., 2017 ). 

4.1.1. Brain tumor segmentation 

For this problem, we used the publicly-available BRATS 2013

database ( Menze et al., 2015 ) of the MICCAI Brain Tumor Segmen-

tation (BRATS) challenge. The database has three sets with differ-

ent number of subjects: Training (30), Leaderboard (25), and Chal-

lenge (10). The Training set contains manual ground truth seg-

mentations, distinguishing four tumor tissues: Necrosis, edema,

contrast-enhancing tumor, and non-enhancing tumor. The evalu-

ation of the Leaderboard and Challenge segmentation was per-

formed via the online platform SMIR 

3 for three tumor regions:

Complete (all tumor tissues combined), core (necrosis + enhanced

+ non-enhanced), and enhancing tumor. For each subject there are

four MRI sequences available with interpolated isotropic resolu-

tion of 1 mm: T1-weighted (T1), gadolinium-enhanced T1 (T1c),

T2-weighted (T2), and Fluid-attenuated Inversion Recovery (FLAIR).

All sequences are already rigidly aligned, and skull-stripped. Fur-

ther pre-processing included bias field correction ( Tustison et al.,

2010 ), and normalization of the intensities in each MRI sequence

with a histogram standardization method ( Nyúl et al., 20 0 0 ). Fi-

nally, we normalized the intensities of brain voxels to zero mean

and unit variance. 

We chose the BRATS 2013 database due to two reasons: First,

the ground truth data are manual segmentations obtained by the

fusion of four expert raters. These expert raters followed a manual

segmentation protocol ( Menze et al., 2015 ) to acquire the ground

truth data. Hence, it enables us to interpret our machine learning

system with respect to this protocol. Second, the dataset contains

preoperative brain tumor images only. In contrast to postoperative

images, treatment-related imaging changes (e.g. radiation necrosis

Mullins et al., 2005 ) are absent in preoperative images thus render-

ing an evaluation of our interpretation methodologies less compli-

cated. 

4.1.2. Penumbra estimation in acute stroke 

For investigating the penumbra estimation in acute ischemic

stroke, we employed the Stroke Perfusion Estimation (SPES)

database of the MICCAI Ischemic Stroke Lesion Segmentation

(ISLES) Challenge ( Maier et al., 2017 ). The Training dataset includes

30 subjects with publicly available manual ground truth segmen-

tations, while the Challenge set is composed of 20 subjects. As in

BRATS, the results for the Challenge set are computed by an online

platform. 4 Seven MRI sequences, comprising structural and phys-

iological sequences, were available: T1c, T2, Diffusion Weighted

Imaging (DWI), cerebral blood flow (CBF), cerebral blood volume

(CBV), time-to-peak (TTP), and time-to-max (Tmax). All sequences

are already rigidly registered to the T1c sequence with image reso-

lution of 2 mm and skullstripped. Further pre-processing included

the bias field correction ( Tustison et al., 2010 ), and normaliza-

tion of the intensities with a histogram standardization method

( Nyúl et al., 20 0 0 ) for the T1c, T2, and DWI sequences. Addi-

tionally, we clipped Tmax intensity values above 60 (Tmax > 6s
3 www.smir.ch/BRATS/Start2013 . 
4 www.smir.ch/ISLES/Start2015 . 
hreshold, as followed by the manual segmentation protocol ex-

erts Maier et al., 2017 ). Finally, we normalized the intensities of

rain voxels to zero mean and unit variance. 

.2. Model training & parameters 

Around 40,0 0 0 samples were extracted from each subject, and

lasses were balanced by having 50% of normal tissue and 50% of

otal lesion tissue (in BRATS we further approximately balance the

ampling of tumor tissues). The RBM consisted of 600 hidden units

 = features). For training the RBM, the learning rate ( ε) was kept

onstant for the first 10 epochs, and then linearly decreased until

he end of the training. In the case of momentum ( η), it was kept

onstant until epoch 100, and then linearly increased until the end

f training; no momentum was used in SPES. For penumbra es-

imation we thresholded the probabilistic output of the RF at 0.6

empirically found in the validation set). The remaining hyperpa-

ameters of the RBM and RF are shown in Table 1 . For training the

BM, we extracted the patches centered on a given voxel from all

RI sequences. Then, the patches are represented as a 1D vector

nd fed into the visible layer of the RBM. So, for brain tumor seg-

entation the visible layer has 4 × 9 × 9 × 9 = 2916 units, while

or penumbra estimation it is 7 × 5 × 5 × 5 = 875 (see Fig. 2 ). For

he local interpretability method, each image voxel’s features were

erturbed to generate 2400 synthetic samples, and the 10 most

epresentative features were selected. We set the regularization pa-

ameter λ of the Ridge regression model to 1.0. We used the RF

mplementation in Scikit-learn ( Pedregosa et al., 2011 ); the hyper-

arameters that are not defined in Table 1 were set to default val-

es. We used LIME 5 for generating the neighborhood of the points

nd select the local relevant features for local interpretability. The

mplementation of the proposed algorithms is available online. 6 

In this paper, we focus on enhancing the interpretability of the

achine learning system at hand, thus a thorough performance

valuation is out of scope. Nevertheless, evaluating the segmenta-

ion to some extent is imperative to assess if the model is learning.

hus, we report the Dice Similarity Coefficient (Dice) for BRATS and

PES, as well as the Average Symmetric Surface Distance (ASSD) for

he latter, as defined in ( Menze et al., 2015; Maier et al., 2017 ). 
5 github.com/marcotcr/lime . 
6 github.com/sergiormpereira/EIML . 

http://www.smir.ch/BRATS/Start2013
http://www.smir.ch/ISLES/Start2015
http://github.com/marcotcr/lime
http://github.com/sergiormpereira/EIML
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. Results 

.1. Feature selection 

In Table 2 , we present segmentation results using features se-

ected with the proposed method in BRATS and SPES. In order

o have our approach compared with other methods for auto-

atic feature selection, we also present results when features

re selected by Embedded or Wrapper feature selection-based ap-

roaches. Embedded methods are represented by Lasso, Elastic Net,

nd stability selection with Lasso ( Nicolai Meinshausen, 2010 ). Re-

urrent feature elimination using a linear kernel Support Vector

achine (RFE L-SVM), a RF, or a Ridge are categorized as wrapper

pproaches. We note that the results reported in Table 2 were ob-

ained using the RF classifier, but, with features selected by those

eature selection approaches. 

In BRATS, with the proposed approach, we obtained a set of

29 features. The remaining methods selected the following num-

er of features: elastic net – 440, Lasso – 168, RFE L-SVM – 420,

FE RF – 350, RFE Ridge – 400, and Lasso stability selection –572.

or the case of SPES challenge data, the proposed approach yielded

 subset of 117 features. In this application, the other methods se-

ected the following number of features: Elastic net – 383, Lasso –

76, RFE L-SVM – 200, RFE RF – 350, RFE Ridge – 550, and Lasso

tability selection –583. See # features BRATS/SPES in Table 2 . It

s important to note that these embedded and wrapper methods

ere executed in a cross-validation scheme to find the optimal pa-

ameters and features. The only statistical difference was observed

hen comparing the proposed method with RFE RF in SPES, under

 paired Wilcoxon Signed-Rank Test with significance level of 0 . 05 
7 

Bonferroni-correction). 

.2. Comparison with other segmentation methods 

Although the focus of this work is on interpretability of our ma-

hine learning system instead of performance, we compared our

esults with the contestants of the on-site BRATS 2013 ( Table 3 )

nd SPES 2015 ( Table 4 ) challenges. The compared methods include

roposals based on ensembles of randomized trees, such as Festa,

eier, Reza, and Tustison, in BRATS; or CH-Insel, DZ-Uzl, and BE-

ul2, in SPES. The method CA-Usher, in SPES, is built over a super-

ised Representation Learning algorithm (CNN). 

We observed that in BRATS the set of important features

hanges accordingly to the task at hand (c.f. Section 5.3.1 ). For ex-

mple, when we segment the complete tumor as a binary problem,

r all tissues as a multi-label segmentation problem. Hence, moti-

ated by this observation, and inspired by Meier et al. (2014b ), we

valuated a hierarchical approach: First, we segmented the com-

lete tumor, then we segmented the tumor tissues inside the pre-

iously defined region of interest. In Table 3 it is possible to ob-

erve that the detection of the complete tumor improved with the

ierarchical approach, suggesting that different features are use-

ul for different tasks. In BRATS ( Table 3 ), the proposed model

chieved a lower Dice compared to Tustison. However, it is on pair

ith the other top methods. In SPES ( Table 4 ), the obtained results

re comparable with the algorithms in the mid-table positions. 

.3. Interpretability 

We present two case studies for interpretability: b rain tumor

egmentation ( Section 5.3.1 ) and penumbra estimation in acute is-

hemic stroke ( Section 5.3.2 ). In both cases, we present global and

ocal interpretation results. 
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Table 3 

Comparison with other methods on BRATS 2013 challenge 

set. Results obtained from ( Menze et al., 2015 ). 

Method Dice 

Complete Core Enh. 

Cordier 0.84 0.68 0.65 

Doyle 0.71 0.46 0.52 

Festa 0.72 0.66 0.67 

Meier 0.82 0.73 0.69 

Reza 0.83 0.72 0.72 

Tustison 0.87 0.78 0.74 

Zhao 0.84 0.70 0.65 

Proposed – All feat. 0.81 0.74 0.72 

Proposed – Sel. feat. 0.81 0.74 0.72 

Proposed – Hierarchical 0.84 0.74 0.71 

Table 4 

Comparison with other methods on SPES challenge set. 

Results obtained from ( Maier et al., 2017 ). 

Selection method Penumbra 

Dice ASSD 

CH-Insel 0.82 ± 0.08 1.65 ± 1.40 

DE-Uzl 0.81 ± 0.09 1.36 ± 0.74 

BE-Kul2 0.78 ± 0.09 2.77 ± 3.27 

CN-Neu 0.76 ± 0.09 2.29 ± 1.76 

DE-UKF 0.73 ± 0.13 2.44 ± 1.93 

BE-Kul1 0.67 ± 0.24 4.00 ± 3.39 

CA-Usher 0.54 ± 0.26 5.53 ± 7.59 

Proposed – All feat. 0.75 ± 0.14 2.43 ± 1.93 

Proposed – Sel. Feat. 0.74 ± 0.14 2.48 ± 2.04 
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5.3.1. Brain tumor segmentation 

Since the segmentation of brain tumors and their subcompart-

ments reflect a multi-label classification problem, we can define

different segmentation tasks: a ll tissues at once, complete tumor

vs. normal tissue, enhancing tumor vs. remaining tissues, or necro-

sis vs. remaining tissues. The first task is a multi-label classification

problem, where the target labels are all tissues – normal, necrosis,

edema, non-enhancing, and enhancing tumor. The other tasks are

binary classification problems; in the case of complete tumor vs.

normal tissue, we fuse all tumor tissues of the manual segmen-

tation into just one class, and we use it for training. These dif-

ferent segmentation tasks serve the purpose of interrogating the

machine learning system at hand on the usefulness of features ex-

tracted from the different MRI sequences. To leverage interpretabil-

ity, we selected important features with the proposed feature se-

lection method ( Section 3.1.3 ), leading to the following number of

selected features: 329 (all tissues at once), 403 (complete tumor vs.

normal tissue), 149 (enhancing tumor vs. remaining tissues), and

92 (necrosis vs. remaining tissues). For each resulting feature set,

we trained a RF model and performed global and local model in-

terpretation analyses. 

5.3.1.1. Global interpretation. We can interpret the model from a

global point of view by inspecting how it learned the input data.

Fig. 4 shows the squared L2-norm plots for global interpretability,

as well as some feature maps representative of each zone of im-

portance alongside with the sequence to which they are more re-

lated to (in terms of mutual information). In Fig. 4 it is possible to

observe that features encoding information from the T1 sequence

are mostly relegated to the tail of the important features. In con-

trast, features computed by hidden nodes that were strongly con-

nected to T1c, T2, or FLAIR are given more importance. In very spe-

cific tasks, such as segmenting enhancing tumor ( Fig. 4 ), or necro-

sis ( Fig. 4 ), some particular sequences are preferred, such as T1c,
r T2, respectively. On the other hand, the top features of more

omplex (multi-label) tasks, such as segmenting all tissues at once,

ave a higher mixture of features strongly connected to T1c, T2,

nd Flair. A similar behavior is observed when we segment the

omplete tumor ( Fig. 4 ), with the difference that T1c is less im-

ortant, because FLAIR and T2 are sufficient to delineate the lesion

s a whole. Interestingly, the hidden nodes of the RBM are more

onnected to one specific MRI sequence, instead of collecting in-

ormation and combining multiple sequences. This is confirmed by

he feature maps that can depict some specific tissues. For instance

n Fig. 4 , left, it is conspicuous for enhancing tumor, or in Fig. 4 ,

econd from left, the feature map appears to enhance edema. 

.3.1.2. Local interpretation. From the local interpretability point of

iew, we studied the local spatial feature relevance for assessing

ow the input data was used for voxel-wise predictions in a given

est subject ( Figs. 5 and 6 ). Similarly to the global interpretability,

e studied the local interpretability for the different tumor seg-

entation tasks (i.e. “all tissues at once”, “complete vs. normal tis-

ue”, “enhancing vs. remaining tissues”, and “necrosis vs. remain-

ng tissues”). From Fig. 5 it is observed that the identification of

ach class is attributed to a subset of the available MRI sequences

oherent with observations from the global analysis. For instance,

nhancing tumor is strongly linked to T1c, while necrosis extracts

ore information from T2, but also from T1c in some extent. In

he case of complete tumor ( Fig. 6 ), FLAIR resembles to play an im-

ortant role, although T1c contributes considerably in the region of

nhancing tumor. In contrast to global interpretability, the local in-

erpretability analysis allows us to better disentangle the relevance

f the different sequences for a particular patient and image re-

ion as well as to study the cause of false positive segmentations.

s an example, in Fig. 6 on the superior part of the brain there are

ome false positive tumor segmentations visible. We observed that

hey are more related to T1c and FLAIR than to the remaining se-

uences. As discussed below, the local interpretability analysis al-

owed us to find potential causes and pre-processing related issues

hat led to these false positives. 

.3.2. Penumbra estimation 

Contrasting to the multi-class brain tumor segmentation, in

PES the task is binary and aims at segmenting the penumbra re-

ion. On the other hand, SPES contains seven MRI sequences in-

luding structural and physiological information, in contrast to the

our structural MRI sequences in BRATS. In this dataset, the num-

er of selected features by the proposed approach was 117. 

.3.2.1. Global interpretation. Fig. 7 shows the squared L2-norm

lots for the global interpretability of the model, as well as some

eature maps and the MRI sequence to which the respective hidden

nit is most connected. First, we can observe that some specific

RI sequences contribute much more than others to the most rel-

vant features. The first three most important features come from

he TTP sequence, while overall the Tmax sequence has the largest

umber of most important features. Observing the feature maps in

ig. 7 , they characterize the stroke region either as a hypointense

r hyperintense area. MRI sequences such as DWI, T1c, and T2,

ave some features strongly connected to them for the most im-

ortant features, but appear mainly on the least important section

f the ranked features in Fig. 7 top. Interestingly, contrasting to

RATS ( Fig. 4 ) where features are mostly related to just one MRI

equence, in penumbra estimation some features are computed

rom both the DWI and T2 sequences. Finally, the CBF and CBV se-

uences are barely represented. 
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Fig. 5. Spatial feature relevance for local interpretability of the Challenge subject 0310 in BRATS for the task of segmenting all tissues at once (multi-label classification). 

From left to right, we show the T1, T1c, T2, and FLAIR sequences, as well as the obtained segmentation in the first row. In the segmentation, the tumor tissues are: b lue 

– necrosis, green – edema, orange – non-enhancing, and red – enhancing tumor. Each row corresponds to how the input data was used for predicting each class. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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.3.2.2. Local interpretation. Local spatial feature relevance for

enumbra estimation is presented in Fig. 8 . It is possible to ob-

erve that Tmax and TTP are the sequences from which the model

akes more information. TTP appears with higher magnitude for

elevance, but in the posterior part of the segmentation it is lower

ompared to Tmax. Features related to the other MRI sequences

re less preferred than Tmax and TTP, with T1c appearing with a

arger contribution to approximate the overall stroke region seg-

entation, and CBV appearing to be the least important for voxel-

ise predictions. 

.3.2.3. Removal of MRI sequences. Given the observations from the

lobal and local interpretations that CBV and CBF play a minor

ole in penumbra estimation, we experimented to train the sys-

em without those MRI sequences. The system trained without the

BV sequence results in ASSD of 2.58 and Dice of 0.74. When we

urther removed both the CBV and CBF sequences the results were:

SSD – 2.54 and Dice – 0.74. Comparing with Table 4 , we can ob-

erve that the results are equivalent to those using all the available

RI sequences. 

. Discussion 

Machine learning systems are pervasively being adopted as

ecision-support systems in critical fields, like the medical do-

ain. At the same time, the models are increasingly complex for

he sake of performance. This may pose a problem in their adop-

ion due to trust reasons, as it is difficult to explain the model

nd/or the respective predictions. Thus, there is a need to under-

tand how a model learned the input data, and why a certain pre-

iction was made. In this paper, we propose a novel methodology
o enhance the interpretability of automatically extracted machine

earning features. We also investigated the notion of global and lo-

al interpretability. Global interpretability provides insights as to

ow the model learned the data from a population. This allows us

o infer if the studied model is coherent with the experts knowl-

dge. On the other hand, local interpretability leverages the under-

tanding on why a prediction on a subject-specific level was made.

 limitation of interpretability systems is that there is no quan-

itative metric available to measure interpretability of a machine

earning system yet. Thus, we base our discussion on extensive

omparison with medical domain knowledge. The proposed ma-

hine learning system encompasses a RBM as representation map-

ing stage and a RF as task-related learner. High-dimensional fea-

ure vectors may impair interpretability. Thus, we propose a MI-

ased feature selection scheme that simultaneously take into ac-

ount the mapping between the input data and its representa-

ion (features), and from the representations to the task at hand

labels). 

.1. Joint RBM-RF approach for feature selection 

From Table 2 we observed that all feature selection methods

erform similarly, both in mean and standard deviation; the only

tatistical difference was found when comparing the proposed ap-

roach with RFE RF in SPES. However, just by looking at the met-

ics, some embedded wrapper methods seem to achieve slightly

etter performances. However, they were evaluated in a cross-

alidation scheme to find the best parameters and number of fea-

ures. Moreover, Wrapper recursive feature elimination schemes

equire training several models with progressively smaller feature

ectors. The embedded methods do not require the recursive fea-
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Fig. 6. Spatial feature relevance for local interpretability of the Challenge subject 0310 in BRATS for the tasks: a) Complete tumor vs. normal tissues, b) enhancing tumor vs. 

remaining tissues, and c) necrosis vs. remaining tissues. From left to right we show the T1, T1c, T2, and FLAIR sequences, as well as the obtained segmentation in the first 

row of each task. 
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ture elimination scheme. However, the selected features may be

optimal for the used learner, but not for the model that we must

use in the end. Contrarily, by combining RBM-MI and RF-MDI, the

proposed approach offers the advantage of automatically selecting

the optimal number of features and does not require a thresh-

old to be defined, nor a recursive feature elimination scheme. The

main motivation for feature selection in the context of this paper

is to choose features that both correlate with the data and the la-

bels, and to leverage interpretability. In that sense, the proposed
pproach provides more satisfactory results than the other meth-

ds, by decreasing the dimension of the feature vector to almost

alf in BRATS, and to around 20% in SPES (only Lasso in BRATS

chieves a more compact feature subset). Moreover, the proposed

eature selection approach does not impact the segmentation per-

ormance, when comparing results to a model using all 600 RBM-

erived features. Thus, the hypothesis that selecting features with

igh mutual information both with labels and the data is viable.

n this experiment, we proposed to use Pearson Correlation Coef-
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Fig. 7. Global interpretability on the SPES model. Top) squared L2-norm plots. Features are sorted from most to least important (left to right). Brighter means higher squared 

L2-norm of the weights connecting the hidden unit of a given feature to a given MRI sequence. Bottom) examples of pairs of MRI sequences (left) and feature maps (right). 

Fig. 8. Spatial local interpretability of the SPES Challenge subject 1. Top) MRI sequences and segmentation. From left to right we show the T1c, T2, DWI, Tmax, TTP, CBV, 

and CBF sequences, as well as the obtained segmentation. Bottom) local interpretability maps. 
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cient computed over the RBM-MI and the RF-MDI measures to

etect the transition between important and unimportant features.

his choice came from the observation of the decreasing regime of

oth metrics, and its empirical nature represents the main limita-

ion of the feature selection approach. 

At the same time, this big reduction in the number of fea-

ures imply that although RBM can automatically compute fea-

ures, many of them can be useless in the presence of more pow-

rful ones. This may be caused, in part, by the unsupervised nature

f RBM, since it does not know for which task the features are go-

ng to be employed ( Larochelle and Bengio, 2008 ). Although mod-

ls using a high number of features can be prone to overfitting, in

ur experiments we did not observe such tendency, probably due

o the robustness of RF ( Criminisi and Shotton, 2013 ). 

Observing that the subset of important features changes with

he task at hand, we devised a hierarchical approach in BRATS. This

llowed us to improve the segmentation of complete tumor. With

his approach, we are on pair with the methods of the on-site re-

ults of BRATS 2013 Challenge, with the exception of the winner

f that edition. We note that despite these methods being from

013, they still remain as representative of RF-based approaches.

ll of them rely on hand-crafted features, while ours is based on

n unsupervised representation mapping algorithm. In SPES, the

roposed machine learning system is positioned on pair with the

id-table methods. However, top methods incorporate expert prior

nowledge. CH-Insel includes atlases information, and presence of

l  
he voxel in the ipsi- or contralesional side. Additionally, both CH-

nsel and De-Uzl compute features of symmetry in relation to the

id-sagittal plane. This kind of information cannot be captured

y a representation learning algorithm. Even so, although the pro-

osed system is based on an unsupervised model, it achieved bet-

er metrics than a CNN-based proposal (CA-Usher). We note, how-

ver, that the CA-Usher team achieved high performances in terms

f metrics in the training set (similarly as all the other teams). This

ehavior may be related to overfitting on the training by this team,

hich may have been alleviated by the unsupervised nature of our

pproach. 

.2. Interpreting automatically extracted features in brain tumors 

We can define several segmentation tasks in brain tumor im-

ge analysis. This allows us to interrogate and interpret the ma-

hine learning system and assess if it is learning well, according to

linical expert knowledge on the problem. Observing the squared

2-norm plots of the RBM weights connecting the hidden and vis-

ble units representing each MRI sequence in Fig. 4 , we obtained

nsight into which sequences are more important for the different

asks. When we segment all tissues at once ( Fig. 4 ), the most im-

ortant features extract information from the T1c, T2, and FLAIR

equences. As expected, since T1 adds less information to the other

nes, the features connecting strongly to this sequence are the

east important, or appear sparsely represented in the most im-
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portant features. From a clinical point of view, this result is valid

for pre-operative brain tumor images as contained in the BRATS

2013 data set. In the feature maps, we note that specific patterns of

enhancing tumor and edema were extracted from T1c and FLAIR.

Fluid-filled compartments are mostly enhanced in T2, while T1 en-

codes the fatty tissue, mainly. This global interpretation is in line

with clinical domain knowledge, and, hence, allows us to conclude

that the model is correctly utilizing the imaging information. From

the local interpretation results, in Fig. 5 , we can observe not only

which sequence contributes the most for each label class, but also

study this contribution with respect to image regions. For exam-

ple, segmentation of edema is mainly based on FLAIR. However,

according to Menze et al. (2015) , segmentation of edema is also

based on T2. The reason for the model to prefer FLAIR may be

because it can differentiate edema from the cerebrospinal fluid,

which is contained e.g. in the ventricles. T1c is the second choice

in predicting edema. Although one could expect T2 to appear af-

ter Flair, the enhancing rim reflects a strong prior on the extent

of the tumor core (hence limiting the extent of edema, too), at

least in the images of BRATS 2013, which are mostly high-grade

glioma. Thus, since we deal with patches in our system, the model

may learn that close to edema, features with high response on T1c

may exist. As expected, T1c clearly dominates the predictions of

enhancing tumor. 

6.2.1. Interpreting the binary brain tumor segmentation tasks 

Regarding the binary brain tumor segmentation tasks, we ob-

served that among the most important features for complete tu-

mor ( Fig. 4 ) there are features strongly related to all sequences,

contrasting, for instance, with segmentation of the enhancing tu-

mor, or necrosis. This is due to the higher variability of the tu-

moral tissues included in the “complete tumor” region, than in the

other binary tasks where the tissue type shows much lower inten-

sity variability across sequences. For the binary task of segmenting

the complete tumor as a whole, the T2 and FLAIR sequences are

more important. This is in accordance with the manual segmenta-

tion protocol used in BRATS, where the complete tumor was firstly

defined based in those same MRI sequences ( Menze et al., 2015 ).

From the first (i.e. most-left) feature map in Fig. 4 , it can be ob-

served that the hypointense portion of the T2 image is encoded in

the respective feature map, including mainly areas of white matter

and solid tumor tissue. Interestingly, some T1c-based features ap-

pear to capture intra-tumoral regions. This can be observed in the

third (from left to right) feature map of Fig. 4 , and in the local ex-

planation of predictions in Fig. 6 , where T1c is important in the en-

hancing rim region. This observation shows that the Ridge regres-

sion is able to identify locally important features, indeed. However,

following results from both global and local analysis, features de-

rived from FLAIR appear to be the most dominant for defining the

complete tumor, in general. When we segmented the enhancing

tumor against all the other tissues, the most important features are

provided by hidden units with their weights strongly connected to

the T1c visible units. In Fig. 6 , we also observed that locally the

T1c sequence completely dominates over the other ones. This was

expected, since enhancing tumor region is characterized by the T1c

image. Finally, in the necrosis segmentation task, features that are

strongly connected to the T2 sequence appeared more often among

the most important features in the global squared L2-norm plots

( Fig. 4 ). However, some T1c-based are also ranked among the top.

For the patient case 0310, shown in Fig. 6 , we can see two lesions,

each with necrotic tissue. Interestingly, for segmenting the larger

necrotic core of the more central lesion, the T2 sequence seems

to be more relevant than T1c. In contrast, for segmenting necro-

sis in the smaller lesion both sequences appear equally important.

This observed complementarity of T1c and T2 is in line with the

manual segmentation protocol ( Menze et al., 2015 ), since both T1c
nd T2 are used for defining the tumor core and for differentiating

he non-enhancing part of the tumor from necrosis and enhanc-

ng tumor. Necrotic regions are mostly surrounded by the enhanc-

ng tumor, hence the importance of the T1c for this task. Indeed,

n the feature map related to this sequence, shown in Fig. 4 , the

nhancing rim appears completely dark, while the inner part, cor-

esponding to necrosis, is enhanced. In this way, we are able to

erify and conclude that the system learned the correct relations

n the data. We emphasize, however, that these observations apply

or pre-operative acquisitions only. In a post-operative setting the

elevance of the different MRI sequences for tumor segmentation

s different ( Meier et al., 2017 ). 

.2.2. Further considerations 

Apart from studying the relevance of the different sequences

or tumor tissue predictions, we observed for patient case 0310 in

ig. 6 some misclassified tumor regions on the top of the brain.

he dominant source for this misclassification are features related

o the T1c or FLAIR sequences. Hence, these misclassifications are

robably caused by errors of the skull-stripping procedure, which

as insufficient for this image region (remaining extra-cerebral tis-

ue such as e.g. meningeal tissue that typically appears enhanced

n T1c, similarly to tumor tissue). 

All the previously mentioned observations suggest that, despite

eing a completely unsupervised algorithm, the RBM is able to

dentify tissue patterns and the most important spatial features

f the imaged pathologies at hand. Moreover, by inspecting the

trength of the weights we can identify which inputs were consid-

red more important for each feature. Taking these results into ac-

ount, it is clear that RBM computes representations that are more

mportant depending on the task at hand. This is confirmed by our

ierarchical approach yielding improved results over the “segment

ll at once” scheme, and more similar to those obtained by hand-

rafted features. 

Although some sequences are clearly less important than oth-

rs, we observed a degradation in performance if some MRI se-

uence is removed. This is in accordance with Havaei et al. (2016) ,

ince the authors observed a performance drop when some se-

uence is missing, too. Brain tumors are characterized by being a

eterogeneous kind of lesion, with some portions conspicuous only

n some MRI sequences. As we can observe in Figs. 4 –6 , all the four

RI sequences have some importance for some task. 

.3. Interpreting automatically extracted features in acute ischemic 

troke 

We also evaluated the proposed methodologies in a penum-

ra estimation problem, using the SPES database of the ISLES2015

ICCAI challenge. During acute ischemic stroke, the most severely

ffected region, the core lesion, consists of irreversibly damaged

issue. Penumbra refers to the larger region of dysfunctional, but

alvageable, tissue at risk of infarction. Hence, it is imperative to

reat this region as fast as possible. The core lesion is conspicu-

us in DWI, but penumbra is not ( Copen et al., 2011; Straka et al.,

010 ). Additionally, the core lesion is smaller than the penum-

ra region. Possibly because of this, features computed by hidden

odes that are strongly connected to the DWI sequence were not

anked among the most important features in the squared L2-norm

lot for global interpretability, Fig. 7 . If the system heavily relied

n DWI, it could underestimate the penumbra extension (observe

hird feature map in Fig. 7 , which relies both on DWI and T2).

onversely, the penumbra is better visualized in Perfusion Weight-

ng Imaging. CBV corresponds to the blood volume in the area.

egions of low CBV correlate with the core and final outcome of

he infarction; however, we are interested in predicting the com-

lete penumbra. In turn, CBF is related to the supply of oxygen
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nd nutrients to the tissue, being more correlated to the salvage-

ble tissue. Thus, CBF allows us to study which regions are under-

erfused. Still, both CBV and CBF have some disadvantages: They

re heterogeneous between gray and white matter, even in nor-

al tissue; they are susceptible to errors caused by signal clip-

ing, and they are affected if the blood-brain barrier is not intact

 Copen et al., 2011; Straka et al., 2010 ). Moreover, the penumbra

n those sequences is underestimated if the bolus is delayed and

n short acquisitions. Nevertheless, CBF suffers less from this prob-

em than CBV ( Copen et al., 2011; Straka et al., 2010 ). While the

achine learning system selected just a few hidden nodes that

ompute CBF-related features, it did not select any for CBV, Fig. 7 .

his may be related with CBF being more related to the penum-

ra, while CBV appears to identify regions closer to the core. Addi-

ionally, the disadvantages of these sequences, pointed out above,

ay contribute for a more heterogeneous data, hence being harder

o capture relations in it. On the contrary, TTP and Tmax are the

equences with the highest importance, according to the squared

2-norm plots of Fig. 7 . In fact, these sequences are not directly

easuring perfusion, but correlate well with hypoperfusion. TTP

nd Tmax are more independent of the tissue type (less hetero-

eneous in gray and white matter) and the acquisition time, than

BV and CBF. Moreover, the lesions are conspicuous in these se-

uences ( Copen et al., 2011; Straka et al., 2010 ). For this reason,

traka et al. (2010) proposed a method for penumbra estimation

ased on thresholding the Tmax > 6 s, and further removal of

mall clusters. Furthermore, the manual segmentation protocol of

he SPES database starts by thresholding the Tmax sequence to

ave a first segmentation of the hypoperfused region. The other

RI sequences are then used to refine it, by removing the sulci,

on-stroke pathologies, and previous infarcts ( Maier et al., 2017 ).

hese considerations show the importance of Tmax for estimat-

ng penumbra. The feature maps shown in Fig. 7 appear to iden-

ify penumbra patterns, by appearing hypointense in the TTP im-

ge and hyperintense on the Tmax, in the area of interest. Some

eatures based on T1c and T2 also appear as important, which may

e related to the suppression of sulci, similarly to the manual seg-

entation protocol. In the spatially distributed explanation of the

redictions ( Fig. 8 ), the importance of TTP and Tmax is confirmed.

nterestingly, one can note that those two sequences change their

mportance according to the location. The importance of CBV is not

ero everywhere because, although no features are strongly linked

o that sequence, there are some residual weights that accumulate

uring the local interpretability algorithm, even though we em-

loyed L1-norm to turn the least important weights to 0. This may

e an artifact of the algorithm, although the magnitude of impor-

ance of CBV is much lower than the strongest responses, thus can

e considered as negligible. 

Although the system learned to rely on Tmax and TTP at the ex-

ense of CBV and CBF, we know from the literature that the latter

equences should have some discriminative power ( Copen et al.,

011; Straka et al., 2010 ). Still, as previously mentioned, their im-

ortance is reduced, as computed by our methodologies. However,

pon confirmation with a clinical expert, this may point to a bias

ntroduced during the manual segmentation step, since it heav-

ly relies on the Tmax perfusion sequence that is thresholded at

 s. The machine learning system may learn to recognize its im-

ortance, since the expert similarly applies an intensity threshold

n the Tmax image. Moreover, this may account for the success of

he top-2 methods in Table 4 , since both thresholded Tmax. So, in-

erpreting a model may unveil potentially imperceptible biases on

he training data. In fact, the possibility to disclosure problems in

he data is pointed out by Ribeiro et al. (2016b ) as one of the ad-

antages of developing interpretation methodologies for machine

earning systems. 
t  
When we trained a system without the CBV and CBF sequences,

he results were similar to using all the MRI sequences. Of course,

s mentioned before, this may be due to a bias in the manual seg-

entation procedure. Nevertheless, the interpretation of the sys-

em allowed us to identify MRI sequences that are less important,

nd remove them from the system. Thus, interpretation may help

o identify unimportant MRI sequences for some tasks, which can

e helpful for reducing acquisition time and cost. 

. Conclusion 

In conclusion, we propose a machine learning system based on

 RBM as representation mapping and a RF as task-specific learner.

urthermore, we propose methodologies and definitions for the

achine learning system interpretability, both globally and locally.

espite being a shallow model, a RBM can still learn meaningful

eatures in an unsupervised way that are useful for segmentation.

ndeed, although being unsupervised, it learned to compute tissue

pecific features, as observed in the feature maps. The fact that it

s shallow, however, makes it simpler to find useful information

n its weights. This suggests that despite being regarded as “black

oxes”, we can still interpret the behavior of these models. We ob-

erved that the most important features could extract sequence-

nd task-specific knowledge. Contrasting with the common belief

hat these models mix all the information in their weights, in fact

hese findings suggest that it is employed in an organized fashion.

urthermore, we could verify that the system was able to capture

nformation coherent with expert knowledge, such as the manual

egmentation protocol used for BRATS 2013 ( Menze et al., 2015 )

nd penumbra estimation for SPES ( Maier et al., 2017 ). This was

bserved both globally and locally (spatially distributed in the im-

ge space). For instance, in the complete tumor vs. normal tis-

ue in BRATS, it was observed through the local interpretability

ethodology that FLAIR is the most important sequence, as ex-

ected. However, for the regions overlapping with the enhancing

umor the system still recognized the importance of the T1c se-

uence. Also, we could suggest a possible bias towards the impor-

ance of the Tmax sequence introduced by the manual segmenta-

ion protocol in SPES. With our interpretability methodologies, we

imed at improving the transparency and interpretability of Rep-

esentation Learning-based methods to increase their acceptance

n clinical applications. Finally, we proposed a strategy for feature

election combining RBM features and RF MDI. Summarizing, we

resent a methodology joining RF and RBM for data understand-

ng, and feature extraction and selection. This approach opens op-

ortunities to understand how MRI sequences are being used for

ach segmentation task; thus, it can potentially be useful to refine

maging protocols for a given segmentation task, with an impact

oth in acquisition time and cost. As well, it may be helpful to un-

erstand and take advantage of sequence specific features. In the

uture, we want to investigate how these findings can be extended

or other models (for instance, Deep Belief Networks) and applica-

ions. Additionally, we will investigate more principled approaches

or feature selection using both RBM-MI and RF-MDI. 
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