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Abstract 

The human face is a vital component of our identity and many people undergo medical 

aesthetics procedures in order to achieve an ideal or desired look. However, communi-

cation between physician and patient is fundamental to understand the patient's wishes 

and to achieve the desired results. To date, most plastic surgeons rely on either “free 

hand” 2D drawings on picture printouts or computerized picture morphing. Alternative-

ly, hardware dependent solutions allow facial shapes to be created and planned in 3D, 

but they are usually expensive or complex to handle. To offer a simple and hardware 

independent solution, we propose a web-based application that uses 3 standard 2D pic-

tures to create a 3D representation of the patient's face on which facial aesthetic proce-

dures such as filling, skin clearing or rejuvenation, and rhinoplasty are planned in 3D. 

The proposed application couples a set of well-established methods together in a novel 

manner to optimize 3D reconstructions for clinical use. Face reconstructions performed 

with the application were evaluated by two plastic surgeons and also compared to 

ground truth data. Results showed the application can provide accurate 3D face repre-

sentations to be used in clinics (within an average of 2 mm error) in less than 5 minutes. 
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1. Introduction 

Along with its functional aspects, the human face is a vital component of our identity and it 

provides us with many intricate and complex communication channels to society. Many peo-

ple with desire for change, suffering from low self-esteem, or seeking for an ideal look ac-

cording to society, undergo medical aesthetics procedures 6. However, communication be-

tween physician and patient is fundamental in order to understand the very often subjective 

wishes of the patient.  

Most plastic surgeons rely on either “free hand” two-dimensional (2D) drawings on picture 

printouts or computerized picture morphing 19,20 in order to establish the goals of facial aes-

thetic procedures, i.e. to discuss the feasible procedures according to the wishes of the pa-

tient. However, 2D visualization is limited to one point of view and therefore hinders the 

overview of the procedure outcome. Three-dimensional (3D) models associated with 3D 

planning tools can overcome such limitations, but the acquisition of these representations of 

the patient face is not trivial. Computed Tomography (CT)-scans allow creation of 3D facial 

shapes 14,15, but their radiation exposure and costs are not acceptable for aesthetic procedures. 

Other hardware dependent solutions such as laser or stereo-photogrammetric scanners 11,16,22 

also offer the possibility of creating 3D facial shapes, but such devices are usually expensive 

or complex to handle. As a result, their use is limited to physicians having the necessary fi-

nancial or technical resources. Alternatively, other hardware independent methods for creat-

ing 3D faces from pictures and video have been proposed including shape from shading 24, 

structure from motion 13,23, shape from silhouette 18,21, and statistical facial models 3. While 

the former three are dependent on the condition of light available, continuous multiple frames 

acquisitions (e.g. video), or high number of frames respectively, the latter has showed very 

robust results on reconstructing 3D faces by morphing a statistical facial model to a subject 

specific face. The use of these methods has been mainly limited to a research environment 

http://dict.leo.org/ende?lp=ende&p=_xpAA&search=self-esteem&trestr=0x8001�
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and therefore they are not optimized for clinics. Limitations on speed, accuracy and lack of 

planning capabilities hinder the direct use of these techniques as a physician-patient commu-

nication tool.  

In order to overcome these drawbacks, we propose in this paper a web-based and hardware 

independent application which creates a 3D representation of the patient’s face from 2D-

digital pictures and enables planning of aesthetic procedures in 3D. The proposed application 

requires three standard 2D-pictures of the patient (one frontal and two profiles) and a few 

landmarks in each image as input. The web-based software computes a patient-specific virtu-

al 3D face on which physicians can directly show the intended procedural changes to the pa-

tient with the 3D planning tools in different points of view. Clinical usability was the main 

focus of this application, therefore the methods for facial feature detection, 3D reconstruction 

and texture mapping were carefully chosen in the literature and optimized to enable their use 

within standard consultation time. Emphasis was given to the link between the different steps 

of the pipeline in order to allow for a time-effective application with sufficient accuracy for 

clinical use. Therefore, methods for facial feature contour detection based on training from 

synthetic data and the semi-supervised feature contour correction are proposed. To evaluate 

this application, a set of face reconstructions was performed and compared to different 

ground truth data. Variables include 3D reconstruction time, distance to the ground truth, as 

well as qualitative evaluation performed by two plastic surgeons (for reconstructions and 

planning tools). 

2. Materials and Methods 

2.1 Application 

Similarly to a previously developed application for 3D visualization of breast augmentation 

procedures 12, this application is accessible entirely on the internet. Therefore, it requires no 

additional hardware apart from a standard digital camera. The application runs on a normal 

web browser, which allows physicians, dermatologists, and aesthetic professionals from all 
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over the world to plan aesthetic facial procedure in 3D following a simple workflow without 

dealing with technical challenges (see Figure 1). First, the user measures the approximate 

distance between the eyes of the patient with a normal ruler and takes three pictures (one 

frontal, one from left profile and one from the right profile). The measurement and images 

are uploaded to the application running on a standard web browser. Subsequently, the physi-

cian manually places a set of landmarks in the images (28 in total, see image and landmarks 

from Figure 1) and uploads them to the web server. These landmarks representing key facial 

features (pupils, mouth corner, etc) increase the robustness of the automatic detection of fur-

ther points (around 120 per image) representing contours of facial features (eyes, mouth, face, 

etc) and necessary for the 3D reconstruction. With the detected contour points, the physician 

has the opportunity to check and correct them if necessary. Splines facilitate interaction with 

the contours (see feature contours correction in Figure 1). Once the correction is finished, the 

splines are converted back to facial contours points that are sent to the web server to recon-

struct a 3D textured shape of the patient face based on a 3D statistical shape model. Finally, 

the 3D representation of the patient face is displayed on the web browser powered with Uni-

ty 3 (from Unity Technologies, San Francisco, United States), and the physician may discuss 

the intended aesthetical procedures with the patients using the included and available plan-

ning tools. The set of tools allow manipulation of the patient specific virtual face in 3D con-

sidering different aesthetic procedures such as rhinoplasty, skin fillers, and dermabrasion 

procedures. The following sections explains the different steps of the pipeline. 

Input Data Acquisition 

The instructions for acquiring the input data are simple and easy to be replicated in every 

clinic. Colored images should be taken in the portrait orientation with the face occupying 

most of the image (around 60%). Faces on the order of 500 pixels width have been found to 

be a good compromise between reconstruction and image quality. The patient should have a 

neutral expression, with opened eyes and without accessories (e.g. ear rings or glasses). In 
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case of long hair, a hair band can be used to avoid hair on the facial region. The frontal image 

should be acquired with the patient facing the camera and with the nose in the center of the 

image. The profile images should be acquired with the patient ear and shoulder facing the 

camera and with the cheek in the center of the image. The camera to patient distance should 

be approximately 2 m. Such distance was found to be a good compromise between distortions 

caused by perspective projection and optical zoom power of standard digital cameras. The 

eye distance can be measured by placing a ruler on the nose of the patient and checking the 

values laying on the center of the eye. This distance is later used to rescale the final recon-

structed shape and perform virtual measurements. Additionally, the physician must place 6 

landmarks on the frontal image and 11 in each profile image with the instructions presented 

by an interactive tool that highlights the proper location of the currently selected landmark on 

a sketch of a face. See Figure 1 for location of the landmarks.  

Statistical Shape Models 

Statistical shape modeling is a technique used to represent the shape of objects that possess 

prior general geometric information, but that may vary among a population. For example, the 

shape of human faces is different for every person, but follow a general pattern defining the 

overall location of eyes, nose, and mouth. This method has been explored for 2D and 3D 

shapes, and its main applications include object detection in images and regression for esti-

mating object shapes 3,5,17. The first is typically known as active shape model (ASM), while 

the second as shape or surface reconstruction. We explore statistical shape models in two 

different ways (2D and 3D), to detect contour points of facial features in the images and to 

reconstruct the final representation of the patient's face respectively. The 3D statistical shape 

model used here was created using 200 faces of young adults (100 male and 100 females) 3. 

In order to create a statistical model out of shapes represented by vertices, a one-to-one corre-

spondence between each vertex of the shapes had to be established (for further details on es-

tablishment of vertex correspondence the reader is referred to 3,5). Assuming vertex corre-
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spondence and a common coordinate system, statistics about variation among the shapes can 

be collected and used to reconstruct new shape instances. The model used in this work com-

prises a mean shape mesh and a mean texture along with two matrices of eigenvectors and 

their respective eigenvalues (for further details on statistical shape generation the reader is 

referred to 3). 

2D Feature Contour Points Detection 

In this work, a 2D ASM is used to identify a set of points representing feature contours in the 

images 17. The search for the best contour point is performed according to the smallest 

Mahalanobis distance between a profile surrounding the current vertex position and the base 

profile of the corresponding vertex.  The base profile is generated out of a training set. The 

update of the new shape instance is performed by applying a set of weights. The weights are 

estimated from the difference of the current shape points and their new best positions, as pro-

posed by Cootes et al. 5. Convergence is achieved when there are no more changes between 

the new points and the new estimated shape. 

One of the key challenges with ASM is the gathering of data to create and train the statistical 

shape model. Several databases with annotated facial images are available, but the number 

and position of annotated points are typically fixed and not suitable for the 3D reconstruction 

method used here. In order to obtain accurate 3D reconstructions, the approach presented 

here demands a ASM generated out of a database of images with frontal and profile images 

annotated with several facial feature points (e.g. eyes contours, mouth contours, silhouette 

contour, etc.). Since such a flexible database is not publicly available, we used the 3D statis-

tical shape model to generate artificial data to train our 2D ASM. The artificial data not only 

eliminates the variability of the annotation process, but also allow for flexible optimization of 

the set of points used for 3D reconstruction since new images and annotations can be easily 

re-generated. A set of 6000 shapes were artificially generated by randomly varying shape and 

texture weights of the 3D statistical shape model. The 3D shapes were subsequently projected 
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from two different points of view: frontal, to simulate the frontal image; and profile, to simu-

late the lateral view. The backgrounds of these artificial images were replaced by one of 12 

randomly selected images of different uniform walls in order to simulate a real scenario. In 

addition, a subset of vertices representing manually chosen feature contours of the 3D mean 

shape were defined. The selected vertices were carefully chosen to match their respective 

facial feature locations in the images. Finally, the projected 3D vertices representing feature 

contour points and images were used to train two 2D ASM, one for frontal images and one 

for the right profile images.  

With the trained 2D ASMs, the search of the 2D feature contour points in a new image can be 

performed. Firstly, the mean shape comprising the points representing the feature contour 

points and comprising the points representing the manually annotated landmarks is aligned to 

the face according to the landmarks defined on the images by the physician. Finally, the algo-

rithm iteratively searches for the optimal 2D shape. To ensure a stable search, the manually 

annotated landmarks are considered as ground truth. Therefore, points in the 2D shape repre-

senting a initial landmark are set to their respective manually annotated location at each itera-

tion. The left profile image feature contour points are found by mirroring the left image along 

the vertical axis, applying the ASM for the right profile, and mirroring the contour points 

back. [See Appendix for additional feature search information]. 

2D to 3D Face Reconstruction 

One of the challenges with dense 3D shape reconstruction is the computational time required 

to estimate the set of weights that best represent the desired face. For this reason iterative 

approaches 3,5, such as the one used in the previous section, do not provide a clinical accepta-

ble processing time. To overcome such time constraints, Blanz et al. 2 have proposed a meth-

od for reconstructing dense 3D shapes from sparse data. The method presents a time efficient 

closed form solution for reconstructing 3D faces out of a set of points defined on a 2D image, 

but is limited to one image. To cope with the time requirements of the dynamical clinical 
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environment while also increasing the information for reconstruction, we adopt a similar ap-

proach based on multiple views, presented by Faggian et al. 7. The multiple views reconstruc-

tion method allows for fast reconstruction of a 3D face out of a set of points representing fa-

cial features defined in images acquired from different points of views. Basically, an energy 

function averaging the contribution of points in each image and the prior knowledge of the 

shape of a face helps to find an optimal set of weights for the reconstruction in one step. [See 

Appendix for additional information on the energy function]. The set of weights is finally 

used to obtain the desired shape of the patient's face. 

Texture Mapping 

Original statistical shape model approaches 3 estimate the texture of the shape from a statisti-

cal texture model. However, faster and more realistic shape texture can be achieved by map-

ping real images of patients. With one frontal and two profile images, a good corresponding 

texture value can be found for each vertex of the shape representing the patient's face. There-

fore, shape texture was mapped from the images acquired during the consultation. 

Firstly, a surface parameterization algorithm (Floater Mean Value Coordinates 8) was applied 

to the mean shape to define a offline transformation establishing correspondence between the 

shape vertices and the texture image. Such transformation is used afterwards to generate two 

intermediate texture images for each patient, one derived from the frontal image and one de-

rived from the profile images. Finally, the two textures are blended in one texture image us-

ing a multiband filter 4. [See Appendix for the formulation of the texture mapping]. 

3D Visualization and Planning Tools 

The 3D visualization and planning is very important to the physician because it is where he 

(she) will continuously interact with the system to discuss with the patient. Therefore, a clear 

and responsive tool is essential to maintain clinical usability. In order to cope with these re-

quirements with a web based application, the visualization and planning tools are implement-

ed with Unity 3 (a environment for high-end 3D web-based game development). As a plug-
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in, Unity 3 enables 3D rendering such as lightning, and mesh manipulation on standard web 

browsers with performance comparable to state-of-the-art platform applications. 

Four main planning tools were developed: one for rhinoplasty, one for skin fillers, one for 

dermabrasion (skin cleaning) and one for comparing before and after planning. The tool for 

rhinoplasty allows the nose to be manipulated using pre-defined points that are typically 

changed during plastic interventions. The pre-defined points are used as control points for 

local interpolation of the 3D mesh and deformation of the nose. The tool for skin filling al-

lows regions on the skin to be delineated and filled with a certain volume that is evenly dis-

tributed along the selected region. The injected volume is not intended to represent the vol-

ume to be injected in reality because of difficulties related to absorption and other factors, but 

rather to illustrate the difference between pre- and post-procedure. The dermabrasion tool 

allows wrinkles and undesired marks to be removed, as well as rejuvenation of the skin. Ba-

sically, a 3D brush selects a circular region to be smoothed on the skin. The region is then 

mapped to the textured image where a gaussian filter is applied. With the comparison tool, 

physicians and patients can visualize the intended effect of the intervention with pre- and 

post-planning situations displayed side by side. Additional tools enable measurements of dis-

tances between two points considering straight lines or along the surface (geodesic paths). 

2.2 Experiments 

In order to evaluate our application, three types of data have been used as ground truth (see 

Table 1): in-model data (IMD), out-model registered data (OMRD) and out-model non-

registered data (OMNRD). For IMD, the initial landmarks were automatically generated us-

ing their ground truth location with a gaussian noise (sigma equals to 2 and cropped at 4 pix-

els) and reconstruction was performed automatically without considering the feature contour 

correction step (illustrated in Figure 1). For OMRD and OMNRD, reconstruction was per-

formed by an expert for each case. The time required to perform each step of the pipeline was 

measured. Finally, the reconstructed faces were compared to the ground truth for each case as 
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follow. Firstly, ground truth and reconstructed shapes were aligned considering eye, nose and 

mouth segments of the 3D statistical shape model 3. Secondly, distances for all three datasets 

were measured from vertices of the reconstructed face to their corresponding point in the 

ground truth surface. For IMD and OMRD (with one-to-one vertex correspondence between 

ground truth and reconstruction), the shapes were aligned with Procrustes 10. For OMNRD 

(without vertex correspondence), the shapes were aligned with iterative closest point (ICP) 1.  

The vertex correspondence of IMD and OMRD were not directly used for distance measure-

ment because the correspondence cannot be ensured in flat areas such as cheeks and forehead 

after reconstruction. Therefore, two different methods were used to find vertex correspond-

ence in all three datasets 14: closest point matching (CPM), which considers the closest point 

in the ground truth surface as corresponding point; and thin plate spline plus closest point 

matching (TPS+CPM), which first warps the reconstructed face with a TPS transformation 

and a set of landmarks, and subsequently finds the closest point on the ground truth surface. 

The former is a direct method that is not influenced by human error, nevertheless it does not 

ensure correct anatomical correspondence. The latter relies on the manual definition of land-

marks, but presents a better anatomical correspondence. Since the distance measured from 

corresponding points found by TPS+CPM is not necessarily to the closest point between the 

two surfaces, but a more anatomically relevant distance, it should result in higher values than 

the ones found by CPM. A total of 15 validation landmarks were defined in the reconstructed 

and in the ground truth shapes (see Figure 2 in the Electronic Supplementary Material). In 

addition to the distance measurements, a visual analysis was performed by two plastic sur-

geons in each of the cases from OMNRD to support the qualitative results. The surgeons rat-

ed each of the reconstruction according to the values presented in Table 2 while comparing to 

the ground truth and to the pictures. In a last step, the 3D planning tools were evaluated quali-

tatively on the reconstructed cases. 
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3. Results 

The average time necessary to obtain the 3D face once the 2D images were uploaded to the 

application was 297.79 ± 90.49 seconds. This time has been divided among different individ-

ual steps of the application: manual definition of the facial landmarks (94.32 ± 36.45 se-

conds), 2D feature contour points detection (8.50 ± 3.99 seconds), manual correction of the 

feature contours (191.52 ± 70.59 seconds), 3D face reconstruction (0.71 ± 0.39 seconds), and 

texture mapping (0.83 ± 0.23 seconds). 

The average reconstruction error over all cases measured with CPM was below 2 mm for all 

datasets type. Peaks of up to 2.1 mm per region were noticed for the individual case errors 

(except for the 299th worst case that presented 2.88 mm error for the mouth region before 

manual correction of the feature contours, but below 2 mm after manual correction). The av-

erage reconstruction error over all cases measured with TPS+CPM was below 2 mm for sub-

jects of IMD, OMRD, and below and 3 mm for OMNRD. The distances calculated with CPM 

and TPS+CPM vertex correspondence representing the reconstruction error are presented in 

different graphs according to dataset type, see Figure 3 and Figure 4 respectively. Figure 5 

and Figure 6 show respectively the good and bad examples of reconstructions of each dataset 

type. The distance maps present small errors around the eyes and chin region. There exist 

larger errors in the face region around the cheek and forehead since the current method does 

not use information from those regions for reconstruction. The neck and ears region also 

showed large errors, but are not considered in the analysis since such regions have only been 

used to complete the appearance of the face. It is worth mentioning that the errors of the IMD 

cases could still be improved since no manual corrections were performed for the feature con-

tours. Visual inspection of the 2D feature contour points detection showed that automatic 

detection of the feature contour failed considerable in 9 % of the IMD cases. Therefore, the 

reconstruction of such cases could be significantly improved after manual the corrections, see 

Figure 7 for two examples.  



12 / 32 

According to the visual analysis performed by 2 surgeons, all reconstructed cases from the 

OMNRD could be used for communicating with the patient, although some of them presented 

sub-optimal reconstruction. Out of the 28 real cases reconstructed, 1 and 2 cases were evalu-

ated as a "Bad" reconstruction by surgeon 1 and 2 respectively. No cases were evaluated as 

"Very Bad" or "Excellent". The average evaluation were in between "Good" and "Very 

Good" with values of 3.54 and 3.32 for surgeon 1 and 2 respectively. Examples of recon-

struction paired with the respective grade attributed by the surgeons are presented in Figure 8. 

According to the surgeons, the reconstruction of some cases gave different impressions when 

analyzing from different points of view (e.g. frontal and profile). For example, case 1 from 

Figure 8 (graded as "Very good" by surgeon 2) gives better frontal impression than profile, 

while case 3 (graded as "Very good" by surgeon 2) gives better profile impression. From the 

reconstructions, only case 5 diverged significantly between the surgeons ("Very good" by 

surgeon 1 and "Bad" by surgeon 2). While for surgeon 1 the overall appearance of the face 

was very well captured, for surgeon 2 it did not replicate the nose very well from profile and 

it did not capture the face appearance from frontal view. Another example of a "Bad" recon-

struction for surgeon 2 can be seen in case 6. The same case was considered "Good" by sur-

geon 1 with a better profile view than frontal (face appeared thinner than subject). Case 3 was 

considered only "Good" by both surgeons because of differences on the facial curves around 

the cheek region. 

The planning tools enabled emulation of various aesthetic procedures. The rhinoplasty arrows 

that are located in crucial points typically considered for intervention allowed for easy ma-

nipulation of the nose in 3D. Simple emulation of filling procedures could be achieved by 

delineating the region to be filled and varying the amount of filling to be injected. Wrinkles 

could be quickly removed from the patient skin considering certain regions of the face. The 

planned procedure could be directly visualized on the 3D face from different angles. Addi-

tionally, pre- and post procedure emulation could be compared side by side in order to em-
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phasize the modifications achieved. An illustration of the results of the planning tools valida-

tion on a random case are displayed in Figure 9.  

4. Discussion 

This paper presents the first results of a web-based computer assisted system for aesthetic 

procedure consultations that enables physicians to emulate different procedures on a virtual 

3D representation of the patient's face. The application aims to facilitate communication be-

tween physicians and patients. The simple workflow requiring no additional expensive and 

complicated hardware is a great advantage for plastic surgeons, dermatologists, and aesthetic 

professionals not having the resources to acquire current available approaches, or reluctant to 

adopt such complex technologies. Current hand-held scanner are still optimized for accuracy 

and lack on usability for clinics. Web based applications provides not only world wide access 

allowing for online discussions between physicians but also simplify upgrades and mainte-

nance (considered a highlight in the clinical community) since doctors only need to login and 

use the application. The pipeline is based on standard 2D images that are already part of the 

standard clinical workflow requiring therefore no additional steps. The automatic steps of the 

application are performed within a few seconds and are of no concern in this scenario. 

Among the automatic methods, this work proposes a feature contour detection that takes ad-

vantage of synthetic data generated by the 3D statistical model to facilitate the engineering of 

applications similar to the presented here. Our results have showed that physicians are able to 

reconstruct faces of patients in less than an average of five minutes, which allows the applica-

tion to be used within standard consultation time. Since the application is going to run on a 

server and the input images are scaled to a standard size (e.g. interpupillary distance) before 

processing, the processing time of those steps is expected to be similar for different cases. the 

manual Currently, the most time consuming parts of the procedure are the manual definition 

of the facial landmarks and correction of the facial feature contours (averaging around two 

and three minutes respectively). No difficulties with those steps were reported from volun-
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teers who tested the application since they are facilitated by semi-supervised methods (e.g. 

spline contours). The experiments with IMD cases, showed that the manual correction of the 

facial feature contours can improve the reconstruction results (see Figure 7) but they were not 

necessary for most of the cases. Therefore, faster less accurate reconstructions can be ob-

tained without manual correction depending on the need of each user. Furthermore, automatic 

detection of manually defined landmarks is part of future improvements of the system.  

In this study, two distance measures were used (considering CPM and TPS+CPM point cor-

respondence) to compare reconstruction and ground truth. The comparison with the ground 

truth allowed for identification of the distribution of error in the face. The graphs showed that 

from the three regions the mouth has usually higher error. Distance maps showed that the 

cheek and the forehead regions concentrate most of the errors. However, as it can be seen in 

Figure 5, Figure 6 and Figure 8, the texture mapping plays an important role on the overall 

perception of the face. The texture seems to minimize perception of small errors of the shape 

reconstruction. From our experiments, it was noticed that imperfections are less perceived 

when casually examining the reconstructed face rather than thoroughly analyzing it, which is 

usually the case when communicating a certain procedure to the patient in a given dynamic 

clinical scenario. The reconstructions in our evaluation presented a very stable texture map-

ping. None of the cases showed major texture problems such as background as part of the 

face or stitching effect even for the IMD cases without manual correction of the feature con-

tours (example in Figure 7). The qualitative analysis performed by two surgeons on the re-

constructions showed that most of the cases were evaluated as "Good" or "Very Good", 

which supports the use of the application in clinics. Although there were sub-optimal recon-

structions, the surgeons would still use it to discuss with the patient. According to the sur-

geons, "Bad" reconstructions would reduce the visual impact of the application, but not hin-

der its use as a communication tool. From the clinical point of view, some reconstructions 

gave different impression when analyzed from different sights, which could make them less 
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suitable for discussing certain procedures than for others. For example, a case with better 

frontal than profile impression could be used for communicating skin clearing or rejuvenating 

better than for other procedures. Although texture could reduce some of the perceived recon-

struction errors, large errors in the shape can still affect the overall appearance of the face. 

For example, case 6 of Figure 8 is also illustrated as sub-optimal reconstruction in Figure 6 

with large errors on the cheek bone region. Such errors in shape made the subject look thin-

ner than he actually is and reduced the score gave by surgeon 2. According to the surgeons, 

rhinoplasty or other profile altering surgical procedures rely more on profile view and there-

fore on shape reconstruction accuracy. Hence, accurate shape reconstructions (illustrated on 

Figure 3 and Figure 5) can facilitate discussions on rhinoplasty increasing the power of the 

application as well as giving a better overall impression to patients and physicians. None of 

the cases were evaluated as "Excellent", showing that there are limitations on the actual face 

appearance reproduction accuracy when compared to 3D scanner devices that require more 

complex setup and post-processing. On our results, errors seemed to be higher in subjects 

with features not belonging to the population used to create the 3D statistical shape model 

used in this work (200 young Caucasians). Therefore, future work includes extending the 

range of face representations of our application by expanding the current 3D statistical shape 

model and by creating similar models for different races. Additionally, wrinkles are typically 

not reconstructed on the shape in the current version since the model was mostly created with 

young subjects. Therefore, wrinkles are represented as texture only. 

The planning tools were created using feedback from plastic surgeons and optimized for fast 

and intuitive 3D operations. Mainly, the proposed operations can be performed on real time 

on the web browser of common personal computers. The application offers possibilities of 

emulating filling, skin clearing or rejuvenation, and rhinoplasty procedures. Additionally, 

visualization tools allow the user to compare pre, and post-intervention scenarios in a syn-
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chronized way, which enriches the decision making of the physician and the communication 

to the patient. 

In summary, we have presented the first results of a developed web-based 2D to 3D facial 

reconstruction tool which provides sufficiently high precision for communication between 

physician and patients for visualization of facial treatment options. Patient understanding 

about the aesthetic procedure, and consequently satisfaction with the consultation, is expected 

to increase with the use of 3D virtual face representation and procedure planning. The current 

results warrant further evaluation of the application in clinical setting with evaluation of this 

novel method at large scale by physicians, aesthetic professionals and patients. 
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7. Appendix 

Let s = (s1, ..., sm) be a set of m shapes represented by p corresponding vertices 

si = v = (v1, ..., vp)T where vi ϵ ℝ3 and represent x, y and z coordinates. New shape instances v 

where v ⊄ s, can be created with a linear combination of weights 

𝑣 =  �̅� + 𝑃𝑣 𝑑𝑖𝑎𝑔(𝜎𝑣)𝑏𝑣, 1 

where, �̅� = 1
𝑚

∑ 𝑠𝑖
𝑚
𝑖=1  is the mean shape, 𝑃𝑣 = (𝑃𝑣

1, ..., 𝑃𝑣
m) is a matrix of eigenvectors and 

𝑑𝑖𝑎𝑔(𝜎𝑣) is a diagonal matrix with the respective eigenvalues that can be obtained by apply-

ing principal component analysis (PCA) 9 to the m shapes, and 𝑏𝑣 = (𝑏𝑣
1, ..., 𝑏𝑣

m)T is a vector 

of weights where 𝑏𝑣
i ϵ ℝ.  

With an analogous approach, the texture values of the vertices of these shapes 

𝑠𝑡
𝑖 = t = (t1, ..., tp)T, where ti ϵ ℝ3 and represent r, g and b values, can modeled as a linear 

combination of weights, 𝑏𝑡 = (𝑏𝑡
1, ..., 𝑏𝑡

n)T. New texture instances can be estimated as 

𝑡 =  𝑡̅ +  𝑃𝑡𝑑𝑖𝑎𝑔(𝜎𝑡)𝑏𝑡, 2 

where, 𝑡̅ = 1
𝑚

∑ 𝑠𝑡
𝑖

𝑚
𝑖=1  is the mean texture, 𝑃𝑡 = (𝑃𝑡

1, ..., 𝑃𝑡
n) is a matrix of eigenvectors and 

is 𝑑𝑖𝑎𝑔(𝜎𝑡) is a diagonal matrix with the respective eigenvalues that can be obtained by ap-

plying PCA to the m shape textures. 

A 2D statistical shape model can be created with a similar approach, but considering a set of 

h feature contour points 𝑓𝑎 = (f1, ..., fh)T, where fi ϵ ℝ2 and represents x and y coordinates, 

and a ϵ {"fi", "ri", "li"} indicating frontal, right profile and left profile images respectively, to 

be automatically detected in the images. Let 𝑙𝑎 = (l1, ..., lk)T, where li ϵ ℝ2, li ⊂ fi, and repre-

sents x and y coordinates, be a set of k manually defined landmarks. The 2D ground truth 

location of the facial feature contour points 𝑓𝑎 used for training the 2D ASM is calculated as 

http://pt.wiktionary.org/w/index.php?title=%E2%8A%82&action=edit&redlink=1�
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𝑓𝑓𝑖 = 𝑇𝑝𝑓𝑖 𝑇𝑠𝑓𝑖𝑣,  𝑓𝑟𝑖 = 𝑇𝑝𝑟𝑖 𝑇𝑠𝑟𝑖𝑣, 3 

where, 𝑇𝑝𝑓𝑖 and 𝑇𝑝𝑟𝑖 represent the frontal and right profile 3D to 2D projections respec-

tively, 𝑇𝑠𝑓𝑖 and 𝑇𝑠𝑟𝑖 are transformations (manually defined offline) to select a subset of 

vertices representing facial feature on the 3D mean shape (i.e. the landmarks 𝑙𝑓𝑖, 𝑙𝑟𝑖 and 𝑙𝑙𝑖, 

and additional features such as eyes contour, mouth contour, etc). Random shapes and texture 

used for training of the 2D ASM were generated by varying the weights 𝑏𝑣 and 𝑏𝑡 in equa-

tions 1 and 2 according to a normal distribution. 

The 2D facial feature contour points search was performed in two steps. Firstly, an initial 

alignment of the mean shape, 𝑓𝑓𝚤���� or 𝑓𝑟𝚤����, with the manually defined landmarks, 𝑙𝑓𝑖 or 𝑙𝑟𝑖, was 

performed following 

𝑓𝑓𝑖∗ =  𝑇𝑃𝑆(𝑃𝑅𝑂𝐶(𝑓𝑓𝚤����, 𝑙𝑓𝑖), 𝑙𝑓𝑖), 𝑓𝑟𝑖∗ =  𝑇𝑃𝑆(𝑃𝑅𝑂𝐶(𝑓𝑟𝚤����, 𝑙𝑟𝑖), 𝑙𝑟𝑖), 4 

where, 𝑓𝑓𝑖∗ and 𝑓𝑟𝑖∗ are the initial position of the shape search for the frontal and right pro-

file respectively, 𝑇𝑃𝑆(𝑚, 𝑛) is a thin plate spline transformation of the point set m to a subset 

of control points n, and 𝑃𝑅𝑂𝐶(𝑚, 𝑛)  is a Procrustes transformation of the point set m to a 

subset of points n. Secondly, an iterative process 5 searches for the optimal 2D shape, i.e. 𝑓𝑓𝑖, 

𝑓𝑟𝑖 and 𝑓𝑙𝑖 for frontal, right profile and left profile respectively. 

With the set of points representing 2D facial feature contours from different point of views, 

the optimal weights 𝑏𝑣 can be found by minimizing the energy function 7: 

𝐸 = 1
3

� 𝑇𝑝𝑓𝑖 𝑇𝑠𝑓𝑖� 𝑃𝑣 𝑑𝑖𝑎𝑔(𝜎𝑣)𝑏𝑣 −  �̅�� − (𝑓𝑓𝑖 − 𝑇𝑝𝑓𝑖 𝑇𝑠𝑓𝑖�̅�)�
2
 + 

1
3

� 𝑇𝑝𝑟𝑖 𝑇𝑠𝑟𝑖� 𝑃𝑣 𝑑𝑖𝑎𝑔(𝜎𝑣)𝑏𝑣 −  �̅�� − (𝑓𝑟𝑖 − 𝑇𝑝𝑟𝑖 𝑇𝑠𝑟𝑖�̅�)�
2
 + 

1
3

� 𝑇𝑝𝑙𝑖 𝑇𝑠𝑙𝑖� 𝑃𝑣 𝑑𝑖𝑎𝑔(𝜎𝑣)𝑏𝑣 −  �̅�� − (𝑓𝑙𝑖 − 𝑇𝑝𝑙𝑖 𝑇𝑠𝑙𝑖�̅�)�
2
 + 

𝜂‖𝑏𝑣‖2, 

5 

where, the first three lines represent the contribution of contour points in each image (frontal, 

right profile and left profile respectively) and the last line represents a prior to keep the de-



21 / 32 

sired shape close to the shape of a human face, in this case the mean shape. The last line is 

necessary because the energy function can converge to different minimums, and the optimum 

minimum when assuming an error on locating the facial feature contour points might result 

on a non-face-like shape. A closed form solution to solve the equation above in one step can 

be found in 2,7. Finally, 𝑏𝑣 is replaced in the in equation 1 to reconstruct the 3D shape of the 

patient's face. 

After the final patient's face shape is reconstructed, the texture mapping is performed as fol-

lows. Firstly, two intermediate textures are generated, 𝑡𝑓𝑖 frontal and 𝑡𝑝𝑖 profile. See equa-

tions 6 and 7. 

𝑡𝑓𝑖 = 𝑅𝐺𝐵(𝑃𝑅𝑂𝐶( 𝑇𝑝𝑓𝑖𝑣, 𝑓𝑓𝑖), 𝐼𝑓𝑖), 6 

where, 𝐼𝑓𝑖 is the frontal image of the patient, and RGB(m, n) is a function that gets the list of 

r, g, and b values out of the image n at the locations m.  

𝑡𝑝𝑖 = 𝑅𝐺𝐵𝑙𝑡(𝑃𝑅𝑂𝐶( 𝑇𝑝𝑟𝑖𝑣, 𝑓𝑟𝑖), 𝑃𝑅𝑂𝐶( 𝑇𝑝𝑙𝑖𝑣, 𝑓𝑙𝑖), 𝐼𝑟𝑖, 𝐼𝑙𝑖), 7 

where, 𝐼𝑟𝑖 and 𝐼𝑙𝑖 are the right and left profile images of the patient respectively, and 

𝑅𝐺𝐵𝑙𝑡(mr, ml, nr, nl) is the function that gets the list of r, g, and b values out of the image, nr 

or nl, at the locations mr or ml depending whether vi is located on the left or right side of the 

shape. Finally, the two intermediate textures are blended in one texture image 𝐼𝑡𝑥  

𝐼𝑡𝑥 = 𝑀𝑈𝐿𝑇𝐼𝐵𝐴𝑁𝐷( 𝑇𝑣�𝑡𝑥𝑡𝑓𝑖 , 𝑇𝑣�𝑡𝑥𝑡𝑝𝑖 , 𝐼𝑚𝑠𝑘), 8 

where, 𝐼𝑚𝑠𝑘 is a mask (generated offline) separating frontal and profile portions of a face in 

the 𝐼𝑡𝑥 space, 𝑇𝑣�𝑡𝑥 is a transformation to map shape vertices considering the mean shape to 

a texture image (surface parameterization 8 obtained offline using the mean shape), and 

MULTIBAND(nf, nl, nm) is a multi band multiband filter 4 that blends images nf and nl accord-

ing to the mask image nm. 
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8. Tables, figure legends 

 

Figure 1: Overview of the data flow in the different steps of the application that is divided in 

two layers separated by the internet cloud: the web browser powered with "unity 3" 

at the physician's computer and server computer providing the web service.  The 

image & landmarks box highlights the landmarks to be manually defined (yellow 

crosses): 6 frontal (right eyebrow, eye centers, nose tip, left mouth corner, and chin) 

and 11 in each profile image (top of the forehead, inflection of the nose with fore-

head, end of the eyebrow, eye corner, tip of the nose, corner of the mouth, connec-

tion of the chin with the neck, back part of the jaw, bottom and top of the ear, and 

neck inflection). The feature contours correction box highlights the splines for cor-

rection of the feature contour points. The 3D Planning box highlights the final 3D 

shape for planning. 
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Figure 2: Location of the 15 landmarks used for the TPS+CPM metric: rft and lft, right and 

left frontotemporale; rex and lex, right and left exocanthion; ren and len, right and 

left endocanthion; na, nasion; prn, pronasale; ral and lal, right and left, alare; sn, 

subnasale; ls, labiale superius; rch and lch, right and left cheilion; and gn, gnathion. 

{To be available as Electronic Supplementary Material} 
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Figure 3:  Three graphs (one per dataset type) illustrate the average CPM distance and stand-

ard deviation for the three best cases (blue bars with one bar per case), overall cases 

(green bar with average considering all cases) and for  the three worst cases (red 

bars with one bar per case) grouped by segments. Classification of the best and 

worst cases is according to the Nose+Mouth+Eyes region. Nose+Mouth+Eyes rep-

resents the error considering vertices from nose, mouth and eyes segments. Nose, 

Mouth and Eyes represents the error considering vertices from each of the segments 

individually (nose, mouth and eyes respectively).  Different colors represent differ-

ent subjects.  

Nose+Mouth+Eyes Nose Mouth Eyes
0

2

4

6

Case

D
ist

an
ce

 (m
m

)

Avg. ± Std. Closest Point Matching (CPM) for IMD

 

 
Best Case
2nd Case
3rd Case
Overall Cases
298th Case
299th Case
Worst Case

Nose+Mouth+Eyes Nose Mouth Eyes
0

2

4

6

Case

D
ist

an
ce

 (m
m

)

Avg. ± Std. Closest Point Matching (CPM) for OMRD

 

 
Best Case
2nd Case
3rd Case
Overall Cases
8th Case
9th Case
Worst Case

Nose+Mouth+Eyes Nose Mouth Eyes
0

2

4

6

Case

D
ist

an
ce

 (m
m

)

Avg. ± Std. Closest Point Matching (CPM) for OMNRD

 

 
Best Case
2nd Case
3rd Case
Overall Cases
26th Case
27th Case
Worst Case



25 / 32 

 

 

 

Figure 4:  Three graphs (one per dataset type) illustrate the average TPS+CPM distance and 

standard deviation for the three best cases (blue bars with one bar per case), overall 

cases (green bar with average considering all cases) and for  the three worst cases 

(red bars with one bar per case) grouped by segments. Classification of the best and 

worst cases is according to the Nose+Mouth+Eyes region. Nose+Mouth+Eyes rep-

resents the error considering vertices from nose, mouth and eyes segments. Nose, 

Mouth and Eyes represents the error considering vertices from each of the segments 

individually (nose, mouth and eyes respectively).  Different colors represent differ-

ent subjects.  
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Dataset 2D Input 
3D Reconstruction 

Shape & Texture 

3D Reconstruction 

Shape 

Distance Map 

(CPM) 

Color Bar  

(mm) 

IMD       

 

     

OMRD     

    

OMNRD     

    
 

Figure 5: Example of good reconstruction results showing the input 2D pictures, the recon-

structed 3D face with and without texture, and the distance map.  
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Dataset 2D Input 
3D Reconstruction 

Shape & Texture 

3D Reconstruction 

Shape 
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(CPM) 

Color Bar 

(mm) 

IMD     

 

    

OMRD     

    

OMNRD     

    
 

Figure 6: Example of bad reconstruction results showing the input 2D pictures, the recon-

structed 3D face with and without texture, and the distance map. 
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2D Input 
3D Reconstruction Distance Map (CPM) 

mm 
Manual Feature Correction Manual Feature Correction 
Before After Before After 

     

      
 
Figure 7: Example of reconstruction improvement with manual feature contour correc-
tion of two IMD cases. Case one (first row) show most improvements in the eyes and lips 
region, while case two (second row) show most improvements in the mouth region.  
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# Original Images 3D Reconstruction Surg.

Eval. 
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1 
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Figure 8: Example of reconstructed cases. From left to right, the figure shows the original 

images (part of the input), the respective reconstructed 3D face from 4 points of 

view, and the evaluation of surgeons 1 and 2 according to Table 2.  
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Figure 9: Illustration of the 3D planning tools. a) shows tools for nose correction that can be 

used for rhinoplasty. b) shows tools for emulating filling procedures in which phy-

sicians define a region and an amount to be filled. c) shows a tool for cleaning the 

skin. d) shows a comparison of pre- and post procedure planning. 

  

a) b)

c) d)



31 / 32 

Table 1: Description of datasets used for evaluation. 

Dataset Data Description 2D Input Images Aim 

IMD 

A set of 300 face shapes artificial-

ly generated by randomly varying 

the parameters of the 3D statisti-

cal shape model using a normal 

distribution. For further details the 

reader is referred to 3.  

Artificially created 

frontal, right profile 

and left profile images 

(972 x 1280 pixels and 

eye distance of around 

240 pixels) . 

Allow verification 

of the capability of 

the application to 

reproduce a well 

known face.  

OMRD 

A set of 10 face shapes provided 

with the 3D statistical shape mod-

el 3 and therefore with one-to-one 

vertex correspondence to the 

mean shape, but out of the faces 

used for creating the model. 

Artificially created 

frontal, right profile 

and left profile images 

(972 x 1280 pixels and 

eye distance of around 

240 pixels) . 

Allow verification 

of the capability of 

the application to 

reproduce an 

unknown face. 

OMNRD 

A set of 28 newly scanned faces 

(five males and five females 

scanned with an Artec MHT 3D 

scanner Artec Group, Moscow, 

Russia), therefore out of the faces 

used for creating the model and 

without vertex correspondence.  

Acquired with a 

standard digital 

camera (Nikon 

Coolpix L23 with 5x 

Optical Zoom, 2736 x 

3648 pixels). 

Allow verification 

of the capability of 

the application to 

reproduce an 

unknown face. 
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Table 2: Rating system used for the qualitative evaluation of the reconstructed 3D faces. 

Value Meaning Description 

5 Excelent No apparent differences from the patient can be noticed. 

4 Very Good It is very similar to the patient apart from minor details. 

3 
Good It is similar to the patient and good for communication with the 

patient. 

2 
Bad Large differences to the patient can be noticed, but it can still be 

used for communication of certain procedures. 

1 
Very Bad It has no resemblance with the patient and cannot be used for 

any kind of communication. 
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