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Brain metastasis (BM) is one of the main complications of many cancers, and the most frequent 
malignancy of the central nervous system. Imaging studies of BMs are routinely used for diagnosis of 
disease, treatment planning and follow-up. Artificial Intelligence (AI) has great potential to provide 
automated tools to assist in the management of disease. However, aI methods require large datasets 
for training and validation, and to date there have been just one publicly available imaging dataset 
of 156 BMs. This paper publishes 637 high-resolution imaging studies of 75 patients harboring 260 
BM lesions, and their respective clinical data. It also includes semi-automatic segmentations of 593 
BMs, including pre- and post-treatment T1-weighted cases, and a set of morphological and radiomic 
features for the cases segmented. this data-sharing initiative is expected to enable research into and 
performance evaluation of automatic BM detection, lesion segmentation, disease status evaluation 
and treatment planning methods for BMs, as well as the development and validation of predictive and 
prognostic tools with clinical applicability.

Background & Summary
Brain metastases (BMs) represent the most common intracranial neoplasm in adults. They affect around 20% of 
all cancer patients1–6, and are among the main complications of lung, breast and colorectal cancers, melanoma 
or renal cell carcinomas1–4. The increasing availability of systemic treatments has improved the prognosis of 
patients with primary tumors, leading to an increase in the probability of developing BMs2,3,6,7.

BMs often appear as multiple lesions, with only around 25% of patients harboring a single BM2,8. On magnetic 
resonance imaging (MRI) studies, they are found to present contrast-enhancing features. Contrast-enhanced 
T1-weighted (CE-T1-W) MRI is the gold standard imaging sequence for BMs, providing information about 
lesion size, morphology and surrounding healthy structures7,9. T2-weighted imaging and fluid attenuation 
inversion recovery (FLAIR) MRI sequences are also used to help in identifying BMs, due to the surrounding 
edema found in many BM lesions1,5,7.

Treatment of BMs typically includes a combination of radiotherapy, chemotherapy, immunotherapy, tar-
geted therapies, and/or surgery1–3. Radiotherapy schemes include whole brain radiation therapy and stereotactic 
radiosurgery (SRS). SRS is considered the standard of care in patients with limited metastatic burden6,7,9–11.
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The clinical management of BMs undergoing radiotherapy requires time-consuming processes such as lesion 
identification and segmentation2,3,12. Time spent on those tasks could be reduced with the aid of semi-automatic 
or automatic computer-guided algorithms. Machine learning (ML) and deep learning (DL) techniques are being 
developed for different problems related to BMs, such as: automatic BM detection5–7,12–14, segmentation11,13–15 
and differential diagnosis of BMs from other brain tumors7,12,16. AI algorithms may also reduce human errors in 
all of those jobs that result from heavy workloads, allowing for increased reproducibility6,12.

Another problem in which AI can be helpful is the differentiation between post-treatment BM progression 
and radiation necrosis, a transient inflammatory effect after SRS. These two situations have overlapping features 
on MRI sequences, which makes it challenging to distinguish them visually7,9,10. Incorrect classification leads to 
unnecessary treatments and substantial patient harm. For this reason, AI methods have have been developed to 
automatically distinguish them7,9.

Finally, the development of prognostic and predictive metrics using the information contained in medi-
cal images is of the utmost importance because of the clinical implications. For BMs, the Graded Prognostic 
Assessment (GPA) index is the most popular clinically-validated prognostic scale1,3. However, it does not use 
any imaging information, but only clinical variables. In this sense, the field of Radiomics has the potential to 
improve the prognostic and predictive value of GPA and set the ground for novel indexes17,18. Radiomic-based 
research in brain tumors has been huge, and a variety of parameters have been studied4,7,16,19–22. Additionally, 
while morphological features obtained from MRI have proven effective in the setting of other brain tumors, 
little research has been done on their utility for BMs.23–29. The calculation of those biomarkers relies on brain 
tumor segmentations. Several approaches constructed using ML and DL algorithms have been proposed in the 
literature to automate this procedure11,12,30–34. However, due to the lack of large BM public datasets, there is no 
common ground on which they can be properly compared.

Publicly available datasets of BMs are limited. The most popular repository of images for cancer research is 
The Cancer Imaging Archive (TCIA)35, including more than 140 imaging repositories of different human can-
cers. However, in the case of BMs, only one database including 156 whole brain MRI studies have been found 
available14. This leads to the fact that while there is a good amount of public data for the much less frequent 
primary brain tumors such as glioblastoma, available datasets for BMs are scarce.

This study tries to solve that problem by contributing longitudinal magnetic resonance imaging studies of 75 
BM patients, harboring 260 BM lesions, for a total of 637 imaging studies. Imaging studies include pretreatment 
post-contrast T1-w sequences, and most of them include other sequences such as T1, T2, FLAIR, DWI, etc. 
Semi-automatic segmentations of 154 different BMs for a total of 593 post-contrast T1-W segmentations are also 
provided with the dataset. These data are accompanied by an extensive database including clinical data and a set 
of morphological and radiomic-based features obtained from the segmentations.

MRI studies in our dataset have four times the number of segmentations than those currently publicly avail-
able14. Additionally, we make public three excel files, one of which contains clinical data, including patient infor-
mation, details about the primary tumor, details about treatments, and the date of the patient’s death, as opposed 
to the already published one, which only contains information about the histology of the primary tumor.

Methods
Subject characteristics. Data collected include the follow-up imaging studies and clinical data of 75 BM 
patients from 5 different medical institutions. Inclusion criteria was defined as: deceased adult patients with 
pathologically confirmed diagnosis of BM between January 1, 2005 and December 31, 2021, availability of imag-
ing studies with at least the post-contrast T1-w high-resolution sequence (pixel spacing ≤2 mm., slice thickness 
≤2 mm., no gap between slices), no noise or artifacts in the images, and availability of basic clinical data (age at 
diagnosis, sex, treatment schemes followed, survival, etc.). Primary tumors were: Non-small cell lung cancer 
(NSCLC) (n = 38), small cell lung cancer (SCLC) (n = 5), breast cancer (n = 22), melanoma (n = 6), ovarian can-
cer (n = 2), kidney cancer (n = 1) and uterine cancer (n = 1).

The 75 patients included had a total of 260 BMs with a total of 637 imaging studies. Of those, 593 studies were 
semi-automatically segmented as described below.

Image acquisition. All post-contrast T1-W sequences were obtained after intravenous administration of a 
single dose of contrast. The 593 imaging sequences segmented were acquired with a 1-T (n = 8), 1.5-T (n = 550) 
or 3.0-T (n = 35) MR imaging scanners. Regarding the MR imaging  vendors, General Electric (n = 225), Philips 
(n = 197), and Siemens (n = 171) medical systems were used. Other image parameters are described in Table 1.

Segmentation procedure. Segmentation was performed using an in-house semi-automatic segmentation 
procedure26,28. Tumors were automatically delineated by using a gray-level threshold chosen to identify the largest 
contrast-enhancing tumoral volume. Then, a biomedical engineer/applied mathematician (B. O.-T.) carefully 

Median (min-max)

Echo time (msec) 4.76 (1.51–16.74)

Repetition time (msec) 11.00 (5.74–600.00)

Pixel Spacing (mm) 0.5 (0.39–1.01)

Spacing between slices (mm) 1.00 (0.49–2.00)

Slice Thickness (mm) 1.30 (0.90–4.00)

Table 1. Image parameters from the 593 post-contrast T1-W images segmentations.
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corrected each segmentation, slice by slice, using a brushing/pixel-removing tool. The segmentation process is 
summarized in Fig. 1. The outcome was cross-checked by three researchers with more than seven years of exper-
tise on MRI (D. M.-G., J. P.-B., V. M. P.-G.) and then corrected by one of the radiologists participating in the study 
(B.A, A.O.M, D.A, L.A.P.-R., E.A.). The raw medical images in DICOM format were used in this procedure, so 
they were not modified to perform the tumor segmentations.

Clinical data and anonymization. Clinical data were collected for the 75 patients. For each patient, age 
at diagnosis and sex, primary tumor type and subtype, molecular markers (e.g. EGFR, ALK and ROS1 for lung 
cancer) and tumor stage were taken. Also, the GPA index1,3, was included for a subset of institutions. Regarding 
each BM, the ID (a number to differentiate it from other BMs in the same patient), location in the brain (frontal, 
temporal, parietal and occipital, right and left side), date of appearance on MRI, and treatments received were 
recorded. For each treatment, the type of treatment, doses, fractions, date of start and date of end were recorded. 
The dates of follow-up MRI studies available were also included. Radionecrosis was confirmed for 39 lesions.

The first step of the data anonymization was performed at the institutions of origin of the data. Such a step 
included patient and center data anonymization. An additional more profound anonymization was performed 
using the clinical trials processor from the medical imaging resource center36. Within that step, all private 
DICOM tags and all tags containing sensitive or identifying information as well as all dates were modified such 
that for every subject, the imaging study where the first BM was initially identified corresponds to January 1st, 
1900. The anonymized times were computed taking as reference that time point, in days, which means that 
negative numbers identified treatments prior to the diagnosis of the BM. The relative differences in times for 
the different events for each patient were preserved. The last anonymization step was a defacing process that 
made impossible the facial reconstruction. After this whole process, patient records were finally reviewed inde-
pendently by three of the authors (B. O.-T., J. P.-B., and J. A. R.-R.).

Morphological parameters. Different morphological parameters were computed from the segmentations 
and gathered in the database, including the following:

Volumes. For each focus, three different types of volumes were computed: the contrast-enhancing (VCE), 
necrotic (or non-enhancing) (VN) and total volume (V = VCE + VN).

Contrast-enhancing spherical rim width (CE rim width). Obtained for each focus from the CE and necrotic 
volumes as
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By assuming that the areas of necrotic tissue and the entire tumor are spherical, this feature calculates the 
average width of the CE areas. Additional information and illustrations of tumors with high and low CE rim 
widths, can be found in29.

Fig. 1 Image segmentation procedure. From the MR images (T1-W with contrast), each slice was semi-
automatically segmented and manually corrected. Once every slice was segmented, the last step was the three-
dimensional reconstruction of the tumor.
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Surface. Obtained by reconstructing the tumor surface using the Matlab “isosurface” command from the dis-
crete sets of voxels characterizing the tumor.

Surface regularity. It is a dimensionless ratio between the volume of the segmented tumor divided by the vol-
ume of a spherical tumor with the same surface. For each focus, it was calculated as

Surface regularity 6 Total Volume

(Total surface)3
π= .

The range for this parameter is 0 (for tumors with highly uneven surfaces) and 1 (for spherical tumors). 
Additional information and illustrations of tumors with high and low CE rim widths, can be found in17.

Maximum diameter. It provides the largest longitudinal measure of the tumor and is computed for each focus 
as the maximum distance between two points located on the surface of the CE tumor.

Radiomic-based features. A total of 110 different features were extracted with the open-source Python 
package PyRadiomics version 2.2.037. This feature dataset includes 16 shape descriptors and different measures 
of the intensity distribution and texture within the segmentation labels. The intensity features include simple 
first-order statistics (19 features), those derived from the gray-level co-occurrence matrix (GLCM, 24 features), 
gray-level run-length matrix (GLRLM, 16 features), gray-level size-zone matrix (GLSZM, 16 features), neigh-
boring gray-tone difference matrix (NGTDM, 5 features), and gray-level dependence matrix (14 features). The 
features were extracted from the original image sequence after z-score normalization, intensity scaling by a factor 
of 100 and subsequently shifting by 300 (i. e. three standard deviations) to ensure most intensity values are pos-
itive for the first-order features and geometry tolerance 0.04. Other specific tasks may require different feature 
extraction procedures18.

No voxel resampling prior to feature extraction was used to maintain the information as unaltered as pos-
sible. Since the algorithm to extract image features is shared, any user can redo the extraction by applying any 
resampling.

Atlas location features. Affine registration was used to align all subjects to MNI atlas space38 using the mri_
robust_register39. The centroid of each separate metastasis lesion was listed and may be used to efficiently iden-
tify the location and affected brain region.

Ethical approval. We have complied with all relevant ethical regulation and all subjects included in the study 
are deceased. Human data were obtained in the framework of the study OpenBTAI (Open database of Brain 
Tumors for studies in Artificial Intelligence), a retrospective, multicenter, nonrandomized study approved by the 
corresponding institutional review boards: Fundación Instituto Valenciano de Oncología (2021-05), Hospital 
Universitario HM Sanchinarro (21.06.1858-GHM), Hospital Universitario 12 de Octubre (21/711), Hospital 
General Universitario de Ciudad Real (12/2021), Hospital Regional Universitario de Málaga (24/06/2021), 
Hospital Universitario y Politécnico La Fe (2021-504-1), MD Anderson Cancer Center (01/06/2021), Hospital 
Universitario de Salamanca (2021 10 879), Complejo Hospitalario Universitario de Toledo (29/9/2021-770) and 
Hospital Universitario Marqués de Valdecilla (14/2021 – 10/09/2021).

Data Records
All data records collected for this manuscript are available at the Figshare Repository40 and on the webpage 
https://molab.es where the number of cases will be expanded.

Raw medical images for each follow-up study have been stored using the Digital Imaging and 
Communications in Medicine image file format (DICOM, ISO 12052). Tumor segmentations and the corre-
sponding images have been stored in The Neuroimaging Informatics Technology Initiative (NIfTI) format, 
maintaining raw medical image coordinates, since no preprocessing was used to perform the manual segmenta-
tions. We have uploaded six zip files with the DICOMS images, one containing all the segmentations (files ended 
_msk.nii) and one containing the corresponding images (files ended _img.nii) to each of the segmentations 
available. Also, three excel files containing: (1) all the clinical data, (2) morphological parameters measured 
directly from the segmentations, and (3) radiomic-based features computed for each follow-up study segmented 
are included together with the imaging data.

technical Validation
Data collection. The collaborating expert board-certified neuroradiologists identified and collected the 637 
follow-up studies of the 75 BM patients included in the study. Only confirmed BM patients were included in the 
study, and primary tumors for each patient were pathologically confirmed and verified prior to inclusion in the 
study.

Data curation and testing of the inclusion criteria was performed by a biomedical engineer/applied mathe-
matician with more than seven years experience in management of medical images (B. O.-T., D. M.-G., J. P.-B. 
and V. M. P.-G.) and then cross-checked by a different expert.

Segmentation method. All semi-automatic segmentations performed in this study were carefully vali-
dated by an expert radiologist after have been performed by experienced experts in the management of medical 
images and cross-checked by a different expert. A reproducibility study for the methodology was performed in26, 
showing its reliability.
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Each segmentation mask contains two labels for each BM: labels ending in 1 correspond to 
contrast-enhancing (CE) parts of the tumor; labels ending in 2 represent the non-enhancing or necrotic area of 
the tumor. Features were extracted for CE and necrotic zones and also were computed for the combination of 
both.

Comparison between measurements obtained and radiomic features. Two excel files are provided 
with features from the segmented images. One of them contains some morphological variables computed directly 
from the manual segmentation while the other is a radiomic-based set of features.

Usage Notes
The whole dataset can be downloaded from the figshare repository40. To process the provided images and 
segmentations, it is highly recommended that medical imaging tools be used, which handle consistently the 
physical space and orientation of the images. We verified that all the Nifti files (segmentations and images) 
can be loaded correctly with FSLeyes v1.3.0 (https://www.fsl.fmrib.ox.ac.uk) (FMRIB Centre, Oxford, UK) and 
DICOM files could be easily loaded using Horos v3.3.6 (https://www.horosproject.org).

Code availability
We provide the code used to extract the features with PyRadiomics at https://github.com/ysuter/OpenBTAI-
radiomics. For reproducibility and convenience in case any user wants to customize the extraction, all the.py files 
needed and a “readme” file are available.
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