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Abstract

Abstract The quantitative analysis of images acquired in the diag-
nosis and treatment of patients with brain tumors has seen a significant
rise in the clinical use of computational tools. The underlying technol-
ogy to the vast majority of these tools are machine learning methods
and, in particular, deep learning algorithms. This review offers clinical
background information of key diagnostic biomarkers in the diagnosis of
glioma, the most common primary brain tumor. It offers an overview
of publicly available resources and datasets for developing new computa-
tional tools and image biomarkers, with emphasis on those related to the
Multimodal Brain Tumor Segmentation (BraTS) Challenge. We further
offer an overview of the state-of-the-art methods in glioma image seg-
mentation, again with an emphasis on publicly available tools and deep
learning algorithms that emerged in the context of the BraTS challenge.
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1 Diagnosing glioma patients from image infor-
mation

Predicting clinical variables of interest, such as tumor molecular characteris-
tics [14, 39, 20, 12], treatment response [5], or prognosis [38, 8] from imaging
data has attracted great attention from the neuro-oncology community in re-
cent years. These developments have in part been accelerated by the 2016
WHO classification protocol for grading glioma patients [74], that is based on
a neuropathological evaluation of glioma tissue from a biopsy or resection, as
it is biologically highly plausible that the driving genomic changes behind the
molecular tissue changes can be non-invasively identified in the imaging pheno-
type.

Compared to the gold standard assessment from neuropathology, radio-
graphic imaging-based evaluation of glioma biomarkers offers two key advan-
tages: (i) Spatial heterogeneity within the tumor can easily be assessed and (ii)
longitudinal assessment of changes becomes possible without a need for serial
biopsies. To this end, a broad variety of computational tools has been devel-
oped, most of them relying on machine learning techniques, that support the
increasingly complex visual analysis of the multivariate and longitudinal image
data acquired in glioma patients.

1.1 Glioma imaging

Decisions about the diagnosis and therapy of brain tumor require optimal infor-
mation, as treatment options are limited and those that might be considered,
such as radiation therapy or tumor resection, may have life-changing side effects.
To this end, a multitude of standard morphological, functional, and metabolic
imaging modalities are used (Fig. 1), often in repeated exams with intervals
as short as a few month time. Analysing these data adequately poses signifi-
cant challenges both in clinical practice, when standard imaging protocols are
used, as well as when testing advanced imaging sequences and searching for new
imaging biomarkers.

Standard imaging protocols and biomarkers During the last three decades,
magnetic resonance imaging (MRI) remained the fundamental imaging technol-
ogy for the diagnosis and localization of cerebral gliomas. The key objectives
of MRI are the characterization of the tumor category and its differential di-
agnosis (e.g., brain abscess, lymphoma, or metastasis) with implications for
clinical decision making about the path of care, planning of the most effec-
tive therapy regimen and disease monitoring under therapy. The quality of
the MRI exams is dependent on many factors as, e.g., field strength, MRI se-
quence composition, scanner type, slice thickness and image contrast, with a
considerable lack of standardization of scanner protocols. Further, no clear rec-
ommendations exist for the application of advanced neuroimaging techniques
that encompass metabolic characterization (MR-Spectroscopy), vascularization
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and blood-brain-barrier deficiency (perfusion imaging), or tissue composition
(diffusion-weighted imaging).

Therefore, joint consensus recommendations have been proposed by the
United States National Brain Tumor Society (NBTS), the Society for Neuro-
oncology (SNO), and the European Organisation for Research and Treatment
of Cancer (EORTC). The proposed glioma imaging protocol (EORTC-NBTS)
encompasses a standardized set of recommendations for anatomical MRI se-
quences to assess changes in tumor burden as an imaging endpoint in clinical
trials. The minimum requirements for glioma imaging require consistent scan-
ning with an 1.5 T or 3 T MRI scanner with the same imaging parameters are:
(1) 3-dimensional T1 weighted imaging before and (2) after the administration
of Gadolinium-based contrast enhancements, (3) a 2-D acquisition of fluid at-
tenuated inversion recovery sequences (FLAIR), (4) an axial 2-D T2-weighted
sequence, and (5) an axial 2-D diffusion weighted image (DWI). The acquisi-
tion of (6) additional T1-weighted spin echo sequences may further improve the
detection of tumor recurrence associated with delayed enhancement [62]. All
sequences display structural properties of the tumor, with T2 weighted scans
highlighting the tissue water of the edema, and the T1 contrast-enhanced images
showing areas of active tumor growth, where Gad-enriched blood is leaking into
the tissue. DWI sequences, that include diffusion tensor imaging, offer insights
into areas with modified tissue micro-structure, for example, when additional
water or tumor cells increase tissue cellularity, or limit the natural anisotropy
of tissue water diffusion. Most data sets discussed in the following (section 2)
encompass standard imaging parameters (1)-(4), but resources for (5)-(6) are
also discussed (subsection 2.3).

The integration of the 3D imaging sequences into the standard imaging pro-
tocol – e.g., (1) and (2), but also optional 3D T2 and diffusion scans – are
essential for the volumetric assessment of tumor progression and the applica-
tion for radiographic response assessment imaging criteria. Conventional 2-D
measurements must be considered inadequate to longitudinally assess complex
tumor geometry. Slice thickness and rotation induced directly affect the ac-
curacy of bi-dimensional diameter measures errors of > 30 % [113, 104]. In
contrast, AI-supported volumetric measurements nowadays yield an excellent
accuracy compared to conventional tumor response assessment (see section 3).
Limitations of the (qualitative) response assessment with conventional MRI en-
compass the lack of sensitivity to distinguish therapy related effects as pseudo-
progression and radiation necrosis from true progression at the earliest time
that is possible.

Advanced imaging sequences and biomarkers To improve the diagnostic
accuracy, conventional MRI can be complemented by advanced neuroimaging
techniques that increase the diagnostic accuracy by evaluating changes in blood
flow or in metabolic patterns.

Perfusion-weighted imaging is most frequently used (85%) as an advanced
neuroimaging technique to distinguish between low- and high-grade gliomas
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Figure 1: Extended glioma protocol with advanced imaging (exemplarily for the
UniBe/SCAN protocol). The basic protocol consists of DWI/ADC, 3-D T1w,
T2w, FLAIR and 3-D T1w contrast-enhanced sequences. Protocol extensions
encompass DTI, SWI, DSC-perfusion and MR-spectroscopy (single voxel MR
spectroscopy and MR spectroscopic imaging).

and between true progression and pseudo-progression. Dynamic susceptibility
contrast-enhanced (DSC) MRI is employed in the majority of centers, whereas
T1-based dynamic contrast-enhanced (DCE) or a combination of both tech-
niques is frequently restricted to comprehensive cancer centers. Both DSC and
DCE-MRI show an excellent diagnostic accuracy to discriminate between high-
and low grade gliomas and provide complementary information to discriminate
tumor recurrence from therapy related effects. In a recent systematic review,
encompassing 27 studies and 298 patients, the pooled sensitivity, specificity and
sensitivity for the differentiation between high- and low grade tumors was 0.93,
0.90 and 0,96 and between tumor relapse and treatment-related changes was
0.88; 0,86 and 0.89 [92]. A previous meta-analysis that investigated the dis-
criminative power of DSC-perfusion and DCE perfusion MRI to separate viable
tumor from treatment-related effects revealed similar results reported compa-
rable results for both methods [96]. However, they reported also considerable
variability in threshold definitions and a lack of standardisation that hampers
the implementation of quantitative perfusion MRI strategies across institutions.
Intra-voxel incoherent motion (IVIM) and arterial spin labeling (ASL) perfu-
sion complement the spectrum of perfusion imaging techniques [70, 95, 44].
The principal advantage of both techniques is their non-invasive character with-
out the need to administer contrast. While IVIM estimates microcirculation in
randomly oriented capillaries mimicking a pseudo-diffusion process, ASL uses
radiofrequency pulses that saturate water protons to magnetically tag water
molecules in the arterial blood. Both methods have shown some potential in tu-
mor grading and outcome prediction, but remain still in an experimental stage.

Magnetic resonance spectroscopy (MRS) and magnetic resonance spectro-
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scopic imaging (MRSI) are less frequently used in routine glioma imaging pro-
tocols, but also represent long-standing application domains for machine learn-
ing research, both for automating the signal processing [79, 29] and the di-
agnostic evaluation of the spectral data [80]. Clinical indications encompass
the characterization of a lesion, the differentiation between glial neoplasms and
imaging phenotypes that mimic gliomas and the differentiation between true
vs. pseudo-progression [108, 32, 47]. More recently, 2-hydroxyglutarate MRS
has been proposed as a promising non-invasive method to discriminate between
isocitrate-dehydrogenase (IDH)-mutant and IDH- wild type gliomas [18, 129].
Mutations in IDH are highly prevalent among gliomas of lower grade (70–80%)
and carry a better prognosis in grade III gliomas [129]. A recent meta-analysis
reported a higher sensitivity of 2-hydroxyglutarate MRS to differentiate between
IDH-mutated and IDH-wild type gliomas than diffusion or perfusion imaging or
localization-based features [119, 120]. The method has a great potential to over-
come limitations of invasive biopsies related to intra-tumoral heterogeneity and
subsequent biases of biopsy-based genomic analysis.

Using multi-parametric MRI Overall, MRI remains a key methodology to
diagnose and monitor patients with cerebral gliomas. Conventional structural
imaging provides a basis for lesion stratification, treatment planning and moni-
toring and provides the basis for automated image analysis of lesion progression,
predictive monitoring, and radiomic feature extraction [140].

Advanced imaging techniques complement the standard imaging workup and
support the analysis and prediction of physiological and molecular character-
istics reflected through the burden of disease and the potential of response to
therapy. Moreover, with imaging revealing critical information about tumor
and surrounding anatomy in the patient, glioma imaging is also always a crucial
component in personalizing treatment decisions.

Recent work by Lipkova et al. [72], for example, used the patient’s glioma
images together with a tumor growth model and a Bayesian machine learning
framework to predict patient-specific tumor cell density with credible intervals
from multimodal imaging data as a basis for personalized radiotherapy design.

1.2 Glioma imaging, radiomic profiling, and tumor biol-
ogy

Classifying glioma by genotypes Traditionally, gliomas were classified ac-
cording to their histo-morphological relationship to the glial cell lineages as out-
lined in the 2007 WHO classification [73]. However, this morphology-derived
classification had several challenges for its scientific and clinical use. Most
importantly, these were the rater-dependence of diagnoses (demonstrated for
example by Kros et al. [68]) and - closely related - the ambiguity of morpho-
logic appearance, leading to the definition of bucket diagnoses such as “oligo-
astrocytoma”, which harbored tumors showing morphologic features reminiscent
of both astrocytomas and oligodendrogliomas. With the advent of large-scale,
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high-throughput techniques for (epi)genome-wide analysis of tumors, several
landmark discoveries have been made in many types of cancer, also in gliomas
[22, 21, 118, 16]. Chief among them was the discovery of point mutations in
the isocitrate dehydrogenase 1 (IDH1) and to a lesser extent also in the isoci-
trate dehydrogenase 2 (IDH2) genes [94, 13]. While they are rare (< 10%) in
WHO grade IV glioblastoma, the most malignant gliomas, they are a defining
genomic event in WHO grade II and III gliomas [134], present in the major-
ity of the tumors. Later analyses found that mutant IDH1 and IDH2 catalyze
the production of the onco-metabolite 2-hydroxyglutarate (2HG), which is not
present in healthy cells. Subsequently, it was discovered that 2HG is essential
for the formation of IDH mutant gliomas [69] and leads to dramatic changes in
the tumor epigenome [118]. Today, it is accepted that IDH-mutant and IDH-
wildtype tumors are biologically different tumor entities, despite their similar
(and sometimes indistinguishable) histo-morphologic appearance. Importantly,
these tumors also significantly differ in their clinical course and treatment re-
sponse, with IDH mutant tumors carrying a far better prognosis [134].

Later genome-wide studies used this knowledge about the impact of epi-
genetic changes for tumor development and progression and the relative sta-
bility of the epigenome (at least compared to mRNA expression analysis) for
(un)supervised classification of gliomas [133, 118] and the identification of key
molecular features in these subgroups. Collectively, these studies yielded a clear
picture of a biology-driven classification of gliomas across WHO grades and en-
tities. These findings have also resulted in a revised WHO classification released
in 2016 [74], which now groups tumors according to a more integrative schema
including their genotypical characteristics, instead of based solely on their his-
tological phenotype, as previously. This leads to situations where the genotype
(e.g., presence of an IDH mutation as well as co-deletion of the short arm of
chromosome 1 and the long arm of chromosome 19, 1p/19q codeletion) disagrees
with the histological phenotype (in the above example an astrocytoma, which
typically do not carry 1p/19q codeletion). In these cases, the genotype “beats”
the phenotype and underlines the importance of tumor biology for classification.

Radio(geno)mic correlations Identifying associations between the glioma
genotype and their (MR) imaging phenotype has become an important field of
research, often referred to as radiogenomics, and concepts from machine learn-
ing have contributed significantly to the analysis of the glioma imaging data.
Initial studies focused on identifying key genomic alterations such as IDH mu-
tation or 1p/19q codeletion from preoperative imaging data (see for example
the studies by Kickingereder et al. [63], Eichinger et al. [35], or Chang et al.
[24]). Meanwhile, the focus of glioma image analysis shifts towards assessing
heterogeneity or predicting clinical course using radiomic image features: In a
2017 paper published in the AJNR [23], the authors present a classifier trained
to predict cellularity from voxel-wise regression analysis of FLAIR, ADC and
T1c data on a set of 91 stereotactically localized biopsies. With this approach,
they are able to calculate non-invasive, voxel-wise cellularity maps, which might
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for example aid the process of selection suitable biopsy locations, or enter a tu-
mor modeling approach as in Lipkova et al. [83, 72]. Along this line, Hu et
al. [49] extended this concept to predicting spatial heterogeneity of key molec-
ular alterations in glioblastoma. From another data set of 48 targeted biopsies,
they built multivariate decision-tree models to predict spatial presence of copy-
number alterations of genes like the epidermal growth factor receptor (EGFR)
in preoperative MR images.

The state-of-the-art analysis of glioma images Overall, a growing body
of research studies in the literature is not aiming only at quantifying tumor
structures visible in the multi-parametric MR images, but at stepping beyond
analyzing the apparent visual content to identify sub-visual cues using quanti-
tative radiomic features [121]. Uncovering correlations between image features
with biological (molecular, genetic), as well as clinical variables is the ultimate
goal of this work. In this, the segmentation and quantification of “semantic”
tumor sub-compartments/structures, i.e., regions that can be named and asso-
ciated with clear properties and even function within the tumor area, remains
the first and most crucial step of any subsequent radiomic correlation study.

2 Benchmarking glioma image quantification in
the BRATS challenge

Clinical imaging protocols routinely-acquired for the diagnosis of glioma cases
reveal information about the anatomical structure, function, vascularization,
among other tissue characteristics and standardization of the protocols across
centers is only a recent development (section 1). As a consequence, in the ini-
tial efforts for quantifying tumor image information, locally varying imaging
datasets were used for developing machine learning algorithms from various re-
searchers. This variation, and the absences of publically available reference data,
prohibited a fair comparative algorithmic evaluation. This issue was overcome
by the start of the annual “Multimodal Brain Tumor Segmentation Challenge”
(BraTS, www.braintumorsegmentation.org) in 2012 [82, 7, 10], which initiated
the creation of a benchmarking environment and the collection, expert annota-
tion, and distribution of a large clinically-acquired multi-institutional dataset
of multi-parametric MRI scans from patients diagnosed with gliomas. To the
best of our knowledge, the BraTS dataset is one of the largest publicly available
curated datasets for glioma imaging and has been heavily used for computer vi-
sion and machine learning research. Although it has been initiated with image
segmentation in mind, its establishment and recognition of its clinical relevance
and potential has offered avenues to a multitude of the glioma image analysis
tasks outlined above.
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2.1 The public BraTS dataset

Image data The clinically-acquired and -curated data made available during
the BraTS challenges has grown significantly from including a few dozens of
cases in 2012 to almost one thousand cases that are available in 2020. The
complete BraTS dataset originated from a handful of institutions while its 2020
edition integrates data from 19 independent international institutions, as well
as collections from The Cancer Imaging Archive (TCIA) [27]. The majority of
cases utilized in more recent instances of the BraTS challenge are acquired pre-
operatively, but time-series with pre- and post-interventional follow-up scans
have also been made available through BraTS in the past (BRATS 2016 data
set). Cases originating from TCIA are accompanied by clinical, genetic, and
pathological data, available via the Genomic Data Commons (GDC) Data Por-
tal. Further scans are also available from TCIA and can be used in conjunction
with the BraTS data.

All MRI data distributed through the BraTS challenges have been acquired
by scanners with magnetic field strength of 1-3T, and comprise for all patients
and timepoints the basic structural imaging sequences: native T1-weighted
(T1); T1 after administration of contrast agent (T1c); T2-weighted (T2); and
T2 Fluid-Attenuated Inversion Recovery (FLAIR). To standardize the highly
variable resolutions and orientations of the acquired scans, all data have been
consistently rigidly aligned to the same brain anatomical template [106] and
interpolated to 1mm3 isotropic resolution. Furthermore, in compliance with
institutional requirements for anonymization, all imaging scans have undergone
brain extraction prior to their public release.

Expert annotations of semantic structures These multi-parametric MRI
datasets are accompanied by tumor boundary annotations for each of the his-
tologically distinct tumor sub-structures [82, 7], generated and approved by
clinical experts following a dedicated harmonized protocol. These labels com-
prise regions reflecting edematous/infiltrated tissue, as well as the potentially
resectable tumor core with solid/enhancing, necrotic, and/or fluid filled com-
partments (Fig. 2). These labels have been considered as three independent sets
of binary areas: i) the whole tumor are (described by the union of all the classes),
ii) the tumor core area (with all tumor core labels, excluding the peritumoral
edematous/infiltrated tissue), and iii) the area of the active part of the tumor
(being represented by the contrast-enhancing compartment). As these three
areas have a direct translation into “semantically” meaningful tumor quantifi-
cation tasks, and since assigning weights to inter-class classification errors is
difficult in the current medical use case, they are evaluated during the BraTS
challenge individually rather than a straightforward multi-class evaluation.

In addition to the experts’ image annotations, a subset of the 2018-2020
datasets have been accompanied by clinical information on patient age and
patient overall survival [7].
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Availability The BraTS data are available for general use under a creative
commons license and can be downloaded from links available on the challenge
website1. A clear distinction should be made to the subset used in different
years, e.g., BraTS 2016 or BraTS 2020, as the focus of the evaluation changed
in time as did the composition of the training, validation, and testing partitions
of the data. For example, the 2020 data have only pre-operative scans, while
the 2016 data have both pre- and post-interventional scans.

2.2 The BRATS benchmarking challenges

Evaluating image segmentation algorithms The BraTS datasets and the
annual BraTS benchmarking challenges, running in conjunction with the confer-
ence on Medical Image Computing and Computer-Assisted Interventions (MIC-
CAI), have been instrumental in spearheading the development of brain tu-
mor segmentation algorithms. Specifically, numerous algorithms (between 10 in
2012 and more than 60 in 2019) have been comparatively evaluated every year.
During the challenge workshop data are provided to the BraTS participants for
training, validation, as well as for testing, and then the participants are required
to submit their predicted segmentation labels for evaluation by the BraTS online
evaluation portal. At the same time, brief descriptions of the algorithms appear
in the challenge’s proceedings of each annual workshop, offering insights into
how the algorithms differed in design, training parameters, or implementation
configurations. The evaluation system calculates different scores, such as the
Dice similarity coefficient, the Hausdorff distance, or volumetric mismatch for
the longitudinal task, and the algorithms are scored according to these scores.
As the question of how to find the one (or a few) top performing methods using
multiple scores and across the three different segmentation tasks remains an
open research question, various ranking heuristics have been used during the
years.

Top performing algorithms Among the algorithms that were considered to
be top performing since BraTS 2012, different approaches had been employed,
reflecting the technological advances in the domain of computer vision during the
past 10 years. While the first algorithms from 2012 still employed generative
probabilistic models [84, 85, 81], or level-set based segmentation [105, 103],
there has been a rapid adoption of machine learning approaches using random
forest together with local image features. While already in 2012 a number of
algorithms using random forest classifiers had been tested [138, 41, 86, 17]), a
random forest algorithm was not winning the challenge before 2013 [124]. The
first deep learning methods were used in 2014 [31, 45, 139, 127], although not
yet winning the challenge even during the following year (BraTS 2015), where
a hybrid generative-discriminative approach integrative of a biophysical tumor
growth model to account for mass-effect was the winner, namely GLISTRboost
[11, 135]. The first winning deep learning algorithm was during BraTS 2016 [25],

1www.braintumorsegmentation.org
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which was based on a deep neural network with residual connections. From
2014 onwards, a steady improvement of the algorithmic performances could
be observed (as measured in the BraTS testing datasets), and a continuously
increasing number of the participating algorithms have become available as open
source implementations. . Algorithms that perform at the top for the BRATS
2020 data set reach Dice scores of up to 90

Beyond benchmarking The BraTS data have been commonly used for bench-
marking algorithms beyond the focused settings of the official evaluation schema.
Subsets of the BraTS data have been used in the Medical Segmentation De-
cathlon [116], as well as in the Quantification of Uncertainties in Biomedical Im-
age Quantification (QUBIQ) Challenge – with published baseline performances
and an online evaluation portal – and they can further be used in private eval-
uation setups. This has fostered the development of brain tumor image quan-
tification in a variety of medical image analysis and computer vision research
projects, while glioma segmentation offers an example of early clinical transla-
tion of machine learning – and, more specifically deep learning – technology in
a quantitative diagnostic evaluation of biomedical images (examples of which
will be given in the following section).

2.3 Publicly available data beyond BraTS

Beyond the curated, annotated, publicly-available multi-institutional mpMRI
scans of glioma patients released as part of the BraTS challenge, various ad-
ditional data collections of glioma patients are becoming available, providing
radiological, histopathological, molecular, and clinical information. Neverthe-
less a substantial joint computational-clinical effort would be required to curate
and annotate these datasets given a harmonized protocol.

These collections, primarily hosted at TCIA [27], describe data of glioblas-
toma patients (TCGA-GBM2 [110], QIN GBM Treatment Response3 [100, 54],
CPTAC-GBM4 [28], IvyGAP5 [101, 90], ACRIN-FMISO-Brain6 [42, 102, 65],
Brain-Tumor-Progression7 [111], RIDER NEURO MRI8 [15], UPENN-GBM-
ICMR9 [9], and ReSPOND [30]), as well as lower grade glioma patients (TCGA-
LGG10 [97] and LGG-1p19q-Deletion11 [6, 36]), and datasets combining all
grades of gliomas (REMBRANDT12 [109], QIN-BRAIN-DSC-MRI13 [112], and

2https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM
3https://wiki.cancerimagingarchive.net/display/Public/QIN+GBM+Treatment+Response
4https://wiki.cancerimagingarchive.net/display/Public/CPTAC-GBM
5https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=22515597
6https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=33948305
7https://wiki.cancerimagingarchive.net/display/Public/Brain-Tumor-Progression
8https://wiki.cancerimagingarchive.net/display/Public/RIDER+NEURO+MRI
9https://wiki.cancerimagingarchive.net/display/Public/UPENN-GBM-ICMR

10https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
11https://wiki.cancerimagingarchive.net/display/Public/LGG-1p19qDeletion
12https://wiki.cancerimagingarchive.net/display/Public/REMBRANDT
13https://wiki.cancerimagingarchive.net/display/Public/QIN-BRAIN-DSC-MRI
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GLASS14 [43, 14], which is hosted in Synapse15).

Figure 2: Semantic annotations available in the BRATS data set: Labels (shown
in the left) summarize three semantic regions: whole tumor as visible from
hyper-intense areas in T2w and FLAIR images (left column, yellow), the tumor
core visible heterogenous signals in T2w MRI (central column, red), and the
active tumor visible from intensity enhancements in post-Gd T1w scans (right
column, blue).

3 State of the art deep learning segmentation

Offering a concurrent overview of deep learning-based brain segmentation meth-
ods related to glioma patients has become increasingly difficult with the advent
of easy-to-train approaches based on deep learning architectures, such as the
U-Net [107] and its variation. To this end, we will focus on a set of methods
that performed well in recent BraTS challenges, i.e., those that prove to perform
well in a controlled setting. We attempt to identify – and report – common de-
sign choices, as well as differences between methods that may be linked to their
strong performance on this type of segmentation task.

3.1 Image pre-processing

Brain tumor MRI typically consists of multiple MRI modalities. The BraTS
dataset [82, 10, 7] provides the most common ones: T1, T1c, T2, and FLAIR.
Initial preprocessing steps are image registration followed by brain extraction
[117, 55, 51, 66, 122].

Intensity harmonization MRI intensities are notoriously non-standardized
[114, 91]. In the pre-deep-learning era, methods were susceptible to poten-
tially nonlinear intensity shifts resulting in a need for histogram matching or

14https://www.glass-consortium.org/
15https://www.synapse.org/glass
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more sophisticated normalization methods [66, 114, 91] to be applied. Bias
field correction [123] was regularly used to remove inhomogeneities in the im-
ages. Interestingly, this issue was alleviated with the emergence of deep learning
techniques. While the previous random forest approaches used local image fea-
tures, which limits the ’receptive field’ that contributes to the inference at a
voxel, an appropriately chosen network architecture ’sees’ the full image and
may be better suited to recognize – and ignore – large scale intensity changes
that result from bias fields. To this end one might argue that deep learning
techniques are more robust with respect to non-standardized intensity values
and inhomogeneities, possibly due to their superior capacity, their end-to-end
training forcing the extraction of robust feature representations and the applica-
tion of data augmentation techniques. The now by far most prevalent intensity
normalization technique is z-scoring, where the brain region of the images is
normalized by subtracting its mean and dividing by its standard deviation [60,
59, 52, 53, 89, 56, 76, 57].

Spatial harmonization In particular when working with multi-institutional
data and data originating from different MRI scanners, the voxel spacings can
be heterogeneous and must be homogenized for processing with convolutional
neural networks. Selecting a proper target spacing for resampling can be crucial
for downstream performance. A large spacing will result in lower image reso-
lution, making it easier to capture sufficient contextual information at the cost
of reduced details in the resulting segmentation maps. A lower voxel spacing
retains more details in images and segmentations but make the segmentation
problem inherently more difficult due to the required larger input sizes. The
training cases provided by the BraTS challenge were resampled to a common
voxel spacing of 1mm3 isotropic resolution, which strikes a good balance between
image size and resolution.

3.2 Network architectures

According to our experience, the quality of a segmentation architecture is related
to the expressiveness of the features it can learn, the amount of contextual
information it can encode and how well it can upscale semantically rich low
resolution representations to a full resolution segmentation.

Early architectures DeepMedic [61, 60] was arguably one of the first tremen-
dously successful brain tumor segmentation architectures and the first to be ap-
plied in 3D. As compared to newer architectures, it has a substantially smaller
receptive field and processes patches of, for example, only 25×25×25 voxels. It
makes up for the missing contextual information by using an additional feature
extraction stream that processes downscaled image patches. Features of low and
high resolution patches are recombined shortly before the segmentation decision
is made. Other early architectures include Pereira’s [99] and Kleesiek’s CNNs
[127], and Dvorak’s patch-based prediction of structured labels [34].
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Current U-Net architectures Since the introduction of the U-Net in 2015
[107], its derivatives define the state of the art in medical image segmenta-
tion, not just in brain tumor segmentation. U-Net consists of an encoder and a
decoder network which are interconnected by skip connections. The encoder fol-
lows a similar construction as classical image classification networks [67, 115, 46,
50] by alternating feature extraction (convolutional layers) with down-sampling,
thus successively aggregating the semantic information necessary for generating
good segmentations. When passing through the encoder, feature representations
need to undergo spatial pooling to enable subsequent convolutional kernels to
effectively cover greater areas of the image. As a side effect, the feature maps
suffer from an increasingly low spatial resolution. The purpose of the decoder
is to upscale this semantic information under consideration of higher resolution
feature maps forwarded to it from the encoder via skip connections. U-Net thus
elegantly recombines spatial with semantic information at multiple locations
throughout the decoder.

Even though standard U-Net-like architectures are competitive in brain tu-
mor segmentation [61, 53], most recent approaches make use of a variety of
modifications. Common U-Net variations include the addition of residual blocks
[46, 89, 56, 137, 52, 130] or densely connected convolutional layers [50, 136, 75,
76, 57]. Attention mechanisms [128] can guide the network towards focusing
of relevant spatial locations [76], whereas squeeze and excitation [48, 137] can
adaptively recalibrate feature responses. Various sucessful approaches [130, 75,
75] replace some pooling operations in the encoder (and their mirrored up-
sampling operations in the decoder) with dilated convolutions [26] to bypass
down- and up-sampling and thus potential interpolation artifacts. The winning
contributions to BraTS 2018 and 2019 used additional decoder branches with
auxiliary tasks [56, 89] to regularize the networks.

3.3 Training scheme

Loss functions The Dice loss [87, 33] is the most popular loss for brain
tumor segmentation. It directly optimizes the Dice score, the most widely used
evaluation metric. Recently, the focal loss [71] has gained in popularity and
was used by multiple highly successful algorithms [136, 76, 75]. With the target
regions of BraTS being the whole tumor, tumor core, and enhancing tumor
rather than the three semantic classes, better results are typically achieved
by optimizing these regions directly. Thus, many algorithms use the sigmoid
function as the final nonlinearity in their architecture and compute the loss
relative to the respective ground truth regions computed from the provided
labels [56, 136, 76, 75, 53, 89] or optimize the regions one after the other in a
cascaded approach [130].

Regularization Even though BraTS provides a large publicly available dataset
for training, regularization plays a pivotal role in obtaining a good perform-
ing brain tumor segmentation algorithm. Data augmentation techniques are
widespread, with mirroring and additive, as well as multiplicative intensity shifts
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being most prominent [56, 136, 76, 53, 52]. Auxiliary tasks seem to be partic-
ularly effective on the BraTS dataset, with the winning contribution from 2018
using a separate VAE decoder branch to reconstruct the network input [89]
and the winning entry in 2019 utilizing two decoders with different up-sampling
strategies [56]. The authors of [136] report that concurrent learning of the target
regions, as well as the semantic classes improve the segmentation performance.
The loss function can also be used to improve the robustness of the network.
For example, [53] have demonstrated that the segmentation performance in-
creases by using the combination of the cross-entropy and Dice loss as learning
objective.

Considering uncertainty The generation of manual reference annotations
for glioma segmentation is tedious and can contain small errors that the net-
works should ideally ignore. To tackle this problem, inspired by developments
in uncertainty estimation for segmentation in brain imaging [2, 1], while [75]
developed a label-flip uncertainty loss, which enables the network to recognize
potentially mislabeled voxels and reduce their influence during training.

3.4 Inference

Ensemble predictions Ensembling plays a fundamental role in competitive
segmentation performance, as powerfully demonstrated by Kamnitsats et al.
[59] in their BraTS 2017 entry. Virtually all concurrent segmentation methods
make use of some sort of ensembling, whether that is training multiple times
with different random seeds [89, 56], using the models resulting from cross-
validation [52, 53, 56], using weights from different epochs of the same network
training [56] or applying the network in different orientations [76]. Test time
data augmentation in the form of mirroring and applying the model to different
crops of the image and accumulating the predictions can also be used to boost
the performance at the cost of an increased inference time.

Postprocessing rules Postprocessing is often used in the BraTS dataset to
boost a models performance with the challenges specific validation scheme in
mind. For example, Isensee et al. [53] observed that the accumulated Dice score
for the enhancing tumor region improved when removing the enhancing tumor
entirely from a predicted image if less than some volume threshold of enhancing
tumor was predicted. This is due to BraTS awarding a Dice score of 1, if no
false positive voxels are predicted in an image that does not contain the label
in its reference segmentation. Even though this strategy also removed some
true positive predictions, the net gain outweights the losses. This strategy was
also applied by the BraTS 2019 winning contribution [56]. It should be noted
that such a postprocessing, while useful for BraTS, may not be desired in a
clinical setup when false positive predictions are less consequential than false
negatives. As an alternative post-processing, McKinley et al. [76] proposed
further heuristic modifications of connected components, some of which leverage
the uncertainty estimation of their label-flip loss.
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Figure 3: Segmentations of both the tumor and its sub-structures visible in the
different image modalities (T1c and T2 images; left column) and the surround-
ing brain tissues (tumor and tissue segmentations, central column) are used as
input to radiation treatment planning. Information of the patient specific brain
anatomy are required to infer directions of most likely tumor cell infiltration
using methods such as those by Lipkova et al. [72] (infiltration maps with 5%
and 20% infiltration isolines in red, right column).

3.5 Clinical translation beyond BraTS

Therapy response assessment is a critical aspect of monitoring treatment success
in glioma patients. Due to inter-observer variability in the two-dimensional
nature of the clinical state of the art [132], the variance of two independent
measurements is high. Kikingereder et al. [64] developed a segmentation method
that, even though it was trained on 455 MRI scans from only a single institution,
generalized well not only to other MRI scans from that same institution but more
importantly across a large multi-institutional cohort (34 different institutions
comprising a total of 2034 MRI scans). Quantifying tumor response based on
their segmentation masks proved to be significantly more reliable and more
reproducible than the clinical state of the art. Their pretrained segmentation
model is publicly available 16 and can be used as fully functioning segmentation
tool.

16https://github.com/NeuroAI-HD/HD-GLIO
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4 Going beyond tumor boundaries

In an automated workflow of glioma patients, automated segmentation of tu-
mor targets, as well as other structures such as organs at risk, and resection
cavities holds the potential to reduce interobserver variability and accelerate
the delineation process, leading to a more efficient and effective clinical work-
flow. Current state of the art approaches based on deep learning technologies
have largely focused on brain tumor segmentation from multisequence MRI,
tailored to neuroradiology tasks, and mainly on pre-operative scenarios [82, 7,
64]. While the automated segmentation offers great avenues for an objective
neuroradiogical evaluation of disease activity, beside glioblastoma [64] is it has
established itself in a similar evaluation of Multiple Sclerosis patients [40], the
image segmentation algorithms are also well suited to support radiation therapy
planning.

Delineating gliomas for radiotherapy planning The European Organi-
zation for Radiation Therapy in Cancer (EORTC) is a large and active network
of researchers and clinicians working towards improvement of cancer patient
treatment As part of a study performed by the EORTC RTQA group and the
Emmanuel van der Schueren Fellowship Program for Quality Assurance in Clin-
ical Trials, the delineation review process in an ongoing multicenter phase III
trial was conducted with an accrual goal of 750 glioblastoma patients. Be-
fore participating centers could enter patients into the trial, each center had to
complete a glioblastoma delineation benchmark case exercise, which was used
to assess the interobserver variability of experts in a clinical trial. Results of
this ongoing work indicate that despite the availability of delineation guidelines,
glioblastoma delineation is subject to significant interobserver variability [58].
Studies have shown that non-adherence to protocol-specified radiotherapy re-
quirements is frequent in prospective clinical trials, with major deviation rates
ranging from 11.8% to 48.0%. Similarly, retrospective analyses of EORTC in-
tergroup trials on low grade glioma and anaplastic glioma patients revealed that
erroneous delineation of target volumes and organs at risk is a common cause
of protocol deviations in clinical trials on brain tumor patients [37, 3]).

Although radiotherapy for glioblastoma is considered a standard treatment,
there is considerable delineation variability even among experts: Only moderate
agreement, with a mean kappa of 0.58 among GTVs was observed in a delin-
eation study, including fifteen panels of radiation oncologists from independent
institutions [131]. In radiotherapy planning, combining deep learning-based
auto-segmentation and manual contour adjustment resulted in superior accu-
racy, consistency and efficiency for CTV delineation in a retrospective study of
post-operative lung cancer patients [19]. Similarly, deep learning-based auto-
segmentation helped to improve CTV consistency for breast [78] and rectal
cancer [77], and may thus streamline the radiotherapy workflow. However, no
similar studies have been conducted for glioblastoma. Previous work has either
focused on a mathematical description to take presumed microscopic tumor
growth into account [126, 125] or used non standard MRI, like DTI [98] to de-
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rive novel representations of a CTV definition. Both approaches are still highly
investigational and not applicable to current standard of care radiotherapy for
glioblastoma in clinical trials.

Localizing organs at risk nearby the tumor A first deep learning-based
segmentation of Organs at Risk (OAR) from MRI has recently been proposed by
Mlynarski et al., who presented preliminary results of a CNN-based deep learn-
ing approach to segment organs at risk from a single T1-weighted MR image.
This indicates that a deep learning-based segmentation will also be capable of
auto-segmenting organs at risk in multi-parametric MRI [88]. In line with the
findings of [88], an effective OAR auto-segmentation approach needs to provide
anatomically consistency results where shape prior of segmented of organs is
incorporated. A different approach, presented in [93], demonstrates the use of
a classical atlas-based approach, with results refined via a deep learning-based
contour detector working on triangular mesh representations. Similarly, the au-
thors in [4] proposed an approach that utilizes a deformable tetrahedral atlas of
the brain and structures within a contrast-adaptive generative model for whole-
brain segmentation and OAR segmentation. The approach also incorporates a
tumor regularization using a conditional restricted Boltzmann machine. Differ-
ently from other approaches, the method in [4] is based on a generative model
and is designed to handle differences in imaging protocols. Interestingly, the
evaluation of the approach not only relied on standard metrics such as Dice and
Hausdorff distances, but also on metrics derived from dose volume histograms.
Overall, the challenge when segmenting OAR is to attain a good balance be-
tween injected shape prior and image content driving the segmentation process.
This is particularly important when segmenting cases where tumor mass ef-
fect can dramatically lower shape prior information, learned by a deep learning
model.

In summary, tumor segmentation methods in radiation therapy have offer as-
sistance in gross tumor delineation, as well as probabilistic margin definition and
their conformance to natural anatomical barriers such as optic chiasm/nerve,
brainstem interface, and falx cerebelli, cerebri, as well as the skull, as these pre-
clude or limit the spread of glioblastoma. This is a future direction of research
and a future application domain of brain tumor image segmentation.
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