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Purpose:  To perform a proof-of-concept study to investigate the clinical utility of perfusion maps derived from convolutional neural 
networks (CNNs) for the workup of patients with acute ischemic stroke presenting with a large vessel occlusion.

Materials and Methods:  Data on endovascularly treated patients with acute ischemic stroke (n = 151; median age, 68 years [interquartile 
range, 59–75 years]; 82 of 151 [54.3%] women) were retrospectively extracted from a single-center institutional prospective registry 
(between January 2011 and December 2015). Dynamic susceptibility perfusion imaging data were processed by applying a commer-
cially available reference method and in parallel by a recently proposed CNN method to automatically infer time to maximum of the 
tissue residue function (Tmax) perfusion maps. The outputs were compared by using quantitative markers of tissue at risk derived from 
manual segmentations of perfusion lesions from two expert raters.

Results:  Strong correlations of lesion volumes (Tmax . 4 seconds, . 6 seconds, and . 8 seconds; R = 0.865–0.914; P , .001) and 
good spatial overlap of respective lesion segmentations (Dice coefficients, 0.70–0.85) between the CNN method and reference output 
were observed. Eligibility for late-window reperfusion treatment was feasible with use of the CNN method, with complete interrater 
agreement for the CNN method (Cohen k = 1; P , .001), although slight discrepancies compared with the reference-based output 
were observed (Cohen k = 0.609–0.64; P , .001). The CNN method tended to underestimate smaller lesion volumes, leading to a 
disagreement between the CNN and reference method in five of 45 patients (9%).

Conclusion:  Compared with standard deconvolution-based processing of raw perfusion data, automatic CNN-derived Tmax perfusion 
maps can be applied to patients who have acute ischemic large vessel occlusion stroke, with similar clinical utility.

© RSNA, 2019

Supplemental material is available for this article.

MRI perfusion is a valuable technique in the workup 
of patients suspected of having acute ischemic stroke 

(1). Data from MRI perfusion allow for the workup and 
correct diagnosis of transient ischemic attacks (2,3), help 
improve the prediction of infarct evolution (4–6), and, 
most important, facilitate selection of acute reperfusion 
therapies (7–10). With the exception of time-to-peak per-
fusion maps, MRI perfusion maps derived from dynamic 
susceptibility contrast material–enhanced (DSC) imaging 
require additional postprocessing steps, usually including 
deconvolution of the arterial input function (AIF) and tis-
sue concentration–time curve by singular value decompo-
sition (1,11). Although AIF can be detected automatically 
(12,13), manual correction may be needed in the case of 
suboptimal results. Manual adjustments to the AIF are 
time-consuming and not feasible for processing of large 
batches of imaging data.

Recently, deep learning methods, such as convolu-
tional neural networks (CNNs), have been successfully 
tested for a variety of medical image analysis applications 

in neuroradiology (14,15). In particular, they have been 
successfully applied for prediction of ischemic stroke le-
sion outcome from acute MRI data (6,16,17). However, 
these methods rely on perfusion maps computed by para-
metric models as input data, making them dependent on 
the choice of algorithm, and, in turn, effectively hinder-
ing truthful end-to-end learning as well as hampering 
standardization of postprocessing routines. Recent deep 
learning methods showed promising results in prediction 
of perfusion maps from raw MRI data but lack thorough 
clinical evaluation (18–20). In particular, to our knowl-
edge, the utility of perfusion maps derived from deep 
learning methods to quantify perfusion lesions and guide 
treatment eligibility has not been investigated so far.

Therefore, we hypothesized that deep learning methods 
may be transferred to the calculation of perfusion maps, 
including, in particular, time to maximum of the tissue 
residue function (Tmax). Taking existing commercial soft-
ware–processed perfusion maps as ground truth, we trained 
a CNN for direct estimation of Tmax perfusion maps from 
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(mRS) score, vascular risk factors, and pathogenic stroke mecha-
nism according to the Trial of Org 10172 in Acute Stroke Treat-
ment trial criteria (22). The local ethics committee approved this 
retrospective study (Ethics Committee Bern, approval number: 
231/14). Written informed consent was waived according to the 
retrospective nature of this analysis (general consent).

MRI Protocol
MRI examinations were performed with two 1.5-T scanners 
(Siemens Avanto, Siemens Aera; Siemens Healthineers, Zurich, 
Switzerland) and two 3-T scanners (Siemens Verio, Siemens 
Trio; Siemens Healthineers). DSC MR images were acquired 
in axial orientation with a T2*-weighted gradient echo-planar 
imaging sequence (single shot). The range of scan parameters 
included repetition time msec/echo time msec of 1400/1760, 
flip angle of 90°, imaging matrix of 128 3 128 or 256 3 256 
with in-plane spacing of 0.898–1.875 mm, section thickness of 
6–6.5 mm, and 70–80 measurements. The DSC protocol in-
volved an intravenous injection of 7.5 mL of gadolinium-based 
contrast agent (Gadovist; Bayer Healthcare, Berlin, Germany) at 
a rate of 5 mL/sec, followed by 30 mL of NaCl at the same rate. 
Diffusion-weighted imaging examinations were performed in 
axial orientation with an echo-planar imaging sequence, includ-
ing the following scan parameter ranges: repetition time msec/
echo time msec of 3000–4100/64–89; flip angle of 90–180°; 
imaging matrix of 128 3 128, 176 3 176, or 192 3 192 with 
in-plane spacing of 1.198–1.797 mm; section thickness of 5–6.5 
mm; and diffusion-encoding gradients at b values of 0, 500, and 
1000 sec/mm2. The b value images were used in conjunction to 
obtain the apparent diffusion coefficient map.

Perfusion Analysis
The raw DSC MRI perfusion data were postprocessed by using 
Olea Sphere, version 2.3 (Olea Medical, La Ciotat, France). 
The Tmax perfusion maps were generated by using the oscilla-
tion index singular value decomposition (oSVD) method (23), 
with default settings as used in clinical routine. The AIF was 
automatically determined. The quality of the detected AIF was 
assessed visually, and patients were excluded if automatic AIF 
detection did not succeed (as stated in the preceding section on 
the study cohort). An example of a suboptimal AIF is shown in 
Figure E1 (supplement).

In addition, the same raw DSC MRI perfusion data were 
postprocessed by using a recently proposed deep learning 
method (19). This method relies on a CNN to infer Tmax 
perfusion maps from raw DSC MRI perfusion data in a fully 
automatic fashion. It does not rely on an explicit definition of 
an AIF during testing time or on a parametric model for brain 
perfusion. A key aspect of the method is a combination of tem-
poral and spatial image information through the combined use 
of one-dimensional (temporal) and two-dimensional (spatial) 
convolutions. The computation time for a single patient is in the 
range of seconds. The CNN model was trained on the raw DSC 
MRI perfusion data and corresponding Tmax perfusion maps 
of 76 patients, where the latter (the Tmax perfusion maps) were 
estimated by using Olea Sphere. Model selection was performed 

raw DSC MRI data without additional user interaction or selec-
tion of AIFs. The purpose of this study was to investigate the 
clinical utility of CNN-derived Tmax perfusion maps in patients 
presenting with large vessel occlusion acute ischemic stroke.

Materials and Methods

Study Cohort
Data from patients treated between January 2011 and Decem-
ber 2015 were extracted from the prospective Bernese Stroke 
Registry. Details of the registry and further information on treat-
ment modalities have been published in detail elsewhere (21). 

Inclusion criteria for this study were (a) isolated occlusion of 
the intracranial internal carotid artery and first or second seg-
ment of the middle cerebral artery (M1 and M2, respectively), 
(b) treatment with mechanical thrombectomy or intra-arterial 
thrombolysis with or without intravenous tissue-type plasmino-
gen activator, (c) MRI performed as the imaging modality at ad-
mission, and (d) follow-up MRI performed 8 days to 3 months 
after the index event. This led to the inclusion of 189 patients. 
After exclusion of patients with suboptimal AIF (38 patients), 
a total of 151 patients remained for the primary analysis (me-
dian age, 68 years; interquartile range [IQR], 59–75 years). The 
rationale behind this is to guarantee training and evaluation of 
the method with highest-quality data. Of these 151 patients, 82 
were women (median age, 68 years; IQR, 61–75 years) and 69 
were men (median age, 67 years; IQR, 56–75 years). 

The cohort was randomly subdivided into a training, a vali-
dation, and a test cohort, consisting of 76, 30, and 45 patients, 
respectively. The following clinical data were extracted: age, sex, 
National Institutes of Health Stroke Scale (NIHSS) score at ad-
mission, time from symptom onset to admission, administration 
of intravenous tissue-type plasminogen activator, site of occlu-
sion, 24-hour NIHSS score, 3-month modified Rankin Scale 

Abbreviations
AIF = arterial input function, CNN = convolutional neural net-
work, DEFUSE 3 = Endovascular Therapy Following Imaging Eval-
uation for Ischemic Stroke, DSC = dynamic susceptibility contrast 
material enhanced, IQR = interquartile range, mRS = modified 
Rankin Scale, NIHSS = National Institutes of Health Stroke Scale, 
oSVD = oscillation index singular value decomposition, Tmax = 
time to maximum of tissue residue function

Summary
In patients with acute ischemic stroke, convolutional neural networks 
can produce brain perfusion maps with clinical utility similar to that 
of standard deconvolution-based estimates.

Key Points
nn The proposed method estimates time to maximum of the tissue 

residue function from raw dynamic susceptibility contrast mate-
rial–enhanced MRI data by using deep learning.

nn In patients with acute ischemic stroke, the utility of the estimated 
perfusion maps was similar to that of a clinically used reference 
method.

nn The evaluated method is computationally fast and does not rely on 
an explicit definition of an arterial input function during testing.
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age to differentiate between brain parenchyma and ventricles. 
The segmentation was performed sectionwise in the axial di-
rection. The Tmax images of the oSVD and CNN methods 
were presented to the human rater in a random order. For every 
patient in the test cohort (n = 45), the Tmax images generated 
by both methods were segmented consecutively to reduce in-
trarater variability. The Tmax images were annotated by a re-
searcher with more than 6 years of experience in brain image 
analysis (R. Meier, rater 1) and a neuroradiologist with more 
than 3 years of experience in diagnosis of stroke (J.K., rater 2). 
We derived Tmax annotations of greater than 6 seconds and 
greater than 8 seconds by applying the respective thresholds 
to the segmented lesion of Tmax greater than 4 seconds. This 
results in three annotations (Tmax .4 seconds, .6 seconds, 
.8 seconds) for every patient and rater. An exemplary patient 
case with annotations by both raters is shown in Figure E2 
(supplement).

by assessing the regression performance on the validation cohort 
of 30 patients. More details on the deep learning method, in-
cluding a detailed description of the preprocessing, the network 
architecture, and an ablation study of key components, can be 
found in the respective publication (19) and in Appendix E1 
(supplement).

Manual Annotation
After processing of the raw DSC MRI perfusion data, we ob-
tained Tmax perfusion maps for the oSVD method and CNN 
method. The Tmax perfusion maps were rigidly coregistered 
with the B0 image of the diffusion-weighted imaging sequence 
by using the raw DSC MRI perfusion data. The perfusion le-
sion apparent on the Tmax image was manually segmented 
with the threshold-based brushing tool in Slicer 3D, version 
4.8.0 (https://www.slicer.org/) (24). We used a Tmax threshold 
of greater than 4 seconds and used the co-registered B0 im-

Table 1: Baseline Characteristics, Risk Factor Distributions, and Etiologic Mechanisms for Patient 
Data in Training, Validation, and Test Cohorts

Variable
Training Cohort
(n = 76)

Validation Cohort
(n = 30)

Test Cohort
(n = 45) P Value

Age (y) 66.9 (56.3–74.2) 70.9 (62.4–76.6) 67.3 (59.7–74.5) .364
Women 53.9 (41/76) 56.7 (17/30) 53.3 (24/45) .957
Risk factor
  Diabetes 10.5 (8/76) 13.3 (4/30) 17.8 (8/45) .524
  Hypertension 60.5 (46/76) 73.3 (22/30) 60.0 (27/45) .418
  Dyslipidemia 60.5 (46/76) 80.0 (24/30) 62.2 (28/45) .151
  Smoking 38.2 (29/76) 43.3 (13/30) 42.2 (19/45) .849
  Previous TIA or stroke 7.9 (6/76) 3.3 (1/30) 4.4 (2/45) .588
  Coronary artery disease 18.4 (14/76) 10.0 (3/30) 11.1 (5/45) .398
TOAST .348
  Large artery atherosclerosis 18.4 (14/76) 23.3 (7/30) 13.3 (6/45)
  Cardioembolism 32.9 (25/76) 30.0 (9/30) 44.4 (20/45)
  Other 9.2 (7/76) 0 (0/30) 11.1 (5/45)
  Unknown 39.5 (30/76) 46.7 (14/30) 31.1 (14/45)
Admission NIHSS score 11 (7–17) 11 (7–17) 11 (7–15) .895
Symptom onset to admission 

(min) (n = 139/151)
88 (62–182) 100 (55–210) 101 (72–190) .775

Intravenous tissue-type  
plasminogen activator

51.3 (39/76) 36.7 (11/30) 53.3 (24/45) .312

Site of occlusion .964
  Carotid T/L 15.8 (12/76) 16.7 (5/30) 15.6 (7/45)
  M1 67.1 (51/76) 66.7 (20/30) 62.2 (28/45)
  M2 17.1 (13/76) 16.7 (5/30) 22.2 (10/45)
24-h NIHSS score  

(n = 130/151)
4 (1–9) 8 (3–12) 5 (2–10) .166

Day 90 mRS score  
(n = 146/151)

1 (0–2) 2 (1–3) 1 (0–2) .244

Note.—Data are percentages with numbers in parentheses for categorical variables and medians with interquartile ranges in 
parentheses for continuous or ordinally scaled variables. Statistical significance (with a significance level of a = .05) of dif-
ferences among patient cohorts was estimated by using Fisher exact test (for categorical variables) or Kruskal-Wallis test (for 
ordinal or continuous variables). mRS = modified Rankin Scale, NIHSS = National Institutes of Health Stroke Scale, TIA 
= transient ischemic attack, T/L = T type and L type, TOAST = Trial of Org 10172 in Acute Stroke Treatment.

https://pubs.rsna.org/journal/ai
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Results

Patient Data
One hundred fifty-one patients (median age, 68 years [IQR, 
59–75 years]; 82 of 151 [54.3%] woman), presenting with an 
acute occlusion of the intracranial internal carotid artery (n = 
24), M1 (n = 99), or M2 (n = 28), were included. Patients 

To evaluate eligibility based on 
Endovascular Therapy Following 
Imaging Evaluation for Ischemic 
Stroke (DEFUSE 3) criteria (25), 
we relied on manual segmenta-
tions of the infarcted tissue (isch-
emic core) visible on the apparent 
diffusion coefficient image of the 
diffusion-weighted imaging se-
quence. The image obtained with 
a b value of 1000 sec/mm2 was 
used to rule out previous infarcts 
(b value of 1000 sec/mm2 hyper-
intensity with absent apparent 
diffusion coefficient hypointen-
sity). The ischemic core was seg-
mented by using the level tracing 
and brushing tool in Slicer 3D, 
version 4.8.0. The segmentation 
was performed sectionwise in 
the axial direction. The infarcted 
tissue was annotated by a third 
rater, who was a medical student 
previously trained in stroke image 
analysis (P.L.).

Statistical Analysis
The statistical analysis was con-
ducted by using the R software 
package, version 3.1.2 (26). As-
sumption of normality was tested 
for the data with a Shapiro-Wilk 
test, and parametric or nonpara-
metric tests were used accord-
ingly. Tmax-based perfusion 
lesion quantifications were com-
pared among the patients of the 
test cohort (n = 45). The spatial 
overlap between manual anno-
tations was quantified by using 
the Dice coefficient. The agree-
ment between the volume mea-
surements derived from manual 
annotations on the different 
perfusion maps was assessed by 
using the Pearson correlation co-
efficient and Bland-Altman plots 
(27). Agreement on binary study 
eligibility (yes or no) for patients 
based on DEFUSE 3 criteria de-
rived from the different perfusion maps was quantified by us-
ing the Cohen k. The mean perfusion-diffusion mismatch ra-
tio was computed on the basis of the volumes derived from the 
manual annotations and was plotted for different mRS scores 
(0 to 4 for n = 44 patients because mRS score was not reported 
for one patient). The significance level of the statistical analysis 
was set to a = .05.

Figure 1:  Axial section of time to maximum of tissue residue function (Tmax) perfusion maps for 
an exemplary patient case alongside the manual annotations (in red) of the Tmax greater than 4 
seconds perfusion lesion for both raters. CNN = convolutional neural network, oSVD = oscillation 
index singular value decomposition.

Table 2: Volume Estimates Derived from Tmax Perfusion Maps of CNN and oSVD 
Methods for Both Raters

Tmax 

Rater 1 Rater 2 

CNN oSVD CNN oSVD

.4 sec 124 (87, 216) 145 (96, 185) 128 (103, 209) 155 (100, 203)

.6 sec 80 (42, 150) 91 (57, 140) 80 (43, 153) 100 (56, 154)

.8 sec 53 (24, 97) 67 (36, 111) 55 (25, 103) 70 (36, 118)

Note.—Data are medians with interquartile ranges in parentheses of volume in milliliters. CNN = 
convolutional neural network, oSVD = oscillation index singular value decomposition.

Table 3: Dice Coefficients for Increasing Thresholds of Tmax Values between Anno-
tations Based on oSVD- and CNN-derived Tmax Perfusion Maps for Both Raters

Tmax Rater 1 Rater 2

.4 sec 0.85 (0.81, 0.89) 0.82 (0.78, 0.86)

.6 sec 0.80 (0.73, 0.84) 0.78 (0.69, 0.82)

.8 sec 0.72 (0.60, 0.79) 0.70 (0.59, 0.77)

Note.—Data are medians with interquartile ranges in parentheses. CNN = convolutional neural 
network, oSVD = oscillation index singular value decomposition, Tmax = time to maximum of the 
tissue residue function.

https://pubs.rsna.org/journal/ai
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for rater 1 (Pearson R = 0.871–0.914; P ,.0001) as well as 
for rater 2 (Pearson R = 0.865–0.902; P ,.0001). The agree-
ment between the estimated volumes of the CNN and oSVD 
methods was further analyzed by using Bland-Altman plots, as 
shown in Figure 3. The CNN tended to underestimate smaller 
lesions and overestimate larger lesions relative to analysis based 
on oSVD-derived maps. This behavior is consistent for differ-
ent Tmax thresholds and raters.

Comparison of Neuroimaging Inclusion Criteria
The perfusion-diffusion mismatch was quantified in terms 
of volumetric ratio and difference for all patients in the test 
cohort. The mean mismatch ratio was plotted against the 
mRS scores after 3 months for 44 of the 45 patients in the 
test cohort (for one patient, mRS score was not reported). 
For both raters, the mean mismatch ratio consistently de-
creases with an increasing mRS score (Fig 4). On the basis 
of these measurements, DEFUSE 3 criteria were applied 
to all patients for both methods. Using the measurements 
derived from the CNN perfusion maps, both raters rated 
35 patients as eligible (interrater Cohen k = 1; P ,.001). 
Through use of the measurements derived from the oSVD 
perfusion maps, rater 1 rated 38 patients as eligible, whereas 
rater 2 rated 40 patients as eligible (interrater Cohen k = 
0.809; P ,.001). For both raters, there was a disagreement 
for five patients in comparing the result between CNN and 
oSVD method (rater 1:  Cohen k = 0.64, P ,.001; rater 2: 
Cohen k = 0.609, P ,.001). The summary statistics on DE-
FUSE 3 eligibility of patients in the test cohort are shown 
in Table 4, and complete data are presented in Table E1 
(supplement).

presented with severe neurologic symptoms (median NIHSS 
score, 11; IQR, 7–17) and were admitted to the hospital after a 
median delay of 91 minutes (IQR, 65–185 minutes). Baseline 
characteristics, risk factor distributions, and etiologic mecha-
nisms did not differ significantly between the training, valida-
tion, and test cohorts (Table 1).

Prediction of Tmax Maps for Test Cohort
The total time to process the imaging data of the test cohort 
by using the CNN method was 9.87 minutes, which corre-
sponds to a mean processing time per patient of 13.2 seconds. 
An exemplary Tmax perfusion map of the CNN method in 
comparison to the output of the oSVD method is shown in 
Figure 1 alongside manual annotations of the perfusion lesion. 
For all patients in the test cohort (45 of 45), there was agree-
ment on the hemispheric localization (left or right) of the le-
sion apparent in the Tmax map estimated by use of the CNN 
or oSVD method.

Quantitative Comparison of Perfusion Lesions 
(Tmax)
The median volumes and IQRs of the perfusion lesions for 
rater 1 and rater 2 are shown in Table 2. For both raters, the 
CNN provided a consistently lower median absolute volume 
than did oSVD. This tendency was found to be statistically 
significant (paired Wilcoxon signed-rank test: rater 1, P =.028; 
rater 2, P =.001). The spatial overlap in terms of Dice coeffi-
cient for both raters is reported in Table 3. The estimated vol-
umes based on the CNN-derived perfusion maps were plotted 
against the estimations based on the oSVD method in Figure 
2. Strong correlations were observed for all Tmax thresholds 

Figure 2:  Scatterplots of estimated volumes derived from time to maximum of tissue residue function (Tmax) maps of the convolutional 
neural network (CNN) and oscillation index singular value decomposition (oSVD) methods for both raters. Correlation is reported in 
terms of Pearson R. The different colors indicate different thresholds for Tmax values.

https://pubs.rsna.org/journal/ai
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Generalizability to Excluded Cases
For exploratory reasons, we applied the CNN method to patients 
previously excluded because of failed AIF detection. The Tmax 
perfusion maps of two exemplary patient cases are shown in Figure 
5. Results for three additional patients with failed AIF detection are 
shown in Figure E3 (supplement). The Tmax maps of the CNN 
present a perfusion lesion, which from a qualitative viewpoint is 
easier to distinguish from surrounding brain parenchyma than the 
lesions apparent in the maps of the oSVD method. Additionally, 
we performed a manual AIF selection in the proximal segment of 
the contralateral medial carotid artery and subsequently applied 
the oSVD method for further comparison.

Discussion
The present study revealed good radiologic agreement and 
clinical utility of Tmax perfusion maps derived from a trained 

CNN when compared with a Food and Drug Administration–
cleared oSVD method. The CNN method was evaluated in 
terms of spatial overlap of perfusion lesions and volumetric 
agreement, the ability to guide patients’ eligibility for acute 
reperfusion treatment, and agreement with patient outcomes. 
Validation was performed on test cases not seen by the trained 
CNN before, accounting for potential overfitting.

Quantitative evaluation yielded a strong agreement across 
different threshold-based segmentations of Tmax perfusion 
maps, although an overestimation of larger volumes and under-
estimation of smaller volumes by the CNN method were ob-
served (proportional error). Furthermore, we found complete 
interrater agreement on eligibility for late-window mechanical 
thrombectomy according to the DEFUSE 3 trial criteria when 
these ratings were based on CNN-derived Tmax maps. Al-
though consistent, the number of patients rated eligible for acute 

Figure 3:  Agreement between volume measurements derived from the time to maximum of tissue residue function (Tmax) perfusion 
maps of the convolutional neural network (CNN) and oscillation index singular value decomposition (oSVD) methods shown in Bland-
Altman plots.
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reperfusion treatment was slightly 
lower (35 patients for both rat-
ers) than the number determined 
by assessment derived from the 
oSVD model (38 of 40 patients), 
potentially reflecting the slight 
underestimation in lower tissue-
at-risk volumes. In particular, 
the patients not rated eligible on 
the basis of CNN-derived Tmax 
maps but eligible on the basis of 
the oSVD maps exhibited lesion 
volumes well below 100 mL. The 
mean mismatch ratios estimated 
from oSVD-derived perfusion 
maps and CNN-derived perfu-
sion maps revealed a stringent 
agreement to patients’ functional 
outcome, reflecting the close as-
sociation of expected benefit from 
reperfusion therapies and the pro-
portion of salvageable tissue on 
admission (28).

Using a digital phantom, 
Kudo et al (29) found that nu-
merous postprocessing software 
tools for perfusion-weighted im-
ages showed good correlations for 
calculated perfusion parameter 
values compared with the true 
values, although absolute values 
did differ significantly across dif-
ferent postprocessing tools and 
some delay-sensitive errors were 
observed. In their study, abso-
lute values were most similar for 
estimation of Tmax in different software packages, further pro-
moting its value in multicenter clinical trials which use differ-
ent software tools. These findings are supported by the study of 
Zaro-Weber et al (30), who found that, on the basis of data from 
patients with acute and subacute stroke Tmax appears to be the 
most stable parameter when different deconvolution techniques 
are used. Therefore, most clinical trials evaluating treatment ef-
fect in subcohorts of patients with defined pattern of penumbra 
have based their definition of penumbral tissue on Tmax DSC 
perfusion maps (7,10,31). Consequently, we focused on the fea-
sibility of predicting Tmax perfusion maps from raw DSC MRI 
data using deep learning.

Current machine learning methods for stroke lesion outcome 
prediction rely on parametric maps derived from the DSC MRI 
data generated by commercially available postprocessing tools. 
The accurate generation of these maps depends on the success-
ful detection (manual or automatic) of an AIF. Furthermore, 
these postprocessing tools are decoupled from any subsequent 
machine learning method and vary strongly across different hos-
pitals. This leads to three severe issues: difficult standardization 
of perfusion processing (which hampers interpretation of results 

from clinical trials), lack of robustness due to dependency on 
AIF detection (which reduces diagnostic yield), and less stream-
lined workflow (which results in loss of valuable time). 

The deep learning method evaluated in this study attempts 
to tackle these issues. Clinical validation of a postprocessing 
software will most certainly depend on which perfusion pro-
cessing software packages were used most often in clinical trials 
implementing perfusion-based patient selection or stratification. 
In that sense, the present proof-of-concept of a CNN has an 
advantage because a CNN will be agnostic to the type of output 
needed for training and can thus be easily adapted to software 
outputs, which are considered most clinically validated at a given 
time point. In addition, the proposed method removes the ne-
cessity of AIF detection after deployment, yields results within 
fast computation times (competitive with or faster than those re-
ported elsewhere [32–34]), and might be used to automatically 
process large batches of perfusion data. Finally, it can potentially 
be extended for joint regression of perfusion maps and learning 
of stroke lesion prediction, thus opening the possibility of truth-
ful end-to-end learning in lesion outcome prediction for patients 
with acute ischemic stroke.

Figure 4:  Mean values of perfusion-diffusion mismatch ratio for both raters plotted for increas-
ing values of modified Rankin Scale (mRS) scores. CNN = convolutional neural network, oSVD = 
oscillation index singular value decomposition.

Table 4: Summary Data for DEFUSE 3 Eligibility Criteria of Patients in Test Cohort of 
45 Patients

Eligibility Criteria for DEFUSE 3 Rater 1 Rater 2

Satisfied (CNN) 35 35
Satisfied (oSVD) 38 40
Disagreements (CNN vs oSVD) 5 5

Note.—Data are the number of patients for whom the combination of respective method (CNN 
or oSVD) and rater (rater 1 or rater 2) generated DEFUSE 3 eligibility or resulted in a disagree-
ment among the methods (CNN vs oSVD). CNN = convolutional neural network, DEFUSE 3 = 
Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke; oSVD = oscillation index 
singular value decomposition.
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Neural Network-derived Perfusion Maps 

The presented results on the 
utility of CNN-derived perfu-
sion maps for assessing perfusion 
lesions in patients with acute 
ischemic stroke are limited to 
the setting of a single center and 
a single ground-truth perfusion 
postprocessing software. Future 
studies should determine how 
our method performs in a mul-
ticenter setting and in situations 
where alternative ground-truth 
perfusion maps are available. A 
main limitation of the current 
CNN-derived Tmax maps is the 
underestimation of smaller per-
fusion lesion volumes, which led 
to fewer patients deemed eligible 
on the basis of DEFUSE 3 trial 
criteria when compared with the 
assessment based on oSVD-de-
rived maps. We plan to address 
this issue in the future by (a) in-
creasing the number of samples 
in the training data (especially 
for patients with smaller perfu-
sion lesions) and (b) extending the neural network to perform 
multitask learning of perfusion map regression and stroke lesion 
outcome prediction.

Compared with standard deconvolution (oSVD) of raw per-
fusion data, CNN-derived perfusion maps can be applied to pa-
tients with acute ischemic large vessel occlusion stroke with simi-
lar clinical utility. The evaluated algorithm provides the clinician 
with quickly available perfusion maps to estimate the tissue at 
risk and potentially guide eligibility for reperfusion regimens. 
Further validation of this method must include hypoperfusion 
patterns that are more complex (eg, multivessel occlusion, lacu-
nar perfusion deficits and posterior circulation strokes) and an 
evaluation of the discriminative power of the derived maps with 
regard to stroke mimics, such as epilepsy and migraine.
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