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Abstract. In this work, we investigate the potential of a recently pro-
posed parameter learning algorithm for Conditional Random Fields (CRFs).
Parameters of a pairwise CRF are estimated via a stochastic subgradi-
ent descent of a max-margin learning problem. We compared the perfor-
mance of our brain tumor segmentation method using parameter learning
to a version using hand-tuned parameters. Preliminary results on a sub-
set of the BRATS2015 training set show that parameter learning leads
to comparable or even improved performance. Future work will include
training on the complete data set and the use of more elaborate loss
functions suitable for brain tumor segmentation.

1 Introduction

Brain tumor segmentation yields information about the volume of a tumor and
its position relative to neighboring possibly eloquent brain areas. Alternatively,
such information can only be obtained via time-consuming and subjective man-
ual segmentation. Consequently, fully-automatic segmentation methods applica-
ble in a wide range of domains such as neurooncology, neurosurgery and radio-
therapy are in high demand.

The development of new brain tumor segmentation methods has been fostered
through the MICCAI Brain Tumor Segmentation (BRATS) Challenge [4], which
was held for the first time during MICCAI 2012. Several previously published
segmentation methods rely on the use of structured prediction including ap-
proaches such as Markov or Conditional Random Fields (CRFs) (e.g. [7, 3]).
However, parameters for those models are often hand-tuned rather than esti-
mated from training data. Recently, an efficient method for parameter learning
in CRFs applicable to volumetric imaging data was proposed [2]. In this paper,
we investigate a modification of our previous segmentation method [3] employing
the learning algorithm of [2].



2 Methods

Our current segmentation method (proposed in [3]) encompasses a preprocessing,
a feature extraction step followed by a voxel-wise classification and a spatial
regularization. The features try to capture visual cues of appearance and image
context relevant for discriminating the different tissue classes. Classification is
performed by a decision forest. Spatial regularization is formulated as an energy-
minimization problem of a CRF. In the remainder of this paper, we present a
modification of the spatial regularization used so far.

Structural MRI. Our approach relies on four different MRI sequences, namely
T1-, T1-post contrast-, T2-, FLAIR-weighted images. We assume that these im-
ages are co-registered and organized as a vector image, where every voxel contains
the four different MR intensity values. We refer to this image as X =

{
x(i)
}
i∈V

,

where voxel i is represented by a feature vector x(i) ∈ R4 and V denotes the
set of all voxels in X. The corresponding tissue label map of X is denoted by
Y =

{
y(i)
}
i∈V

with y(i) being a scalar tissue label (e.g. 1=necrosis, 2=edema,

etc.). We consider seven possible tissue classes (|L|=7): three unaffected (gray
matter, white matter, csf) and four tumor tissues (necrosis, edema, enhancing
and non-enhancing tumor). All possible labelings are contained in Y.

Conditional Random Field. A CRF models a parametrized conditional prob-
ability p (Y |X,w) = 1

Z(X,w) exp (−E(X,Y,w)) where Z(X,w) is the partition

function. The energy E(X,Y,w) depends linearly on the unknown parameters w.
In general, given the parameter vector w, a CRF can predict the labeling Y of a
given input imageX by minimizing the energy, i.e. Y ? = arg minY ∈Y E(X,Y,w).

Energy Function. We employ an energy function associated with a pairwise
CRF: E(X,Y,w) =

∑
i∈V Di(x

(i), y(i)) +
∑

(i,j)∈E Bi,j(x
(i), y(i),x(j), y(j)). The

unary potentials Di and pairwise potentials Bi,j are expressible as an inner
product between the parameter vector w and a feature map ψi or ψi,j , respec-
tively [2]. For a given feature vector x(i), we can define the feature map ψi =[
I(y(i) = 1)(− log(p(y(i) = 1|x(i)))), · · · , I(y(i) = 7)(− log(p(y(i) = 7|x(i))))

]T
by

using the indicator function I (returns a value of 1 if the argument is true). The
posterior probability p(y(i)|x(i)) is output by the decision forest classifier. Conse-
quently, the cost of assigning label y to voxel i is smaller the more confident the
prediction of the decision forest is. The pairwise feature map is given by ψi,j =[
I(y(i) = a, y(i) = b)(1− I(y(i) = y(j))) exp

(
−
∥∥x(i) − x(j)

∥∥
∞

)]
(a,b)∈L2 which is

defined for all possible label pairs in L. The term 1 − I(y(i) = y(j)) estab-
lishes a Potts-like model. The exponential term penalizes large intensity dis-
continuities between neighboring voxels. Potentials can now be expressed as
an inner product between parameter vector and feature map, i.e. 〈w, ψ〉. Fur-
thermore, let ΨD =

∑
i∈V ψi and ΨB =

∑
(i,j)∈E ψi,j . Given the parameter

vector w =
[
(wD)T , (wB)T

]T
, the energy function can then be rewritten as

E(X,Y,w) =
〈
wD, ΨD

〉
+
〈
wB , ΨB

〉
.



Parameter Learning. For estimating the parameter vector w, we use the re-
cently proposed method by Lucchi et al. [2] which builds on the max-margin for-
mulation for parameter learning [6]. Essentially, learning is posed as a quadratic
program with soft margin constraints. The objective function is minimized via
stochastic subgradient descent in which iteratively a training example

(
X(n), Y (n)

)
is chosen, the subgradient with respect to this example computed and the weight
vector updated accordingly (see algorithm 1). The objective function for

(
X(n), Y (n)

)
is defined as f(w, n) = l

(
Y (n), Y ?,w

)
+ 1

2C ‖w‖
2

with l being the hinge loss3.

The task-specific loss is defined as ∆
(
Y (n), Y

)
=
∑

i∈V I
(
y(i) 6= y(n),(i)

)
and

measures the dissimilarity between a labeling Y and its ground truth Y (n). In
contrast to [5], the method of Lucchi et al. aims at an increased reliability in
the computation of the subgradient by the use of working sets of constraints
An. For every iteration, loss-augmented inference is performed to obtain a cur-
rent estimate of the labeling Y ? = arg minY ∈Y

(
E(X,Y,w)−∆

(
Y (n), Y

))
(step

4). The set An′
contains all labelings (constraints) Y which are violated (i.e.

l(Y, Y (n),w) > 0) (step 7). The subgradient is then computed as an average
subgradient over all violated constraints (step 8).

Algorithm 1 Subgradient Method with Working Sets [2]

1: Training data S =
{

(X(i), Y (i)) : i = 1, ...,m
}
, β := 1,w(1) := 0, t := 1

2: while (t < T ) do
3: Pick randomly an example (X(n), Y (n)) from S
4: Y ? = arg minY ∈Y(E(X,Y,w)−∆(Y (n), Y ))
5: An := An ∪ {Y ?}
6: An

′
:=
{
Y ∈ An : l(Y, Y (n),w(t)) > 0

}
7: η(t) := β

t

8: g(t) := 1

An′
∑
Y ∈An′

(
ΨD(Y (n)) + ΨB(Y (n))−

(
ΨD(Y ) + ΨB(Y )

)
+ 1

C
w
)

9: w(t+1) := P
[
w(t) − η(t)g(t)

]
10: t := t+ 1
11: end while

For performing loss-augmented inference, we employed the Fast-PD algorithm
proposed by Komodakis et al. [1]. Fast-PD requires Bi,j(·, ·) ≥ 0.4 The update
of the weights (step 9) can potentially violate this constraint. Thus, we apply a
projection P to ensure the compatibility of the weights w with Fast-PD.

3 Results

We evaluated our method via a 5-fold cross-validation on a subset of the BRATS2015
training data, encompassing 20 high-grade glioma cases (part of the former

3 l(Y (n), Y ?,w) = [E(X(n), Y (n),w) +∆(Y (n), Y )− E(X(n), Y ?,w)]+
4 Fast-PD requires Bi,j to define a semi-metric.



BRATS2013 training set). The performance of the presented method was com-
pared against our previous approach using hand-tuned CRF parameters (base-
line). Quantitative results are presented in table 1.

Region Dice coefficient Absolute volume error [mm3]

Complete tumor (CRF+Learning) (0.887, 0.35)/(0.885, 0.35) (10276, 41871)/(11078, 41257)
Complete tumor (CRF Baseline) (0.888, 0.353)/(0.886, 0.353) (9029, 42199)/(9029, 42001)

Tumor core (CRF+Learning) (0.784, 0.912)/(0.793, 0.538) (6504, 29505)/(6472, 29505)
Tumor core (CRF Baseline) (0.789, 0.915)/(0.79, 0.58) (6057, 32954)(6017, 32954)

Enhancing tumor (CRF+Learning) (0.811, 0.918)/(0.812, 0.827) (2784, 29875)/(2825, 29875)
Enhancing tumor (CRF Baseline) (0.767, 0.942)/(0.768, 0.852) (2485, 36986)/(2041, 36986)

Table 1: Results of evaluation on subset of BRATS2015 training set. Performance
measures are given as (median, range=max-min). Left tuple: Results for all 20
cases. Right tuple: Results after removal of outlier “brats 2013 pat0012 1 ”.

4 Discussion and Future Work

The preliminary results indicate that learning CRF parameters from data in-
stead of hand-tuning them can lead to comparable or even improved perfor-
mance. Future work for our final submission will include training on the complete
BRATS2015 training set and the investigation of more elaborate task-specific loss
functions.
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