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A B S T R A C T

The detection of new or enlarged white-matter lesions is a vital task in the monitoring of patients undergoing
disease-modifying treatment for multiple sclerosis. However, the definition of ‘new or enlarged’ is not fixed, and
it is known that lesion-counting is highly subjective, with high degree of inter- and intra-rater variability.
Automated methods for lesion quantification, if accurate enough, hold the potential to make the detection of
new and enlarged lesions consistent and repeatable. However, the majority of lesion segmentation algorithms
are not evaluated for their ability to separate radiologically progressive from radiologically stable patients,
despite this being a pressing clinical use-case. In this paper, we explore the ability of a deep learning segmen-
tation classifier to separate stable from progressive patients by lesion volume and lesion count, and find that
neither measure provides a good separation. Instead, we propose a method for identifying lesion changes of high
certainty, and establish on an internal dataset of longitudinal multiple sclerosis cases that this method is able to
separate progressive from stable time-points with a very high level of discrimination (AUC = 0.999), while
changes in lesion volume are much less able to perform this separation (AUC = 0.71). Validation of the method
on two external datasets confirms that the method is able to generalize beyond the setting in which it was
trained, achieving an accuracies of 75 % and 85 % in separating stable and progressive time-points.

1. Introduction

Magnetic resonance imaging is the most important imaging method
for diagnosis and monitoring of multiple sclerosis. The 2017 revised
Mcdonald diagnostic criteria for the diagnosis of multiple sclerosis re-
quire the dissemination of lesions in both space and time. Lesion load
change is also crucial for the assessment of disease activity, since pa-
tients who are assigned with disease modifying therapies and no evi-
dence of disease activity (NEDA) harbor a better prognosis Arnold et al.
(2014); Havrdova et al. (2009, 2014); Nixon et al. (2014). Radiological
progression can be separated into new or enlarged lesions in T2

weighted imaging, and new enhancing lesions on T1 weighted imaging
with Gadolinium-based contrast agents (GBCA). While standard ima-
ging protocols for multiple sclerosis have included GBCA, there is in-
creasing evidence that high resolution 3D unenhanced MRI is sufficient
to detect the presence of new or enlarged lesions Eichinger et al.
(2019).

Detection of new and enlarged lesions in multiple sclerosis imaging
by human raters is time-consuming and limited by inter- and intra-rater
variability Erbayat Altay et al. (2013). As a consequence, manual lesion
volumetry and lesion counting has limited sensitivity for new lesion
detection. Delineation of new and enlarged lesions can be improved by
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working on subtraction MRI, but this still requires substantial human
user interaction and judgement, as well as manual intensity normal-
ization. A recent study showed that FLAIR subtraction MRI had a sen-
sitivity of 80% for detecting new or enlarged lesions. Rudie et al.
(2019). Registration errors, flow artifacts and lesion signal intensity
differences can result in the detection of false-positive ”lesions” on
subtraction images Moraal et al. (2009).

Several groups have proposed automated methods for multiple
sclerosis lesion segmentation, mostly validated in a cross-sectional
fashion. Fartaria et al. (2018); McKinley et al. (2016); Valverde et al.
(2017, 2018) Even where longitudinal data was used to assess the
performance of classifiers, consistency of segmentations over time, or
the ability to detect new lesions were not investigated Carass et al.
(2017). Since MR contrast will differ between time-points, even on the
same scanner, and since the borders of MS lesions are often not well
defined, automated methods will typically show small differences in the
boundaries of lesions at different time-points, even if no lesion growth
has taken place. Since even the best automated methods also make false
positive and false negative lesion identifications, lesion counts may also
not be reliable in a longitudinal setting. Several researchers have pro-
posed methods to harmonize segmentations across two or more time-
points. Jain et al propose a joint expectation-maximization (EM) fra-
mework for two time-point white matter (WM) lesion segmentation,
and the Lesion Segmentation Toolkit, a tool integrated in SPM, has a
longitudinal pipeline which adapts existing segmentations across mul-
tiple time-points Jain et al. (2016); Schmidt et al. (2012). Meanwhile,
Salem et al proposed a logistic regression classifier for detected new and
enlarged lesions showing ”considerable growth” using features derived
from subtraction imaging and deformation fields derived from regis-
tration of two time-points. Salem et al. (2018).

In a companion paper, we have introduced a novel method
(DeepSCAN MS) based on convolutional neural networks (CNNs), for
multiple sclerosis lesion segmentation, which we demonstrated to
outperform previous methods. McKinley et al. (2019) In this paper, we
demonstrate that changes in lesion count and volume change, estimated
using our method, do not perform well as a method for separating
stable and progressive MS cases. Simultaneous lesion growth and lesion
resolution may occur at a single time-point, which will not be apparent
from simply observing volume changes. Further, variations in image
contrast between acquisitions can lead to substantial volumetric
changes in automated lesion delineation, even when using ‘state-of-the-
art’ classification methods. Lesion counts are also only approximate
measures of activity, since lesions may be missed or undersegmented,
false positives may give the impression of lesion growth where none
exists, and lesions may become confluent, leading to an increase in
lesion tissue but a decrease in lesion count.

As a potential solution to this issue, we instead propose to identify
new and missing lesion tissue by using the confidence of an automated
classifier in its own segmentation. Measures of segmentation un-
certainty have previously been proposed as a method of rejecting false
positive MS lesion identifications. Nair et al. (2018) To our knowledge,
our method is the first to leverage segmentation confidence in the de-
tection of longitudinal change. Our recently introduced MS lesion
classifier, DeepSCAN, produces for each tissue map a ’label-flip prob-
ability’, which is a measure of uncertainty derived from the training
data. We use the segmentation of the classifier and the label-flip map to
distinguish between patients with no new or enlarged lesions (those
satisfying that component of the NEDA criteria) and those with genu-
inely new or enlarged lesions. We identify as new lesion tissue only
those voxels that were confidently not present at time-point t=0 but
that are confidently lesion tissue at time-point t=1. The method re-
quires T1, FLAIR and T2 imaging adhering to modern best-practice
imaging standards in MS (specifically, a 3D FLAIR and 3D T1 acquisi-
tion), such as those specified in the OFSEP minimal MRI protocol.
Cotton et al. (2015).

2. Methods

In this paper, we study the ability of a previously trained deep
learning classifier to detect longitudinal changes in T2 lesion load, by
several means: lesion counting, overall lesion volume, detecting voxel-
by-voxel change using coregistration, detecting voxel-by-voxel confident
change using a method which incorporates classifier confidence. We
describe the patient cohorts, the deep learning method, and the
methods for detecting lesion growth. We utilise data from three sources.
The first are MRI datasets of patients with remitting-relapsing multiple
sclerosis that were identified from the MS cohort databank of the
University of Bern. Use of data for this study was approved by the local
ethics committee (Cantonal Ethics Commission Bern, Switzerland ’MS
segmentation disease monitoring’, approval number 2016-02035) and
all patients gave general consent for data storage and analysis of their
MRI datasets. This data was from the same centre and scanner as that
used for the training of our fully convolutional deep learning classifier
(DeepSCAN).

Additional anonymized datasets were provided by Radiology Center
Bethanien, (which we subsequently refer to as the Zurich dataset), and
from the Klinikum Rechts der Isar, Munich, Germany (which we sub-
sequently refer to as the Munich dataset).

2.1. Patient cohorts and MR imaging

Patients from the Bernese MS cohort were included in the Bern
dataset if they had at least three consecutive MRI datasets, and were not
among the 50 casesused in training of the DeepSCAN
classifier. McKinley et al. (2019) All patients fulfilled the revised
McDonald criteria of 2010 for relapsing-remitting multiple
sclerosis.Polman et al. (2011).

MR images from the Bern dataset were acquired on a 3T MRI
(Siemens Verio, Siemens, Erlangen, Germany). The protocol settings
were i) T1 weighted MP-RAGE pre- and post gadobutrol i.v. (TR 2530
ms, TE 2.96 ms, averages 1, FoV read 250 mm, FoV phase 87.5 % voxel
size 1.0 x 1.0 x 1.0 mm, flip angle 7∘, acquisition time 4:30 min. slices
per slab 160, slice thickness of 1.0 mm) ii) T2- weighted imaging (TR
6580 ms, TE 85 ms, averages 2, FoV read 220 mm, FoV phase 87.5 %,
voxel size 0.7 x 0.4 x 3.0 mm, flip angle 150∘, acquisition time 6:03 min,
42 parallel images were acquired with a slice thickness of 3.0 mm,) iii)
3D FLAIR imaging (TR 5000 ms, TE 395 ms, averages 1, FoV read 250
mm, FoV phase 100 %, voxel size 1.0 x 1.0 x 1.0 mm, acquisition time
6:27 min. A total of 176 parallel images were acquired with a slice
thickness of 1.0 mm). All patients received Gadobutrol (Gadovist) 0.1
ml/kg bodyweight immediately after the acquisition of the unenhanced
T1w sequence.

MR images from the Zurich dataset were acquired using a stan-
dardized acquisition protocol on a 3T MRI (Siemens Skyra, Siemens,
Erlangen, Germany), including: i) T1 weighted MP-RAGE precontrast
(TR 2300 ms, TE 2.9 ms, TI 900 ms, averages 1, FoV read 250 mm, FoV
phase 93.75 % voxel size 1.0 x 1.0 x 1.0 mm, flip angle 9∘, acquisition
time 05:12 min.) ii) T2- weighted imaging (TR 4790 ms, TE 100 ms,
averages 1, FoV read 220 mm, FoV phase 100 %, voxel size 0.7 x 0.4 x
3.0 mm, flip angle 150∘, acquisition time 02:16 min iii) 3D FLAIR
imaging (TR 5000 ms, TE 398 ms, TI 1800 ms, averages 1, FoV read 250
mm, FoV phase 100 %, voxel size 1.0 x 1.0 x 1.0 mm, flip angle 120∘,
acquisition time 04:17 min.).

MR images from the Munich dataset were acquired with a 3T MRI
(Achieva; Philips Healthcare, Best, the Netherlands) including: i) 3D T1
gradient-echo imaging, performed before and at least 5 minutes after
administration of 0.1 mmol/kg gadolinium-based contrast material :
voxel size 1.0 x 1.0 x 1.0 mm; acquisition time, 6 minutes ii) a three-
dimensional fluid-attenuated inversion-recovery (FLAIR) sequence,
voxel size, 1.03 x 1.03 x 1.5 mm3; acquisition time, 5 minutes iii) T2-
weighted imaging: voxel size, 1.03 1.03 1.5 mm; TR 40006000 ms
(variable); TE 35 ms; acquisition time 5 min.
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2.2. The DeepSCAN MS lesion classifier

In a previous paper on brain tumor segmentation McKinley et al.
(2019), we proposed a hybrid of U-net Ronneberger et al. (2015) and
Densenet Huang et al. (2017), in which the bottleneck layer of the Unet
is a single dense block, and in which some of the pooling and upscaling
is replaced by dilated convolutions. In a subsequent paper, we in-
troduced a new loss function (label-flip loss), in which the probability
that classification output differs from the ground truth used for super-
vision is used to anneal gradients coming uncertain datapoints, and
demonstrated that this loss function leads to improved results in brain
segmentation.McKinley et al. (2019). In a companion paper to this
paper, we trained a classifier, which we call DeepSCAN MS, on fifty
cases from the Bernese MS cohort databank McKinley et al. (2019). In
this section, we first summarize the procedure for training the
DeepSCAN MS classifier, and then describe its application in detecting
longitudinal changes in MS.

The DeepSCAN MS classifier is shown in Figure 1: it is a fully-con-
volutional neural network trained on fifty cases from the Bernese MS
cohort databank, which provides segmentations of white-matter le-
sions, together with segmentations of the cerebellum, subcortical grey
matter structures, and cortical grey and white matter, in MS patients.
(In this study we only use the lesion segmentations produced by the
classifier.) The network was trained using a combination of focal loss
and our previously defined label-flip loss, on lesion labels provided by
manual raters, and brain anatomy labels provided by Freesurfer. In
label flip loss, for each voxel, and tissue class, the network outputs two
probabilities: the probability p that voxel contains the tissue class, and
the probability q that the label predicted does not correspond to the
label in the ground-truth annotation (i.e., the probability of a ’label
flip’). IF BCE stands for the standard binary cross-entropy loss, and y is
the target label, then the label-uncertainty loss is:

− + − +BCE p x q x q BCE q z( , (1 )* *(1 )) ( , ) (1)

where

= > − + <z p x p x( 0.5)*(1 ) ( 0.5)* (2)

If q is close to zero, and the label is correct, the first term is ap-
proximately the ordinary BCE loss: if q is close to 0.5 (representing total
uncertainty as to the correct label) the first term tends to zero. This loss
therefore attenuates loss in areas of high uncertainty (i.e., where the
network is likely to disagree with the ground truth) during training, and
indicates areas where segmentation reliability may be poor when ap-
plied to new data.

On an internal dataset of 32 patients, the DeepSCAN classifier
achieved a mean Dice coefficient of 0.60 versus a manual consensus
ground truth for the task of segmenting MS lesions, compared to a mean
Dice coefficient of 0.58 between two independent manual raters. This
result was sustained when we examined external data from the MSSEG

challenge Commowick et al. (2018). This dataset consists of fifteen
cases, from two centres and three scanners, each rated by seven in-
dependent manual raters. Imaging quality is of a similar standard to
that used in the Bernese MS cohort. Cotton et al. (2015). Versus the
independent raters, mean Dice coefficient with the output of DeepSCAN
(without retraining on the external data) ranged between 0.56 and
0.61. For comparison, the mean Dice coefficient between the MSSEG
raters on the training data ranged between 0.54 and 0.75.

As we have already discussed, manual segmentations of MS lesions
have large inter- and intra-rater variability, and so we must accept that
this ’ground-truth’ may, for lesion segmentation, contain many incon-
sistencies: missed or under-segmented lesions, and false identifications
or over-segmented lesions. For example, a retrospective analysis of the
32 manual lesion segmentations used to validate the DeepSCAN clas-
sifier found an average of 18 false positive lesions and 4 missed lesions
per subject.

For full details of the training and validation of the DeepSCAN MS
classifier, please see McKinley et. al McKinley et al. (2019).

2.3. Dichotomization of imaging data: progressive vs stable

For each patient and each time-point, a decision was made by an
experienced neuroradiologist if that time-point represented, from an
imaging standpoint, progressive disease (PD, if any new FLAIR- or
contrast-enhancing lesions was detected) or stable disease (SD, if the
number of lesions remained stable or reduced over time),based on vi-
sual analysis by one of the authors (LG for cases from Bern, CW for cases
from Zurich, PE for cases from Munich). In each case, the full clinical
sequence (including T1 post-contrast for all sites, and Double Inversion
Recovery for Munich) was included in the analysis.

2.4. Automated Segmentation by DeepSCAN convolutional neural network

For each patient and time-point we used the DeepSCAN classifier to
generate lesion masks and label-flip maps for MS lesions lesions, using
the T1-weighted, T2-weighted, and T2 FLAIR imaging as input. To aid
in comparison between time-points, these maps were resampled to
1mm3 isotropic resolution. The classifier also returns a 1mm3 isotropic
skull-stripped FLAIR image in the same space as the lesion and label-flip
maps.

2.5. Coregistration

In order to compare cases across time-points, it was necessary to
register all imaging for each patient to a common space. To avoid biases
inherent in registering to a particular time-point, we applied a robust
registration technique (the Robust Template method from Freesurfer) to
the skull-stripped FLAIR images produced by our CNN tool, in which all
time-points are registered to a common patient-specific

Fig. 1. The DeepSCAN architecture used in this paper for lesion and brain-structure segmentation.
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template. Reuter et al. (2012) After construction of the template, lesion
masks and lesion confidence maps were rigidly registered to the tem-
plate space using the transforms output by the robust template method.

2.6. Lesion change detection by classification uncertainty

We describe here the decision procedure for labelling a voxel as
’new lesion’, given lesion mask and label-flip maps at time-points A and
B in a common, coregistered space, and a threshold q determining ac-
ceptable confidence. For each time-point, a voxel is labelled as ’con-
fident lesion’ if it is in the lesion mask, and if the label-flip probability is
less than q. A voxel is labelled ’confident non-lesion’ if it is not in the
lesion mask, and if the label-flip probability is less than q. A voxel is
labelled as ’new lesion’ at time-point B, if it is labelled as ’confident
non-lesion’ at time-point A, and ’confident lesion’ at time-point B. It is
labelled ’missing lesion’ at time-point B, if it is labelled as ’confident
lesion’ at time-point A, and ’confident non-lesion’ at time-point B.
Finally, connected components of the ’new lesion’ and ’missing lesion’
maps were calculated.

We subsequently identified all connected components of ”new le-
sion” tissue. To improve robustness to coregistration artifacts, all con-
nected components of the new lesion map containing fewer than 12
voxels were deleted.

For the purposes of our initial investigation, we set the value of q to
be 0.05: i.e., we determine a voxel to be classified with confidence if the
model predicts a 5% or lower chance of the predicted label disagreeing
with the manual rater.

2.7. Lesion change detection by threshold margin

A more simplistic methodology for labelling lesions as confidently
or uncertainly classified is to set a margin around the ordinary decision
threshold, 0.5, and to label all voxels outside of this margin as ’con-
fident’. This method has the advantage that it may be applied to clas-
sifiers which do not output a label-flip probability: however, in general

the output of modern neural networks is not well calibrated: the scores
output by deep networks do not correspond to observed probabilities
and are typically overconfident Guo et al. (2017).

Concretely, we set a margin 0 < m < 0.5, and classify every voxel
with < −p m0.5 as confident nonlesion, while every voxel with

> +p m 0.5 is classified as confident lesion. The measure of new lesion
tissue is then as above: a voxel is new lesion if it is labelled as ’confident
lesion’ at time-point A, and ’confident non-lesion’ at time-point B. As
above, connected components below 12 voxels were deleted.

For the purposes of our initial investigation, we set the value of m to
be 0.45: i.e., we determine a voxel to be classified as confident lesion if
the model predicts a score of.95 or greater and to be classified as
confident non-lesion if the model predicts a score of 0.05 or less.

2.8. Evaluation

We compared our proposed methods to four other methods on our
internal (Bernese) test set: absolute change in lesion volume, relative
change in lesion volume, change in lesion count, and total new lesion
volume (equivalent to our method with =q 0.5). To test the power of
these measures to separate progressive and stable time-points, we
plotted the receiver-operating characteristic (ROC) curves for each of
the above methods. While ROC-AUC analysis gauges the ability of a
metric to separate positive and negative examples across all operating
thresholds, clinical applicability required that a particular threshold is
chosen..We therefore tested the performance of our metrics at an op-
erating threshold corresponding to ‘no lesion change’ (i.e. lesion count
> 0, lesion volume change > 0, and new lesion volume > 0).

We assessed the sensitivity of our method to its parameters, by
comparing the ROC curves of the method at different values of un-
certainty threshold q, margin m, and small-growth threshold.

3. Results

Twenty-six patients from the Bernese MS databank satisfied the

Fig. 2. Receiver operating curves for the detection of lesion
progression using DeepSCAN, on our internal validation set,
via absolute lesion volume change (AUC=0.70), relative vo-
lume change (AUC = 0.71), lesion count change (AUC =
0.51), the proposed method using a score margin of.45
(AUC=0.77) and the proposed method using an uncertainty
threshold of 0.05 (AUC ≈ 1). The star on each curve re-
presents a cutoff where the patient is labelled as stable if the
considered metric is less than or equal to zero.
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inclusion criteria, of which 16 were judged from radiological reports to
have no lesion changes in any of the time-points, and so were labelled
as having stable disease (SD). The remaining 10 cases were judged to
have progressive disease (PD). The mean number of time-points per
patient was 4.4 for the progressive patients, and 4.9 for the stable pa-
tients. Among the ten progressive patients, there were a total of 13
time-points where the radiological reports indicated progression,
meaning that approximately 30% of the time-points in those patients
showed lesion progression. Mean time between examinations for 223
days, with a standard deviation of 98 days.

3.1. ROC-AUC analysis

For each proposed method, we computed the area under the re-
ceiver-operating characteristic for the bernese dataset: see Figure 2.
Lesion counting performed worst, with a ROC-AUC of 0.51, while ab-
solute and relative volume change performed comparably, with ROC-
AUCs of 0.70 and 0.71 respectively. The proposed method using score
margins had an AUC of 0.77. Meanwhile, the proposed method using
network-derived uncertainty had a ROC-AUC of 0.999.

3.2. Performance at meaningful thresholds

Results of this analysis are shown in Table 1.
For lesion counting, this metric leads to a total of 33 time-points

being identified as progressive, when in fact they were stable according
to radiological reports. For lesion volumetry, 42 time-points were fal-
sely identified as being stable. For the proposed method, nine stable
time-points were labelled as progressive. Meanwhile, the proposed
method based on uncertainty successfully identified all progressive
time-points. By comparison, the lesion volume metric failed to find four
of the progressive time-points, and lesion counting failed to find eight
progressive time-points. The proposed method based on a margin
around the decision boundary made no false positive identifications,
but failed to find six of the progressive time-points.

3.3. Sensitivity to uncertainty threshold, score-margin and small-growth
threshold

The best-performing method according to area under the ROC
curve, according to our initial analysis, was achieved using our un-
certainty-based method with an uncertainty threshold of 0.05: i.e.
voxels which had a flip-probability greater than 0.05 at either time-
point are not used to calculate lesion change. At a fixed operating
threshold, meanwhile, our two proposed methods performed similarly
in terms of accuracy, but the method derived from label-flip confidence
had perfect sensitivity and lower PPV, while the method derived from a
margin around the threshold had perfect PPV and lower sensitivity.

Both of these methods rely on a parameter which can be varied,

with an effect on the performance. In this section we investigate the
effect of changing those parameters.

3.3.1. Effect of changing uncertainty threshold
For uncertainty threshold values lower than the one we initially

selected (0.0005, 0.001 and 0.01), the AUC was slightly reduced, at
0.92. At larger uncertainty thresholds than initially selected, the AUC
was also slightly lower: a threshold of 0.1 gave an AUC of 0.99, and a
threshold of 0.2 gave an AUC of 0.96.

3.3.2. Effect of changing classification margin
The effect of changing the classification margin was much more

drastic. By setting a narrower classification margin (0.15), we were able
to achieve an AUC close to the performance of the uncertainty-based
method (AUC = 0.998). A slightly larger margin of 0.2 gave worse
performance (AUC = 0.96), while a slightly narrower margin of 0.1 led
to a smaller decrease in performance (AUC = 0.996).

3.3.3. Effect of changing threshold for growth
In the method as described, areas of growth below 12 voxels do not

count towards lesion growth. The method is reasonably robust to
changes in this lesion-growth threshold. A larger threshold of 24 voxels
led to an AUC of 0.96, while a smaller threshold of 6 voxels led to an
AUC of 0.997. Not applying a threshold yielded an AUC of 0.98.

3.4. Performance on external data

Several authors have reported difficulties of automated methods for
MS lesion segmentation to perform on out-of-sample data.Commowick
et al. (2018); Valverde et al. (2018) In our previous paper, we already
validated that performance of the DeepSCAN MS classifier is not sub-
stantially degraded when applied to data adhering to similar protocol
standards from different centresMcKinley et al. (2019). In this section,
we report the ability of the uncertainty-based method, as described
above to identify progressive time-points in external data. The method
was applied to data from eight patients, each having four consecutive
time-points (thirty-two datsets, twenty-four after baseline) from the
Zurich dataset. This data was supplied full anonymized. In a second test
of generalization, the full lesion segmentation algorithm and un-
certainty-based method was containerized using Docker, and provided
to the co-authors from Munich (BW, CB, PE, MM), who applied the
classifier to cases from their centre.

The Zurich dataset consisted of four consecutive time-points (thirty-
two datasets, twenty-four after baseline imaging). Of the twenty-four
follow-up time-points, five were judged by the rater (CW) to have new
or enlarged lesions. The proposed method successfully identified three
of the five progressive time-points (sensitivity of 60%) and labelled an
additional three incorrectly as being progressive. (PPV of 84%), Overall
accuracy on this dataset was 75%.

The Munich dataset consisted of 53 pairs of baseline and followup
image, of which 24 were judged progressive, and 29 judged stable. The
method successfully identified 16 of the 22 progressive time-points
(Sensitivity of 72%) and correctly identified all of the stable time-
points. (PPV of 100 %) Overall accuracy on this dataset was 85%. A
summary of the performance of the confidence-based method on al
three datasets studied is shown in Tables 1 and 2.

Table 1
Ability to distinguish progressive vs stable MS at thresholds corresponding to no
lesion change, on internal test set, showing the number of true negatives (TN),
false positives (FP), false negatives (FN) and true positives (TP), together with
accuracy, positive predictive value and recall. Metrics are shown for the label-
flip method (Confidence method) and the margin-based method (Margin
method), together with new lesion volume, lesion volume change and lesion
count change.

TN FP FN TP Accuracy Sensitivity PPV FPR

Confidence method > 0 74 9 0 13 0.91 1.00 0.59 0.11
Margin method > 0 83 0 6 7 0.94 0.54 1.00 0.00
New lesion volume > 0 8 75 0 13 0.22 1.00 0.15 0.90
Volume change > 0 41 42 4 9 0.52 0.69 0.18 0.51
Lesion count change

> 0
50 33 8 5 0.57 0.38 0.13 0.40

Table 2
Performance of the confidence-based method on the three datasets studied in
this paper, showing Accuracy, Sensitivity, and Positive Predicative Value (PPV).

Accuracy Sensitivity PPV

Zurich 0.75 0.60 0.84
Munich 0.85 0.72 1.00
Bern 0.91 1.00 0.59
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4. Discussion

MRI is the method of choice to determine lesion load evolution in
patients with multiple sclerosis. The accurate detection of new or en-
larged white-matter lesions in multiple sclerosis patients is a pivotal
task of the disease monitoring process in patients who receive disease-
modifying treatment. However, the definition of ’new or enlarged’ re-
mains ill-defined, and lesion counting remains subjective with a con-
siderable degree of inter- and intra-rater variability depending on the

level of experience of the reporting expert. Automated methods for
lesion quantification, if accurate, hold the potential to make the de-
tection of new and grown lesions consistent and repeatable. Until now,
the majority of lesion segmentation algorithms are not well evaluated
for their ability to accurately separate radiologically progressive disease
course from radiologically stable patients during follow-up. Despite this
being the pressing clinical use-case and information for the clinicians
with impact on further treatment regime selection for the MS patients.
We demonstrate that measures of new lesion load derived from label-

Fig. 3. Two time-points from the external dataset, showing a missed new lesion. (A) coregistered FLAIR, (B) lesion segmentations, (C) Label-flip maps. New lesion is
correctly detected by DeepSCAN at TP2, but not labelled as confident new lesion. Small, faint lesions are more likely to be labelled as uncertain than large, clear
lesions.
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flip uncertainty outperform lesion counting as well as absolute and
relative volume change detection in the longitudinal analysis of MS
lesions. The major advantage of the proposed approach is to identify the
time-point during follow-up where lesion progression was evident with
a very high accuracy and positive predictive value. The method is fully
automated, and therefore offers the benefit of being objective and in-
dependent from user bias, thus leading to more trustful longitudinal
evaluations.

The method developed relies on a minimum standard of MR

imaging corresponding to a modern MRI protocol for imaging of de-
myelinating disease: in particular a 3D T1 and 3D FLAIR acquisition
(with approximately 1mm3 or better voxels). The recommended pro-
tocol is in keeping with the 2016 Consortium of MS Centers Task Force
recommendations and can be executed in approximately 20 minutes. In
particular, the method does not rely on the availability of a post-con-
trast T1 sequence: recent research suggests that modern 3D imaging at
3T can reduce or eliminate the need for contrast-enhanced sequences.
Eichinger et al. (2019); Rudie et al. (2019).

Fig. 4. Two time-points from the external dataset, showing a missed new periventricular lesion. (A) coregistered FLAIR, (B) lesion segmentations, (C) Label-flip maps.
Lesion is detected by DeepSCAN at TP2, but location of new lesion is uncertain at TP1. Owing to the similar appearance of periventricular lesions and subependymal
gliosis, label confidence is typically low in this region.
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The method in this paper proposes to track changes in lesion load by
leveraging measures of uncertainty in the location of lesion boundaries,
based on the predictions of a deep learning convolutional neural net-
work classifier, DeepSCAN. This method has already been shown to
perform well at lesion segmentation in a cross-sectional setting: the
classifier was more than twice as effective in lesion detection as both
previous generations of CNN-based segmentation tools and freely-
available lesion segmentation SPM toolboxes. McKinley et al. (2019) In
this paper, we sought to demonstrate the same classifier’s ability to
detect lesion change: by considering as new lesion tissue only those
voxels which are classified confidently by DeepSCAN, progressive time-
points were detected with an accuracy of 0.91 and a recall of 1.0, when

applied to data from the same centre as those used to train the classifier.
By comparison with standard metrics, such as lesion count progression
or volume changes, no progressive time-points were falsely identified as
stable, and the risk of false positive results decreased by more than a
factor of three, in comparison with lesion counting, and a factor of eight
compared to simply counting new lesion tissue voxels. An alternative
method, relying on a margin around the decision boundary rather than
uncertainty, performed similarly to the label-flip confidence method,
but only after the correct margin was found. We therefore tend to prefer
the uncertainty-based method.

Furthermore, our method (trained on fifty cases from a single in-
stitution) also performs well when applied to two datasets from external

Fig. 5. A case from the Zurich dataset. Top
Row: FLAIR imaging at baseline and three
subsequent time-points. A: FLAIR images with
lesion masks as provided by the DeepSCAN
classifier. B: FLAIR images with masks in-
dicating naive lesion change (lesion is absent
at previous time-point but present at current
time-point). time-points 3 and 4 show new
lesion tissue due to differences in imaging,
rather than genuine lesion growth. C: Regions
where DeepSCAN flip probability > 0.05
highlighted in blue. D: Confident new lesion
tissue maps as provided by the method,
showing correctly detected new lesion tissue
at time-point 2, and no change at time-points
3 and 4.
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centres. While detection of progression was perfect on the internal
validation set, the method failed to identify progression at two time-
points in the Zurich dataset and eight time-points from the Munich data
set. This was caused by small new lesions which were correctly iden-
tified, but too small to be identified confidently. For example, the two
cases mislabelled as stable in the Zurich dataset each had a single, small
new lesion. In the first case this was a small faint lesion in deep white
matter, and in the second it was a small periventricular lesion. In both
cases these lesions were correctly segmented by DeepSCAN, but not at a
sufficient level of confidence to deem them confident new lesion tissue.
Representative slices from these two cases are shown in Figures 3 and 4.
A representative slice from a further case from the external dataset,
showing two correctly identified instances of lesion growth, is shown in
Figure 5. We can hope that detection of missed lesions can be improved
by training on larger, more diverse datasets, or by the inclusion of more
sensitive sequences. In the case of the Munich dataset, a Double In-
version Recovery sequence was used by human raters in addition to
FLAIR to identify lesions. Detection of lesions on FLAIR only was shown
in a recent study to miss 27.6 % of new or grown lesions, compared to
DIR.Eichinger et al. (2019) It is therefore perhaps not surprising that
some time-points labelled as stable were judged as progressive by the
human raters, as the new lesions may not have been visible in the FLAIR
sequence. This suggests that it would be worthwhile to extend our
approach to incorporate DIR imaging. This would, however, limit the
applicability of the technique in clinical practice. Alternatively, the
proposed method could be used by a reader, in conjunction with seg-
mentations from the separate time-points, to streamline semi-automatic
detection of new lesions. Semi-automated methods for MS lesion seg-
mentation provide a simple method to assess the change in lesion load
of an MS patient. Simple FLAIR image subtraction methods or back-
ground subtractions of binarized image have been used to manually
identify new lesion tissue with high accuracy and low error rates. Other
methods included graph cuts, i.e. graph-based segmentation techniques
that employ seed points set by the user and a cost function or active
contouring using prior information. These methods still require a de-
gree of human interaction, are time consuming and require an expert-
in-the-loop. Currently, substantial effort is being invested in the de-
velopment of fully-automated lesion annotation methods, and results
indicate that advances in model architecture and training techniques,
together with increasing availability of expert-labelled data, have
brought us close to, or even allow us to exceed, the performance of
expert human raters Commowick et al. (2018); McKinley et al. (2019).
However, in the study at hand, we could demonstrate that despite the
effectiveness of automated lesion segmentation, automatically detected
changes in lesion volume in MS patients alone is not a sufficient method
for performing separation between radiologically progressive course
from radiologically stable patients. Instead, we propose a method for
identifying lesion changes of high certainty. We conclude that, while
solitary lesion volume or total lesion load - together with clinical dis-
ease course / EDSS of MS patients - are strong predictors of disease
course across a reference MS population, in the individual MS patient
changes in these measures are not an adequate means to clear differ-
entiate progressive disease course from no disease activity.

We believe that the performance shown by our method will en-
courage the MS community to investigate its use in different clinical
settings. The benefits of automated methods lie not only in terms of the
accuracy in differentiation of progressive versus stable disease course
on MR imaging but also in the related reductions in time and economic
costs derived from manual lesion labelling. While there is an increasing
level of evidence that CNNs are comparable to human rater’s perfor-
mance in cross-sectional studies, only longitudinal clinical follow-up
studies will demonstrate the utility of these methods for identifying
patients who remain stable under DMT.
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