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Fully automated stroke tissue estimation
using random forest classifiers (FASTER)
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Abstract

Several clinical trials have recently proven the efficacy of mechanical thrombectomy for treating ischemic stroke, within a

six-hour window for therapy. To move beyond treatment windows and toward personalized risk assessment, it is

essential to accurately identify the extent of tissue-at-risk (‘‘penumbra’’). We introduce a fully automated method to

estimate the penumbra volume using multimodal MRI (diffusion-weighted imaging, a T2w- and T1w contrast-enhanced

sequence, and dynamic susceptibility contrast perfusion MRI). The method estimates tissue-at-risk by predicting tissue

damage in the case of both persistent occlusion and of complete recanalization. When applied to 19 test cases with a

thrombolysis in cerebral infarction grading of 1–2a, mean overestimation of final lesion volume was 30 ml, compared with

121 ml for manually corrected thresholding. Predicted tissue-at-risk volume was positively correlated with final lesion

volume (p< 0.05). We conclude that prediction of tissue damage in the event of either persistent occlusion or immediate

and complete recanalization, from spatial features derived from MRI, provides a substantial improvement beyond pre-

defined thresholds. It may serve as an alternative method for identifying tissue-at-risk that may aid in treatment selection

in ischemic stroke.
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Introduction

During the last two decades, multiple attempts have
been made to predict the fate of ischemic tissue under
risk for infarction due to occlusion of the afferent vessel.
Advanced neuroimaging techniques aim to identify the
so-called ‘‘ischemic penumbra’’: the severely hypoper-
fused, neurophysiologically silent brain tissue that is
potentially salvageable if reperfused early enough.1

Non-invasive measurements of tissue-at-risk after ische-
mic stroke have used H2

15O-PET and MRI as surrogate
markers to define the thresholds between functional
impairment and irreversible cell death.2 However, vary-
ing perfusion and diffusion (ADC) thresholds have been
suggested in the literature without consensus. A Tmax of
>6 s has been shown to be a predictor of severely hypo-
perfused tissue,3 has been used in large-scale trials,4–6

and is considered the MR standard for estimating

tissue-at-risk in many centers.7 Similarly, thresholding
of the apparent diffusion coefficient (ADC) is frequently
used for semi-automated post-processing to identify the
infarct core. A threshold of 600� 10�6 mm2/s has been
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suggested as optimal,8 but it remains a matter of debate
which threshold to apply.

Fixed thresholds have been widely used, for example
in the automated tool RAPID.8 However, voxel-wise
thresholding of a single parameter map is an inaccurate
method for identifying tissue-at-risk. Tissue indicated
as unsalvageable may be salvaged (‘‘pseudonormali-
zation’’), and tissue indicated as being at risk can sur-
vive even in the absence of adequate reperfusion
(‘‘benign oligemia’’). Tissue-at-risk estimations are
prone to error in about 25% of patients, with variations
up to 100ml, when varying the algorithm underlying
the analysis.9 Initial attempts have been made to
develop automated predictive stroke models that dir-
ectly classify the tissue-at-risk beyond this threshold-
based imaging model.10 Early studies established the
increased ability of multimodal data to predict
damage, compared to single parameter models.11

Models incorporating information about the spatial
arrangement of hypoperfused voxels outperform those
based on voxel-by-voxel prediction.12,13 Very recently,
neural networks have been employed to predict tissue
fate, allowing visual features predicting stroke tissue
fate to be learned directly from training data.14

All these studies omit a crucial variable predictive of
stroke tissue fate: namely the degree of recanalization.
This aspect of stroke tissue fate prediction is made
more vital by recent class I evidence that mechanical
thrombectomy is a safe and effective therapy. Seven
prospective studies (MR-CLEAN,15 ESCAPE,16

EXTEND-IA,4 SWIFT-PRIME,17 REVASCAT,18

THRACE, and THERAPY) demonstrated the super-
iority of mechanical thrombectomy in proximal vessel
occlusions within 6 h after stroke onset. The availability
of safe, reproducible, and reliable information about
expected tissue salvage would not only allow neurora-
diologists to select patients that would benefit from
mechanical thrombectomy, but also enable the selec-
tion of patients for revascularization in a time
window that exceeds 6 h if sufficient collateral flow
enables sustained tissue survival. In this case, it is cru-
cial that a prediction of tissue damage can be made in
both the presence and absence of successful reperfu-
sion. The degree of success of the mechanical thromb-
ectomy depends on a variety of clinical factors which
cannot be inferred from imaging data (such as time to
recanalization, experience of the interventionalist, or
comorbidity) and therefore the outcome for a given
patient cannot be reliably estimated. However, an esti-
mate of the lesion in the event of favorable response to
therapy / an estimate of the lesion in the event of
unfavorable response to therapy can be given, and
used as a tool to drive decision making.

An important advance in personalized stroke predic-
tion was made in a recent study by Kemmling et al.19

A logistic regression model, incorporating recanaliza-
tion status, time to recanalization and CT perfusion
imaging data, was used to predict the extent of stroke
tissue damage from CT imaging. The model parameters
show an 83% reduction in the odds of infarction in the
event of successful recanalization for each voxel, hold-
ing all other variables constant. By introducing an
interaction variable between time to recanalization
and recanalization status, the authors were able to
show that the odds for infarction increased by 18.9%
for every additional hour until thrombolysis in cerebral
infarction (TICI) 0–2a recanalization, and by 33.2% for
every additional hour until TICI 2b-3 recanalization.

This study raises new questions, the first of which is
the added ability of similar methods to predict infarction
in the case of successful or unsuccessful revasculariza-
tion, using MR perfusion and MR diffusion-weighted
imaging rather than CT perfusion. Secondly, the role
of the interaction between recanalization status and ima-
ging is not uniform across the affected tissue: one would
expect that the effect of rapid reperfusion will be negli-
gible on voxels lying within a large infarct core, and felt
most in tissue lying inside the penumbra but sustained by
sufficient collateral flow.

In light of these questions, we have developed a pre-
dictive framework for acute stroke based on multi-
modal MR imaging. Training of the multilinear
model in the study mentioned above is based on a
dichotomization of patients into ‘‘near complete’’ reca-
nalization (TICI2b-3) versus ‘‘less than near complete’’
recanalization (TICI 0–2a). As a consequence, some
voxels belonging to a patient with TICI 2a recanaliza-
tion (classified as ‘‘less than near complete’’) may
experience re-established blood flow, leading to under-
estimation of the tissue-at-risk during testing.
Following Wintermark et al.,20 we instead dichotomize
our training data not into complete recanalization
(TICI 3) or permanent occlusion (TICI 0), omitting
all intermediate TICI grades from training.

The basis of this framework is two predictive
models, one predicting the outcome in the event of a
good response to therapy, and the other predicting the
natural course of the stroke. The prediction is made on
a voxel-by-voxel basis but is made for each voxel con-
sidering features derived from the surrounding tissue.
By training separate predictive models for these two
cases, the effect of recanalization can depend, nonli-
nearly, on the perfusion and diffusion characteristics
of the affected tissue.

It is our hypothesis that prediction of the extent of
final infarction using compound spatial information
from multimodal MRI can provide a more informative
definition of the tissue-at-risk than approaches based
solely on voxel-wise delineation of the infarct core
and salvageable penumbra using linear thresholds,
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and that these predictions can be used as a tool to aid
treatment selection.

Materials and methods

Patients

The study utilizes anonymized data from the Bernese
stroke registry, a prospectively collected database
approved by the Kantonale Ethikkomission Bern,
some aspects of which have been reported previ-
ously.21–24 All patients were treated for an acute ische-
mic stroke at the University Hospital of Berne between
2005 and 2013. The study was performed according to
the ethical guidelines of the Canton of Bern (Swiss
Humanforschungsgesetz) with approval of our institu-
tional review board (Kantonale Ethikkomission Bern).

Patients were included in this analysis if: (i) a diag-
nosis of ischemic stroke was established by MR ima-
ging with an identifiable lesion on DWI and perfusion
imaging, (ii) a proximal occlusion of the middle cere-
bral artery (M1 or M2 segment) was documented on
digital subtraction angiography, (iii) endovascular ther-
apy was attempted, either by intra-arterial thromboly-
sis (before 2010) or by mechanical thrombectomy (since
2010), (iv) pre-treatment MRI was performed with suf-
ficient quality (i.e. no motion artefacts), (v) the imaging
data were recorded completely into the picture archiv-
ing and communication system, (vi) the patients had a
minimum age of 18 years at the time of stroke. Patients
were excluded if they received only purely diagnostic
angiography. Patients with a stenosis or occlusion of
the carotid artery were excluded as well.
Revascularization success was stratified retrospectively
according to the TICI score by two examiners blinded
for clinical data.25 Stroke severity for these patients was
assessed at admission according to the National
Institutes of Health Stroke Scale (NIHSS) scale. We
aimed to identify all patients with a three-month axial
T2-weighted follow-up image in order to define the final
extent of infarction.

Imaging protocols

The stroke MRI was performed on either a 1.5T
(Siemens Magnetom Avanto) or 3T MRI system
(Siemens Magnetom Verio). The stroke protocol
encompassed whole brain DWI, (24 slices, thickness
5mm, repetition time 3200ms, echo time 87ms,
number of averages 3, matrix 256� 256, flip angle
90�) yielding images for b values of 0 s/mm2 and
1000 s/mm2 as well as ADC maps that were calculated
automatically. Standard dynamic susceptibility con-
trast-enhanced perfusion MRI (gradient-echo echo-
planar imaging sequence, repetition time 1410 ms,

echo time 30ms, field of view 230� 230mm, voxel
size: 1.8� 1.8� 5.0mm, slice thickness 5.0mm, 19
slices, 80 acquisitions, flip angle 90�) was acquired.
Images were acquired during the first pass of a standard
bolus of 0.1mmol/kg gadobutrol (Gadovist, Bayer
Healthcare). Contrast medium was injected at a rate of
5ml/s followed by a 20ml bolus of saline at a rate of
5ml/s. In addition, an axial T2-weighted turbo-spin
echo sequence (TR 3760–4100 ms, TE 85–100ms, flip
angle 150�) and contrast-enhanced T1-weighted
sequence (1.5T system: spin-echo sequence (TR 663
ms, TE 17ms, flip angle 90�), 3T system: gradient-echo
sequence (TR 250 ms, TE 2.67ms, flip angle 70�)), a
time-of-flight angiography and a first pass Gd-MRA
were acquired, with T2-weighted imaging and TOF
angiography performed before contrast injection.

Data processing and ground truth generation

Perfusion maps (TTP, CBF, CBV, Tmax) were
obtained by block-circulant singular value decompos-
ition using the Perfusion Mismatch Analyzer (PMA,
from Acute Stroke Imaging Standardization Group
ASIST) Ver.3.4.0.6. The perfusion data were denoised
both spatially and temporally using a Gaussian filter.
The time-concentration-curves were generated for each
pixel from the time-intensity-curve. The AIF location
was determined automatically by the software. The
AIF curve was not rescaled using the venous output
function. A detailed description of the perfusion ana-
lysis is described in the publication by Kudo et al.26 All
MR sequences and their derived maps (T1contrast,
T2w, ADC, CBF, CBV, TTP, Tmax, and the follow-
up T2w) were registered to the pre-treatment T1 con-
trast image of the same patient. Calculated perfusion
maps were registered by initially registering the first
timepoint of the DSC perfusion sequence to the T1
post-contrast volume, and then using the resulting trans-
formation to register the maps. Registration was per-
formed using a rigid registration model with the
mutual information similarity metric as implemented
in ITK (‘‘VersorRigid3DTransform’’ with
‘‘MattesMutualInformation’’ similarity metric and
three multi resolution levels). All maps were automatic-
ally skull-stripped,27 then resampled to 2mm isotropic
resolution in a standardized axial orientation with a
linear interpolator. No attempt was made to put the
individual patients in a common reference space.

Delineation of lesions was performed using Slicer 3D
Version 4.3.1. For each patient, a manual segmentation
of the diffusion restriction and the hypoperfused tissue
was performed, beginning with a threshold
(ADC< 600� 10�6 mm2/s in the case of diffusion,
and TMax >6 s in the case of perfusion), which was
adjusted on a patient-by-patient basis in accordance
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with the opinion of the expert segmenter, to ensure that
all affected tissue was correctly labeled. This was fol-
lowed by a dilation and erosion. Due to considerable
variation and overlap of radiologic features affecting
the deep gray matter nuclei, resulting in incoherent
water motion and restricted diffusion, a reduction of
ADC values in white matter and basal ganglia is not
always ischemic in its nature (e.g. due to calcification,
systemic metabolic abnormalities or iron deposits). To
avoid erroneous classifications arising from this phe-
nomenon, in diffusion lesions adjacent to the caudate
nucleus, tissue with ADC below 600� 10�6 mm2/s was
excluded from the lesion if tissue in the contralateral
caudate nucleus was also below 600� 10�6 mm2/s. The
rater also excluded sulci, ventricles, previous infarcts,
and imaging artefacts.

For the determination of outcome, the ‘‘true infarct
core’’ was segmented manually on the registered T2-
weighted 90-day follow-up images. Manual regions of
interest were drawn to the maximal extent of the final
infarction, including areas with hemorrhagic trans-
formation, but excluding regions already hyperintense
on acute T2 imaging. The boundaries of the infarctions
were manually delineated for every single transversal
slice. The 90-day follow-up lesion was chosen as the
definition of final infarction, rather than the lesion in
the subacute phase of lesion evolution, since apparent
lesion size in the subacute phase is known to overesti-
mate final lesion volume.28 T2 was chosen as the
modality for identifying the final lesion, since it was
more widely available than a FLAIR follow-up image
in the retrospective data used.

All segmentations were done by two independent
raters and inter-rater agreement was checked using
Bland–Altman’s method.29

Segmentation forest classifiers

We have recently introduced an algorithm called
Segmentation forests,30 a variation on the well-known
Random Forests algorithm: in both algorithms, the
resulting classifier is a decision forest, in which the
final classification is derived from combining the votes
of many decision trees, each built on random samples
of the training data.31,32 In the Random Forests
approach to medical image segmentation, a forest of
decision trees is built, with each tree being trained on
a random sample of the voxels contained in the image.
This random sample is made over data from all the
patient cases in the training data. By contrast, in
Segmentation Forests, the random sampling occurs at
two levels: first at the patient level, then at the voxel
level. Each tree is therefore constructed on only a
subset of the patient cases. This has two advantages:
first, since voxel-wise data are clustered at the patient

level, this form of random sampling produces more
representative random samples than sampling without
patient-level stratification, reducing the variance of the
classifier without increasing bias. The second advantage
is that, since each tree is trained only on a subset of the
patient cases, the remaining ‘‘out of bag’’ cases can be
used to tune the classifier, by estimating the cutoff for
the classifier at which a metric (for example, mean Dice
coefficient) is optimized. In this study, the metrics used
for establishing the cutoff were the mean Dice score,
(used to establish the cutoff for the lesion prediction
in the case of successful reperfusion) and the mean F2
score (defined analogously to the Dice score, but pena-
lizing false negatives twice as much as false positives),
for the lesion prediction in the case of unsuccessful
reperfusion. By maximizing the F2 metric instead of
the Dice, we increase the volume of the predicted
infarction, to ensure that in most cases the final infarc-
tion lies within the predicted lesion. Further details of
the Segmentation Forest Classifier are available in the
Supplementary Material (Appendices A and B).

Segmentation forests was the algorithm used by our
group to produce the top result in the MICCAI ISLES
challenge (www.isles-challenge.org/), reproducing the
segmentation of the penumbra produced by a manual
rater. Here, we use the same framework to predict the
final infarction directly.

Feature extraction

The features used were adapted from the BraTumIA
tool33,34 and a pilot study on stroke lesions.35 There
are two categories of features: 1. Features extracted
from local histograms, and from the gradient magni-
tude of the image. 2. Global features, extracted by
registering the T1c volume was to a T1-weighted atlas
using ITK affine registration to extract atlas coordin-
ates. Using keypoints in the atlas space, the mid-sagittal
plane of the brain was extracted. The corresponding
point lying on the other side of the mid-sagittal plane
was found, and a symmetry feature calculated for each
modality, by calculating the normal first smoothing
(using a SmoothingRecursiveGaussianImageFilter
from ITK) and then subtracting the value of the
smoothed modality at the voxel from the value at the
mirrored voxel.

In total, 274 features were calculated for each voxel.
Since the extracted TMax maps contained outliers
(extremely high biologically meaningless values), the
Tmax maps were clipped to lie within a range [0,20s]
(i.e. Tmax values above 20 were set to 20). Since CSF
typically exhibits ADC in the range 3000–4000� 10�6

mm2/s, the ADC maps were also clipped to be within a
range [0, 2600]� 10�6 mm2/s to allow greater ability to
discriminate ADC values within the parenchyma. To
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ensure efficient calculation of the histograms used to
calculate feature maps, all modalities were linearly
scaled to integer values [0,255] (after clipping) as
described in Meier et al.34

Supervised learning models

In order to guarantee the quality of the training data
available, only cases with clear response to endovascu-
lar therapy (TICI 0 or 3) were used to train the predict-
ive classifiers. These classifiers, trained on relatively
small (<20) cohorts, performed well at identifying
what tissue would infarct within the penumbra.
However, performed less well at identifying the site of
the stroke itself, occasionally identifying tissue contra-
lateral to the stroke as being at risk of infarction. Our
contribution to the ISLES challenge, on the other hand,
had previously been shown to provide a localization of
the hypoperfused territory. We therefore developed a
hybrid approach, in which segmenting classifiers were
first used to locate the rough location of the stroke,
trained on manual segmentations, after which predict-
ive classifiers predict what tissue within that territory
will go on to infarct, trained on the final lesion in a
three-month follow-up. For a visual summary of the
pipeline, see Figure 1.

An initial segmentation of the tissue is provided by
the output of two segmenting classifiers, FASTERADC

and FASTERTmax, which attempt to reproduce the
manual delineation of the affected tissue, as described
in the Data processing and ground truth generation
Section. Two predictive classifiers are then used to pre-
dict which tissue will go on to infarct: a classifier
FASTER�, which predicts the lesion extent in the case
of no reperfusion, and a classifier FASTERþ, which
predicts the lesion extent in the case of full reperfusion.

Given a new case, voxels are classified by fully auto-
mated stroke tissue estimation using random forest
classifiers (FASTER) as follows:

. If a voxel is outside of the lesions given by both
FASTERADC and FASTERTmax, it is labeled ‘‘no
risk.’’

. If a voxel is inside the lesion defined either by
FASTERADC or by FASTERTmax, it is considered
within the hypoperfused area, and classified as
follows:
– If the voxel is outside the lesions indicated by

both FASTER� and FASTERþ, it is labeled
‘‘no risk.’’

– If the voxel is inside the lesion defined by
FASTERþ, it is labeled ‘‘unsalvageable.’’

– If the voxel is outside the lesion defined by
FASTERþ, but outside the lesion defined by
FASTER�, it is labeled ‘‘salvageable.’’

FASTER�was trained on cohort of patients who had
little-to-no reperfusion (‘‘no reperfusion’’): those receiv-
ing a TICI grade of 0. FASTERþwas trained on a cohort
of patients who had ‘‘complete reperfusion’’ (TICI grade
3) and whose imaging features reflected a non-malignant
ischemic profile. A malignant profile was defined as a
patient presenting with one or more of: an ADC lesion
of volume larger than 70ml, a ratio of perfusion to diffu-
sion lesion smaller than 1.8, or a region of extreme hypo-
perfusion (Tmax> 10 s) greater than 100ml.17

Data not falling into the selection criteria for training
were retained, and used to provide a large and represen-
tative testing set for the classifiers. Models were built
using H2O v. 2.8.6.2, a predictive analytics tool devel-
oped by H2O.ai (Mountain View, California), on a
machine running Windows 8.1 with 32 Gb of memory.

Data analysis

Area-under-curve analysis

The area under the receiver operating characteristic
(ROC) curve (AUC) is a well-known measure of the
discriminative power of classifiers. However, as noted
by Jonsdottir et al.,36 the large number of unaffected
(i.e. neither diffusion – nor perfusion-restricted) voxels
in stroke can lead to an artificially high AUC. To avoid
a bias, Jonsdottir et al. suggest measuring also a quan-
tity called AUCR: the area under the ROC curve for the
region consisting only of perfusion-restricted voxels.
We computed ROC curves both globally (on voxels
from all testing cases together) and on an individual
level (for each patient in the testing set).

Analysis of the favorable/unfavorable case prediction

We used three standard measures of segmentation per-
formance: sensitivity, specificity, and precision. Since
the ratio of lesion to non-lesion tissue in the brain is
rather low, specificity will be high even for rather simple
techniques. Precision, on the other hand, is independent
of class balance, and measures the probability that a
voxel labeled as in the lesion class will be in the three-
month follow-up lesion. It is therefore a good measure
of the tendency of a method to overestimate the extent
of likely tissue damage: a method with high precision
labels fewer voxels incorrectly as being in the lesion
class.

Results

Demographic data

By using the above-mentioned criteria, we identified 80
eligible patients from the Bernese stroke registry who
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Figure 1. Workflow for final lesion prediction: In the training step, classifiers are built from training data to segment the ischemic

penumbra and infarct core (as defined by a semi-manual segmentation on maps derived from perfusion and diffusion imaging) and to

predict the fate of stroke tissue (as defined by a manually segmented follow-up image acquired 90 days after the manifestation of the

stroke), using features extracted from the initial stroke MRI performed within 6 h of stroke onset. For every stroke patient, the output

of segmentation and predictive models are fused into a single image, showing the predicted outcome in the event of favorable or

unfavorable response to therapy in case of a successful vs. unsuccessful recanalization.
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had a follow-up MRI scan at three months. We identi-
fied 20 further patients without a follow-up MRI scan,
treated between 2011 and 2013, whose data were used
exclusively to train the segmentation classifiers.
Baseline and treatment characteristics of the different
patient groups are given in Table 1.

Median initial NIHSS was 14, median time from
symptom onset to MRI was 144min and median time
from symptom onset to intra-arterial revascularization
attempt was 267min. Among the 80 patients with
follow-up MRI present, 10 were assigned a TICI
grade of 0, 5 a TICI grade of 1, 14 a TICI grade of
2a, 31 a TICI grade of 2b, and 20 a TICI grade of 3.
Defining successful revascularization as a TICI of 2b or
3, 63% of patients were successfully revascularized.
Among those patients with a follow-up, 59 were treated
with endovascular therapy before the 6 hour recom-
mended window, and 20 at or beyond that window.
In the 20 cases treated at or after 6 h, 10 had a TICI
grade of 0–2a, and 10 a TICI grade of 2b-3. In one case,
the time to treatment was not available.

Median volumes for diffusion and perfusion restric-
tion at initial MRI (as defined by semi-manual segmen-
tation) were 12.52ml and 138.70ml, respectively. The
median volume of the final infarction was 2.47ml for
those with TICI 3 revascularization, 7.77ml for those
with intermediate TICI scores (1–2b), and 35.81ml for
those with a low TICI score of 0.

Interrater variability

Two raters manually segmented the lesion indicated on
ADC and Tmax maps, calculated as described above.
The results of the comparison, including inter-class cor-
relation, and the mean Dice score between the two
raters, are displayed in Table 2.

Prediction of tissue fate

Among the 20 cases having a three month follow-up
and a TICI score of 3, five were found to have a malig-
nant infarction profile. The 15 remaining patients in the
three-month follow-up cohort who were completely
revascularized (TICI score 3) and had initially a non-
malignant infarction profile, and the 10 patients
assessed as unsuccessful revascularization (TICI score
0) were used as training data. A favorable-outcome
classifier (FASTERþ) was trained on the data from
patients experiencing total reperfusion, and an unfavor-
able-outcome classifier (FASTER�) was trained on the
data from patients experiencing no revascularization.

In total, 25 cases out of the 80 with follow-up were
used to train the classifiers FASTERþ and FASTER�.
These classifiers were then applied to the remaining 55
cases with follow-up, of which 19 had a TICI grade T
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between 1 and 2a, and 36 had a TICI grade 2b or 3
(including among that 36 the malignant cases with TICI
3 which were excluded from training). To establish a
baseline performance with which to compare the

classifiers underlying FASTER, we also built logistic
regression models (as used by Wu et al.10 and more
recently Kemmling et al.19) trained on same 25 cases
used to train FASTERþ and FASTER�. The global
ROC curves for these classifiers are displayed in
Figure 2, plotted both over the whole brain, and over
the region of interest defined by the hand-segmented
tissue-at-risk (giving the AUCR score of Jonsdottir
et al.36). The ROC curves were calculated using the R
package pROC37 using the roc command, with algo-
rithm¼2 and no smoothing. The mean individual
AUC of FASTERþ over the testing set was 0.94
(sd¼ 0.08), and the mean individual AUC of
FASTER� over the testing set was 0.96 (sd¼ 0.06).
Meanwhile, the mean AUC of the logistic regression
model was 0.85 (sd¼ 0.08), the mean AUC of thresh-
olding on voxel-wise ADC was 0.832 (sd¼ 0.08), and
the mean AUC of thresholding on Tmax was 0.86
(sd¼ 0.09).

Figure 2. Receiver operating characteristic (ROC) curves for tissue fate prediction measured over all 55 testing cases. Upper row:

ROC measured over all brain voxels. Lower Row: ROC measured in the manually defined perfusion lesion. Left-hand column:

classifiers trained on successfully revascularized patients. Right-hand column: classifiers trained on unsuccessfully revascularized

patients. Thresholds derived from the segmentation forest algorithm are indicated. For comparison, the ROC curve of thresholding on

ADC (with a threshold of 600� 10�6 mm2/s indicated) is shown on the left, and the ROC curve of thresholding on Tmax (with a

Tmax threshold of 6 s indicated) is shown on the right.

Table 2. Interrater statistics for the manual segmentation of

the DWI and PWI lesions.

DWI PWI

Inter-class correlation 0.999 0.983

95% confidence interval

Lower 0.999 0.918

Upper 1 0.993

Significance p< 0.05 p< 0.05

Dice score Lesion in DWI Lesion in PWI

Mean 0.96 0.89

Median 0.98 0.89

Standard deviation 0.04 0.04
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Confidence intervals for the area under the ROC
curve were also calculated, using DeLong’s method in
the pROC package, but these intervals were found to be
unrealistically narrow: for example, the confidence
interval of the AUC for FASTERþ was (0.915–
0.928). This may be the result of applying a method
assuming independent samples to datapoints from a
relatively small number of highly correlated sources.

FASTER vs. linear thresholds

Accuracy of delineating the ischemic core

Over the 36 testing cases, we compared three-month
follow-up lesion to the manually segmented DWI
lesion and to the predicted lesion extent in the case of
a favorable reperfusion. The manually segmented DWI
lesion achieved a sensitivity of 0.52, a specificity of 0.99,
and a precision of 0.47. FASTER had a sensitivity of
0.53, specificity of 0.99, and a precision of 0.56. The
mean Dice score between the manually segmented
lesion and the follow-up was 0.34 (sd¼ 0.16), while
the mean Dice score between the prediction of
FASTER and the follow-up was 0.34 (sd¼ 0.22).

Accuracy of delineating the tissue-at-risk

Over the 19 testing cases having a TICI 1–2a, we com-
pared the three-month follow-up lesion to the manually
segmented PWI lesion, and to the lesion extent pre-
dicted by our model given an unfavorable response to
therapy. The manual delineation achieved a sensitivity
of 0.84, a specificity of 0.998, and a precision of 0.14,
while FASTER had a sensitivity of 0.77, a specificity of
0.998, and a precision of 0.33. The mean Dice score
between the manually segmented lesion and the
follow-up was 0.20 (sd¼ 0.21), while the mean Dice
score between the prediction of FASTER and the
follow-up was 0.32 (sd¼ 0.23).

Tissue-at-risk volumetry

The tissue classification generated by FASTER gives a
worst case estimation of the volume of the final infarc-
tion. This yields in most cases an overestimation of the
final lesion load, but the volume of tissue indicated as at
risk is substantially lower than the lesion defined by
Tmax>6 s. To see that this lower volume estimate
does not come at the expense of underestimating the
eventual lesion size, we focused on those patients in our
test-set having experienced an unsuccessful revascular-
ization (TICI 1–2a). The mean difference in volume
between the manually segmented perfusion lesion and
the final lesion was 121ml (�55ml), while the mean
difference in volume between the automatically defined

tissue-at-risk and the final lesion was 30ml (�26ml).
Moreover, the automatically segmented lesion bears a
much closer relationship to the final lesion volume than
the manually defined lesion: there is no significant cor-
relation between the volume of the manually delineated
perfusion lesion and the final lesion volume (r¼ 0.16,
p¼ 0.51). Meanwhile, the final lesion volume is signifi-
cantly correlated to the predicted lesion volume as
defined by FASTER, with a correlation coefficient of
0.72 (p< 0.001).

By contrast, automated and manual lesion predic-
tion performs comparably well at volumetry in the
case of good reperfusion, as tested on the 36 testing
cases with TICI 2b-3. Both predictors of final lesion
volume were positively linearly correlated with final
lesion volume (p< 0.05 in both cases).

Scatter- and Bland–Altman plots showing the per-
formance of FASTER can be seen in Figure 3. Example
outputs of the FASTER pipeline can be viewed in
Figure 4.

Performance beyond the 6-h time-to-treatment
window

Mechanical thrombectomy is currently restricted to a 6-
h time window from stroke onset to the initiation of the
therapy, as defined by first symptom onset or last time
being witnessed as asymptomatic as clinical surrogates.
This window is established from demographic data,
without consideration of the stability and extent of
the collateral supply in individual cases, and ruling
out the potential benefit of treatment in individual
cases where onset time is unknown, e.g. in patients
with wake-up stroke. Advanced neuroimaging tech-
niques such as FASTER may add complementary
information to structural imaging markers as FLAIR
signal increase,38 enabling personalized assessments of
tissue risk.

We therefore performed a subanalysis of 14 test
cases that have been treated beyond the 6-h treatment
window. Of these, eight were successfully revascular-
ized, and six unsuccessfully revascularized. In five of
those six cases, the predicted lesion was larger than
the final infarction volume, suggesting that FASTER
remains a robust tool for estimating penumbral
volume beyond the 6-h timeframe. No significant cor-
relation was found between the extent of overesti-
mation, defined as the ratio between estimated and
actual lesion size, and the time to therapy
(Spearman’s rank correlation test, p¼ 0.81). It was
not possible to establish a significant correlation
between the predicted and actual lesion size, but
given the sample size (6 cases) and the p value
obtained (p¼ 0.11), a subsequent study with more
may be sufficient to establish this connection: 11
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cases would be sufficient to establish a correlation
coefficient of 0.7 with an estimated power of 80%.

Variable importance analysis

The variable importance algorithm in H2O calculates,
for each split in the decision forest, the increase in clas-
sification accuracy obtained by splitting at that node,
and then sums these gains in accuracy over each fea-
ture. The gains are then linearly scaled such that the
most important feature is assigned an importance of 1.
Results of this analysis are shown in Table 3.

While no features derived from structural imaging
appeared in the top 10 imaging features used by
either model, the point intensity of the T2-weighted
scan was the 13th most important feature used in
FASTER�, with a relative importance of 0.15. While
the majority of strokes affect only a single hemisphere,
bilateral strokes occur in roughly 9.4% of cases.39 Since
the most important feature of our model, Tmax sym-
metry, could be rendered useless by the presence of a
bilateral stroke, we also examined the effect of remov-
ing the symmetry features from the available feature
space. The resulting classifier had somewhat reduced
sensitivity (0.75, vs. 0.79 for the full feature set), but
performed comparably in terms of precision and AUC.
In terms of feature importance, the most predictive fea-
tures were again derived from the TTP and Tmax maps.
The 75th percentile of the TTP was the most predictive
feature, and all five most predictive features appeared

in the top 10 features of the full model (i.e. including
symmetry features).

Discussion

In this study, we propose a fully automated framework
for determining tissue-at-risk in ischemic stroke that
extends beyond threshold-based perfusion/diffusion
mismatch analysis, by directly predicting tissue fate
ahead of therapy. The approach is an application of
supervised learning, in which nonlinear classifiers are
trained on stroke patient cases that underwent intra-
arterial therapy, dichotomized by complete recanaliza-
tion vs. permanent occlusion. By separating training
data into these two cohorts, and training one model
for each, we were able to predict the tissue risk for
new patients with respect to the success of treatment.
FASTER is able to provide, given a new patient case
where the outcome is unknown, a comparison between
the likely outcome in case of a successful or unsuccess-
ful reperfusion, yielding a more accurate delineation of
tissue-at-risk than that given by an expert rater using
linear thresholded maps. Results are available 6–10min
after calculation of the perfusion maps. The lesion
volume predicted by FASTER in the case of a poor
response to therapy was significantly correlated with
the final lesion volume in test cases having TICI score
1–2a. Manually segmented perfusion lesion volume was
not found to correlate with final lesion volume in
patients having a poor response to therapy. Since

Figure 3. Volumetric performance of manual segmentation based on Tmax, vs. segmentation from FASTER, for 19 test cases with

TICI 1–2a.
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final infarction volume correlates with functional out-
come and has been used as a marker for success of
acute stroke treatment,40 the output of FASTER may
improve on threshold-based approaches to assessing
the potential benefits of reperfusion.

Machine learning techniques have been criticized,
from the perspective that they are a ‘‘black box,’’ inso-
far as it is difficult to directly interpret their output
from a clinical perspective. However, the feature
importance analysis allows one to see which features

contribute most to model: certain features were consist-
ently selected for their ability to separate healthy tissue
from tissue-at-risk, and salvageable tissue from unsal-
vageable tissue. The individual features are readily
interpreted and could, themselves, be used to give a
more robust definition of tissue-at-risk. Notably, no
voxel-wise perfusion map was found to be useful in
predicting infarction risk, suggesting that voxel-wise
perfusion maps do not, themselves, characterize suffi-
cient vs. insufficient vascular supply. Features that

Figure 4. Six cases selected from the 55 test cases. In each case, from left to right: the ADC image, Tmax map, manually segmented

tissue-at-risk assessment (infarct core in green, penumbra in blue), assessment of tissue-at-risk produced by FASTER (favorable

outcome in green, unfavorable outcome in blue), and manually segmented 90-day outcome (in red). TICI grading is indicated for each

case.
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consistently contributed to the determination of out-
come in the absence of revascularization were derived
predominantly from perfusion parameters that are also
used for the linear estimation of the penumbra. The
Tmax symmetry feature, which is calculated from a
smoothed Tmax map by comparison across hemi-
spheres was highly predictive in both FASTER� and
FASTERþ: this validates the use of manually corrected
Tmax as the solitary feature of linear tissue-at-risk esti-
mation. Features derived from upper percentiles (90th
and 75th) of TTP also made substantial contributions
to the classification. These features may therefore be
more reliable markers of collateral supply than stand-
ard perfusion maps. The ADC played a major role in
FASTERþ but made no major contribution to
FASTER�. There was also less important contribution

from features derived from T2-weighted imaging in our
classification than might be expected. Recent studies
have demonstrated an added value of FLAIR instead
of T2-weighted images to detect early and subtle inho-
mogeneties that indicate beginning of hypoxic
damage.38

We were able to demonstrate an improved precision
compared to other predictive models; however, the
extent of tissue damage has been overestimated (a
volume difference of more than 10ml) in eight patient
cases. By comparison, the classical threshold-based
assessment of tissue-at-risk yielded a more than 10ml
overestimation of final infarction volume in 14 cases.
This effect may be explained by the effect of collateral
flow in these patients: good collaterals halt the loss of
penumbral tissue and have been shown to indicate
reversal of DWI imaging lesions.41,42 Scar formation
and lesion shrinkage may also lead to volume
overestimation.

We have applied FASTER to a single center MRI
data set acquired and trained on different scanners
from the same vendor. In future, both training and val-
idation require inclusion of a multicenter dataset to
verify if a generalization of the models is feasible.
Another limitation is the source of the data: by obtain-
ing test data only from cases with that required 90-day
follow-up scans to test the reliability of the model on
final infarction volumes. Thus, the most severe cases of
patients who subsequently died from stroke were
excluded from analysis. Furthermore, patients treated
with endovascular therapy outside of the six hour
window in this study were selected using non-random
treatment criteria, leading to potential bias in the
response to therapy. Further prospective analyses are
necessary to answer this unsolved question in future.
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