
doi: 10.1098/rsfs.2010.0037
, 450-461 first published online 30 March 20111 2011 Interface Focus

 
May, S. Bauer, T. Wang, Y. Zhao, M. Karasek, R. Grewer, A. Franz and G. Stamatakos
Kolokotroni, S. Giatili, C. Veith, E. Messe, H. Stenzhorn, Yoo-Jin Kim, S. Zasada, A. N. Haidar, C.
Büchler, M. Reyes, G. Clapworthy, E. Liu, J. Sabczynski, T. Bily, A. Roniotis, M. Tsiknakis, E. 
K. Marias, D. Dionysiou, V. Sakkalis, N. Graf, R. M. Bohle, P. V. Coveney, S. Wan, A. Folarin, P.
 
ContraCancrum project paradigm
Clinically driven design of multi-scale cancer models: the
 
 

References

http://rsfs.royalsocietypublishing.org/content/1/3/450.full.html#related-urls
 Article cited in:

 
http://rsfs.royalsocietypublishing.org/content/1/3/450.full.html#ref-list-1

 This article cites 23 articles, 4 of which can be accessed free

Subject collections

 (22 articles)systems biology   �
 (31 articles)computational biology   �

 (13 articles)bioengineering   �
 
Articles on similar topics can be found in the following collections

Email alerting service  hereright-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in the box at the top

 http://rsfs.royalsocietypublishing.org/subscriptions go to: Interface FocusTo subscribe to 

 on December 20, 2012rsfs.royalsocietypublishing.orgDownloaded from 

http://rsfs.royalsocietypublishing.org/content/1/3/450.full.html#ref-list-1
http://rsfs.royalsocietypublishing.org/content/1/3/450.full.html#related-urls
http://rsfs.royalsocietypublishing.org/cgi/collection/bioengineering
http://rsfs.royalsocietypublishing.org/cgi/collection/computational_biology
http://rsfs.royalsocietypublishing.org/cgi/collection/systems_biology
http://rsfs.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royfocus;1/3/450&return_type=article&return_url=http://rsfs.royalsocietypublishing.org/content/1/3/450.full.pdf
http://rsfs.royalsocietypublishing.org/subscriptions
http://rsfs.royalsocietypublishing.org/


Interface Focus (2011) 1, 450–461

 on December 20, 2012rsfs.royalsocietypublishing.orgDownloaded from 
*Author for c

One contribu
human’.

doi:10.1098/rsfs.2010.0037
Published online 30 March 2011

Received 17 N
Accepted 7 M
Clinically driven design of multi-scale
cancer models: the ContraCancrum

project paradigm
K. Marias1,*, D. Dionysiou2, V. Sakkalis1, N. Graf3, R. M. Bohle3,

P. V. Coveney4, S. Wan4, A. Folarin5, P. Büchler6, M. Reyes6,
G. Clapworthy7, E. Liu7, J. Sabczynski8, T. Bily9, A. Roniotis1,
M. Tsiknakis1, E. Kolokotroni2, S. Giatili2, C. Veith3, E. Messe3,

H. Stenzhorn3, Yoo-Jin Kim3, S. Zasada4, A. N. Haidar4, C. May6,
S. Bauer6, T. Wang7, Y. Zhao7, M. Karasek9, R. Grewer8, A. Franz8

and G. Stamatakos2

1Institute of Computer Science at FORTH, Heraklion, Greece
2In Silico Oncology Group, Institute of Communications and Computer Systems, National

Technical University of Athens, Athens, Greece
3Departments of Paediatric Oncology and Haematology, Pathology, Genetics, Universität

des Saarlandes, Homburg, Germany
4Centre for Computational Science, Department of Chemistry, University College London,

20 Gordon Street, London WC1H 0AJ, UK
5CancerResearch Institute,UniversityCollegeLondon,72HuntleyStreet,LondonWC1E6BT,UK
6Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland

7Department of Computer Science & Technology, University of Bedfordshire, Luton, UK
8Philips Technologie GmbH, Innovative Technologies, Hamburg, Germany

9Faculty of Mathematics and Physics, Department of Applied Mathematics, Charles
University in Prague, Prague, Czech Republic

The challenge of modelling cancer presents a major opportunity to improve our ability to reduce
mortality from malignant neoplasms, improve treatments and meet the demands associated
with the individualization of care needs. This is the central motivation behind the ContraCancrum
project. By developing integrated multi-scale cancer models, ContraCancrum is expected to con-
tribute to the advancement of in silico oncology through the optimization of cancer treatment
in the patient-individualized context by simulating the response to various therapeutic regimens.
The aim of the present paper is to describe a novel paradigm for designing clinically driven
multi-scale cancer modelling by bringing together basic science and information technology mod-
ules. In addition, the integration of the multi-scale tumour modelling components has led to novel
concepts of personalized clinical decision support in the context of predictive oncology, as is also
discussed in the paper. Since clinical adaptation is an inelastic prerequisite, a long-term clinical
adaptation procedure of the models has been initiated for two tumour types, namely non-small
cell lung cancer and glioblastoma multiforme; its current status is briefly summarized.

Keywords: cancer modelling; predictive oncology; brain cancer; lung cancer
1. INTRODUCTION

Multi-scale cancer modelling has recently become a very
active research area. A relatively recent literature review
of representative cancer modelling efforts worldwide is
included in Stamatakos et al. [1]. The mission of the Con-
traCancrum project [2] is to boost the translation of
clinically validated multi-level cancer models into clinical
practice. To this end, the project has designed and
orrespondence (kmarias@ics.forth.gr).
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developed a composite multi-level platform for simulating
malignant tumour growth as well as tumour response to
therapeutic modalities and treatment schedules. The
joint effort aims to produce an impact primarily by:

— improving the understanding of the natural phenom-
enon of cancer at different levels of biocomplexity, and

— optimizing the disease treatment procedure in the
patient-individualized context by simulating the
response to various therapeutic regimens.

Given that clinical adaptation of the models is a
prerequisite for their eventual clinical translation, a
This journal is q 2011 The Royal Society
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Figure 1. Clinical predictive oncology scenarios in ContraCan-
crum. The data are collected, anonymized and uploaded on
the ContraCancrum repository to run the ContraCancrum
simulations. A set of clinical cases (including imaging, histo-
pathological and molecular data) is used for the clinical
adaptation of the model, whereas another independent set is
used for clinical validation of the models.
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long-term clinical adaptation procedure has been initiated
within the framework of the ContraCancrum project for
two tumour types, namely non-small cell lung cancer
and glioblastoma multiforme (GBM), and their current
status is briefly outlined. One of the central questions of
modern clinical oncology is whether it is possible to
select the best treatment scheme and/or schedule for a
patient by multi-modal therapy simulation on the compu-
ter [3]. To answer this, the actual clinical response for an
individual patient needs to be compared with the in silico
prediction of the ContraCancrum integrated simulator, as
shown in figure 1 for both clinical studies of the project.

The clinical adaptation procedure is based on the com-
parison of multi-level therapy simulation predictions with
multi-level patient data, acquired before and after therapy.
ContraCancrum data include treatment data, histological
data, molecular data and imaging data. All data are pseu-
donymized or anonymized before they are uploaded to the
so-called Individualized MediciNe Simulation Environ-
ment (IMENSE), the integrated e-science platform of the
project. Patient imaging data are stored as digital imaging
and communications in medicine (DICOM) files at the
time of diagnosis, after surgery and at the end of treatment.
Clinical data, including age, sex, clinical findings, mutation
analysis of the tyrosine kinase pathway, treatment and out-
come data, are collected from all patients and stored in a
database. Lung cancer specimens have been obtained and
used for molecular analyses, including gene expression pro-
filing. In total, up to now, 13 lung cancer and four GBM
multi-scale datasets have been exploited.
2. METHODS AND TECHNICAL
COMPONENTS

The ContraCancrum predictive oncology environment
consists of a number of predictive multi-scale cancer
Interface Focus (2011)
oncology modules/services, including cellular and
higher level tumour dynamics simulation (microscopic
and mesoscopic–macroscopic), biomechanical simu-
lations, biochemical simulations and molecular
determinants of response to therapy and image analysis
modules:

— microscopic GBM tumour growth and response to
radiotherapy and chemotherapy simulator,

— mesoscopic–macroscopic GBM tumour growth and
response to radiotherapy and chemotherapy simulator,

— mesoscopic–macroscopic lung cancer growth and
response to radiotherapyand chemotherapy simulator,

— biomechanics module,
— biomolecular simulations for patient-specific che-

motherapy drug ranking,
— molecular determinants of response to therapy, and
— integrated image analysis (e.g. DrEye software).

ContraCancrum is also progressively integrating
individual modules into composite multi-scale simu-
lators and technological tools for specific clinical
studies on gliomas and lung carcinoma. These include
the following:

— ‘TB’ multi-level integrated simulator: fusion of the
Tumour growth and therapy response modules
with the respective Biomechanical models,

— the ‘TBI’ multi-level integrated simulator: fusion of the
‘TB’ simulator with the Image analysis module,

— the ‘TBIN’ multi-level integrated simulator: fusion
of the Normal tissue response module with the
‘TBI’ simulator; this is based on normal tissue tox-
icity limits, according to available phase I clinical
trial outcomes, and

— the ‘TBINM’ multi-level integrated simulator:
fusion of the Molecular simulations and networks
module with the ‘TN integrator’.

The final simulator integrates all of the previously
mentioned simulation and technology modules. The
image processing software DrEye integrates imaging/
annotation and visualization services and is freely
available (http://biomodeling.ics.forth.gr/). From the
above, the clinician is able to define predictive oncology
workflows within the IMENSE (described in §3), in the
context of multi-level GBM or lung cancer decision
support.

In the following, we present a more analytical
description of the predictive oncology components
that have been developed within ContraCancrum.

2.1. Microscopic cellular and higher level tumour
dynamics module

A microscopic tumour growth module is used for the
simulation of basic microscopic mechanisms of tumour
growth, including, for example, avascular tumour
growth, angiogenesis, invasion and metastasis. A
hybrid agent-based framework that extends an idea of
complex automata [4] has been developed. The frame-
work consists of two main parts. The first part
includes a description of hierarchical networks of
agents, each operating on a predefined time and space

http://biomodeling.ics.forth.gr/
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Figure 2. Output of simulation of an avascular spheroid formation after 20 days. View of XY, XZ, YZ cuts and three-dimensional
view. Purple, dead cells; blue, quiescent cells; red, proliferating cells.

452 ContraCancrum multi-scale cancer models K. Marias et al.

 on December 20, 2012rsfs.royalsocietypublishing.orgDownloaded from 
scale and representing different biological processes.
Communication between agents reflects interactions
between different biological processes and uses different
work-flow and data-flow paradigms [5]. The second part
contains a modular computational cell-based ‘middle-
out’ system for the description of cellular processes and
their interrelations, including, for example, a description
of micro-environmental (extracellular and intracellular)
processes as diffusion and reaction kinetics, a compart-
mental model of cells, a description of extracellular long-
range interactions, a cellular Potts model (CPM) [6], cell
cycle approximations (cdk/cdc, p27, p53), the influence
of growth promoter/inhibitor factors on phenotype
(EGF/R, VEGF/R pathways, hypoxia), and the
influence of adhesion on phenotype (cadherin–catenin
pathways, extracellular matrix) [7]. The framework
includes advanced visualization tools for the visualization
and editing of spatio-temporal simulations.

The main purpose of the development of these micro-
scopic models within the ContraCancrum framework is
to enhance our understanding of tumour dynamics on
the microscopic level so that refinement of macroscopic
tumour models can be achieved.

Figure 2 illustrates a three-dimensional output from
simulation of an avascular spheroid formation after
20 days of growing using CPM, reaction–diffusion
(oxygen, nutrients and growth promoter/inhibitor fac-
tors), cell cycle, hypoxia and EGF/R pathway modules
and a four-compartment model of a cell.
2.2. Mesoscopic–macroscopic cellular and
higher level tumour dynamics module

This module includes the development of a set of multi-
level simulation models of tumour growth and response
to radiotherapy and chemotherapy for the cases of
GBM and lung cancer in the patient-individualized con-
text. Both discrete and continuous simulation models of
tumour growth from a single tumour cell or an already
grown tumour, as well as the tumour response to
radiotherapy and chemotherapy, are considered and
exploited within the framework of ContraCancrum
[1,8–12]. In order for the models to be translatable
into clinical practice, a thorough long-term clinical
adaptation, optimization and validation procedure is
being performed by the clinical partners of the Univer-
sity of Saarland hospital, Saarland, Germany. In
parallel with the tumour response models, available
toxicological data provide safety limits beyond which
Interface Focus (2011)
any candidate treatment scheme would be clinically
unacceptable regardless of the tumour control predicted
outcome.

Two major modelling approaches are being used. The
first one is a continuum-based approach exploiting pri-
marily diffusion theory [11]. The second one is a discrete
entity/discrete event modelling approach based on the
‘top-down’ method, which exploits the potential of cellu-
lar automata, the Monte Carlo method, cell clustering
into equivalence classes, as well as numerous dedicated
algorithms [1,8–10]. In this way, both diffusion phenom-
ena (e.g. on tumour invasion) and complex multi-scale
biological mechanisms of a predominantly discrete
character (e.g. symmetric and asymmetric stem cell
division) are addressed. In the framework of the Contra-
Cancrum project [2,13], the continuous approach is
mainly used to simulate free tumour growth (in practice
applicable to gliomas), whereas the discrete entity/dis-
crete event approach is mainly used to predict tumour
response to treatment. In that sense, the two approaches
are to be viewed as complementary rather than mutually
interchangeable.

According to the continuum approach, the tumour is
considered as a spatio-temporal distribution of continu-
ous cell density that follows the generic reaction–
diffusion law [11] with sources and sinks. Therefore, the
reaction–diffusion equation is used to couple diffusion
and proliferation of glioma cancer cells in brain. The
developed diffusive model solves this equation in order
to simulate the behaviour of glioma cells. The grid and
the equation system (the equation is a second-order par-
tial differential equation) are constructed by using
several numerical schemes of finite differences, both
explicit (e.g. forward Euler) and implicit (e.g. backward
Euler, Crank–Nikolson) [14]. A conjugate gradient
solver is used for solving the corresponding numerical
system. The final result is the approximated concen-
tration of glioma cells after a predefined time of diffusion.

Furthermore, the model has been designed to simulate
the heterogeneous and anisotropic migration of glioma
cells, observed in real clinical cases [15,16]. More specifi-
cally, the diffusive model considers the inhomogeneous
diffusion of cells in white and grey matter, by using
local diffusion coefficients, which change according to
the underlying tissue. Also, the model takes into account
the anisotropic migration of glioma cells, which has been
observed to be facilitated along white fibres, by con-
verting these coefficients into 3 � 3 diffusion tensors.
Finally, the model can receive therapy parameters as

http://rsfs.royalsocietypublishing.org/
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Figure 3. Simulation of free glioblastoma growth along a
straight line intersecting the initial imageable tumour [13].
Blue line, after 100 days; red line, initial.
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input, which adds a third term to the reaction–diffusion
equation. This parameter expresses the efficiency of
therapy in terms of the cells’ death rate (owing to
therapy) [14].

An example of simulating the free growth (without
therapy input) of a glioblastoma is presented in figure 3.
The graph depicts two approximated concentrations of
glioma cells, which have been calculated along the same
straight line at two different time points. This line inter-
sects the initial imageable tumour centre, shown in the
inset in figure 3. The first graph (lower, red) shows the
initial concentration of glioma cells, as annotated by clini-
cians, while the second graph (upper, blue) shows the
approximated concentration of cells after 100 fictitious
days of cancer diffusion, using simulation parameters
extracted from the bibliography [11].

The second approach uses ISOG1 discrete-entity/dis-
crete-event modelling based on the ‘top-down’
method, which exploits cellular automata, the Monte
Carlo method, cell clustering into equivalence classes,
as well as numerous dedicated algorithms [1,8–10]. In
this way, both diffusion phenomena (e.g. on tumour
invasion) and complex multi-scale biological mechan-
isms of a predominantly discrete character (e.g.
symmetric and asymmetric stem cell division) are
addressed. It proved particularly amenable to paralleliza-
tion, and a GPU-based approach delivered a speed-up
factor of more than 120 when compared with compu-
tation on a same-generation CPU [17].

In the ISOG discrete-entity/discrete-event model,
the tumour is described as a spatio-temporal distri-
bution of discrete cells (and cell death products)
belonging to several proliferative potential categories
and cell cycling phases. Transitions among the corre-
sponding equivalence classes dictate the spatio-
temporal course of the tumour. Pertinent clinical data
are used in order to adapt, optimize and validate the
discrete simulator. In summary, the discrete simulator
module functions as follows.
1Developed by the In Silico Oncology Group of the National
Technology University of Athens.
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— All available patient-specific data are collected.
Macroscopic imaging data of the patient are col-
lected at baseline, subsequently segmented by the
clinician (delineation of tumour boundaries, necrotic
areas, etc.), interpolated and three-dimensionally
reconstructed. Molecular data (e.g. status, amplifi-
cation and expressions of critical genes) proved to
drastically affect the response of the tumour under
consideration to the treatment addressed are pro-
vided. Estimates (even semi-qualitative) of their
effect on the cell kill ratio (CKR) per cell owing to
the treatment considered are also provided based
on pertinent literature. The idea is to use a carefully
chosen reference value of the CKR and then perturb
it based on the specifics of the particular tumour
case under consideration, in order to achieve
higher patient individualization of the simulation.

— The inclusion of patient-specific information in
the model is a multi-level procedure involving the
direct assignment of specific values to some model par-
ameters or tumour features (e.g. initial and final
volume, dead cell population percentage and pertur-
bations of CKR value according to the molecular
profile of a tumour), as well as an indirect estimation
of most model parameters through perturbation of
their reference values while seeking full compliance of
various virtual tumour characteristics (such as
tumour volume, doubling time, growth fraction, per-
centages of various cell category subpopulations, etc.)
with the corresponding actual clinical data [1,18].
Issues related to the spatio-temporal initialization of a
virtual tumour have been analytically described in Sta-
matakos et al. [1]. As a first approximation, the
distribution of the cell cycle duration over the various
cell cycle phases is obtained as described in Stamatakos
et al. [1], where the methodology for the tumour’s cell
populations’ initialization is also provided. Similarly,
an initial approach to the estimation of the mitotic
potential cell categories, which relies on a combination
of literature and a procedure of adapting the model to
histopathological data, is presented in Stamatakos
et al. [18].

— A discretization mesh is superimposed upon the
three-dimensionally reconstructed tumour. The geo-
metrical cells of the discretization mesh constitute
the elementary spatial units of the problem.
Within each geometrical cell, biological cells are
clustered together based primarily on their mitotic
potential, their cell proliferation phase and the
treatment killing effect upon them. Based on their
mitotic potential they may be stem cells (having
theoretically infinite mitotic potential), progenitor
cells (having limited mitotic potential that is
defined by the number of mitoses they can still
undergo), differentiated cells (with no further
mitoses possible) and dead cells. Based on the cell
proliferation phase in which they are found they
may belong to the G1, the S, the G2, the mitosis,
the G0, the necrosis or the apoptosis equivalence
class. Based on the treatment killing effect they
may be treatment hit or treatment non-hit cells.

— At each time step, the discretizing mesh is scanned and
the basic cytokinetic, metabolic, pharmacokinetic/

http://rsfs.royalsocietypublishing.org/
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pharmacodynamic and mechanical rules that govern
the spatio-temporal evolution of the tumour are app-
lied. The outcome is an update of the spatio-temporal
distribution of the tumour cells.

— A prediction of the spatio-temporal distribution of the
tumour cell categories and the cell cycling phases for
free tumour growth (no treatment) and/or tumour
response to treatment (chemotherapy/radiotherapy)
is obtained. Several forms of prediction visualisation
(graphs, three-dimensional and four-dimensional ren-
dering, etc.) can be produced.

— The simulated outcome is compared with the actual
imaging and other available clinical data following
treatment.
Within the framework of ContraCancrum, the core
of the ICCS In Silico Oncology Group (ISOG) discrete
model has been adapted to the case of lung cancer
neoadjuvant chemotherapy treatment with various
combinations of cisplatin, gemcitabine, vinorelbin and
docetaxel. The model has been applied up to now to a
clinical dataset of 13 patients with primary lung
cancer: nine cases of squamous cell carcinomas and
four cases of adenocarcinomas. The patient-specific
data that have been exploited by the model are the
applied chemotherapeutic scheme (drugs, adminis-
tration times) and the three-dimensional image of the
tumour as reconstructed from computed tomography
(CT) imaging data. The sets of imaging data were pro-
vided for two time instants—before and after the
completion of the treatment. Owing to non-availability
of proliferation indexes and data that could allow us to
estimate the tumour growth rate in a patient-specific
manner, an extensive literature review has provided bio-
logically reasonable values for critical tumour dynamics
features, such as tumour doubling time and growth frac-
tion [19–24]. The latter has been exploited in order to
achieve an initial quantitative adaptation of the
model to clinical reality. More specifically the virtual
tumour implemented was homogeneous with character-
istics that fall within the value range reported in the
literature, namely a volume doubling time of 200 days
and a growth fraction equal to 40 per cent. The above
values were achieved by properly adapting the model
parameters related to tumour free growth. An excellent
fit in terms of volumetric data has been achieved by
adapting for each clinical case the CKR of the drugs
involved. The suggested value of the CKR for each
case study (the ‘apparent’ CKR) is the CKR that pro-
duces good agreement between the evolution of the
simulated tumour and that of the real tumour according
to the clinical data.

Regarding GBM, the collection of multi-scale
directly exploitable data has turned out to be a very dif-
ficult process. The main reason is that neo-adjuvant
radio- or chemotherapeutic treatment, which would be
convenient for tumour evolution simulation runs, is
a rare treatment choice. In most cases, no imageable
tumour exists after surgery so that the in silico response
to treatment could be compared with its in vivo counter-
part. Up to now there have been four exploitable GBM
multi-scale datasets identified, and further collection is
Interface Focus (2011)
underway. These clinical cases involve treatment with a
combination of radiotherapy and temozolomide.

The basic philosophy of the ISOG discrete models
clinical adaptation strategy has been recently described
in Stamatakos et al. [18], in which a real clinical case
serves as a proof-of-principle case study, demonstrating
the basics of an ongoing clinical adaptation process. A
comparison of the simulation results with clinical data,
in terms of both volume reduction and histological con-
stitution of the tumour (e.g. percentage of dead cells,
percentage of differentiated cells), dependent each time
on the available actual data of each clinical case, lies at
the heart of the procedure. A thorough study of the
literature relating to each tumour type precedes the
simulations, so as to define—in conjunction with accu-
mulated basic science and clinical experience—plausible
reference values and value ranges of the various model
parameters. The concurrent constraints imposed by
both the actual multi-scale clinical data and the litera-
ture-derived plausible value ranges for the model
parameters drastically narrow the window of possible
solutions to each clinical adaptation problem.

A set of clinical cases (including imaging, histopatho-
logical and molecular data) is used for the clinical
adaptation of the model, whereas another independent
set is used for clinical validation of the models. Clinical
adaptation results for lung cancer and GBM within the
framework of the ContraCancrum project will be the
subject of a dedicated paper.
2.3. The biomechanical simulator

The objective of the biomechanical simulator is to consi-
der the mechanical environment inside and outside the
tumour, which is of significant importance especially
when there is a marked variation in the mechanical prop-
erties of the various surrounding tissues. Information
about tumour growth is obtained at the molecular
and cellular levels and fed into the biomechanical
model. The mechanical information obtained is then
transmitted back to the cellular simulator and drives
the spatial evolution of the tumour shape and volume.

A fully automatic meshing algorithm for the different
tissues has been built for this purpose.

The main challenge centres around the selection of a
robust meshing technique able to automatically provide
reliable finite-element meshes of the tumour as well as
related healthy tissues. For this reason, a voxel mesh
approach, which is extremely efficient in terms of
time, has been enhanced with a smoothing algorithm
to improve the accuracy of the stress/strain calcu-
lations. Results show that the output of the voxel
mesh is significantly improved with the smoothing
algorithm, while keeping the time needed to produce
the mesh short [25].

Based on this mesh, a continuum finite-element model
is proposed to simulate the tumour, its growth and the
mechanical perturbations induced on the surrounding
healthy tissues. A new mechanical model has been devel-
oped to model the sources and sinks of matter linked to
tumour growth and shrinkage. The change in volume is
modelled as a uniform strain added in the three main
directions in the elastic formulation of the element. This

http://rsfs.royalsocietypublishing.org/
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mechanical law has been applied to the elements used to
model the tumour. Stresses in the tumour and in the
healthy tissues are then calculated according to the
change in volume of the tumour elements.

Themechanical informationobtained in thismanner is
transmitted back to the cellular simulator, leading to the
coupling of the cellular and biomechanical simulations.
On the one hand, the mesoscopic cell simulator (descri-
bed in §2.2) uses information about the direction along
which new tumour cells will spread, based on the pressure
gradient in the surrounding tissue.On the other hand, the
mechanical simulation needs information on the amount
by which individual geometrical cells will expand which
is, in turn, provided by the cell concentrations calculated
by the cellular simulator. Initial results showed that bio-
mechanical information leads to a 20 per cent correction
of the tumour shape in terms of the ratio of smallest to
largest moment of inertia compared with simulation
performed without biomechanical simulations. For illus-
trative purposes, figure 4 shows biomechanical simulation
results in a lung cancer case.
2.4. Biomolecular (biochemical) simulations
and molecular determinants of response
to therapy

A new generation of anti-cancer drugs have recently
been introduced to the clinic, targeting a specific mol-
ecule that plays a crucial role in tumour growth. One
of these drugs is a tyrosine kinase inhibitor (TKI),
which interferes with receptor tyrosine kinases; these
are usually overexpressed or overactive in tumour
cells. This modelling component focuses on the events
taking place on the molecular level. A simulator has
been built to provide a better understanding of treat-
ment response to various drug therapy regimens. It
has been used for free energy ranking of the binding
of the TKI to the epidermal growth factor receptor
(EGFR), and for accessing the conformational stab-
ilities of the EGFR on mutations.

Using our biomolecular simulator, we have investi-
gated the binding affinities of two TKIs—AEE788 and
gefitinib—to wild-type and four mutant EGFRs. Mul-
tiple short (ensemble) molecular dynamics simulations
have been performed for each inhibitor–EGFR complex
Interface Focus (2011)
on high-performance computing resources on the US Ter-
aGrid (www.teragrid.org) and the EU’s DEISA (www.
deisa.eu). Structural and energetic analyses indicate
that converged sampling is reached with respect to the
energy minima. A reasonable correlation has been
obtained between the calculated drug-binding affinities
and available experimental data [26]. The simulations
reveal how interactions change as a result of mutations,
and account for the molecular basis of drug efficacy.
The free energy calculations show that the simulator is
able to rank binding affinities of one drug to multiple
EGFR mutants, as well as the efficacy of drugs with
respect to a single EGFR sequence [26]. The results indi-
cate that the molecular-level simulator is able to identify
drug treatments better suited to an individual’s specific
genotypes. It can therefore be expected to have an
increasing impact in personalized drug treatment of tar-
geted therapy as patients become more frequently
subjected to genotypic assays as part of the standard
routine.

Mutations can also change the activity of the
protein directly. For example, the drug-resistant
mutation T790M stabilizes the active conformation
of the EGFR, which leads to overactivity. We have
used the biomolecular simulator to study the changes
of conformational stability upon mutations [27]. The
wild-type and L858R mutant EGFRs are simulated
for 200 ns, in both the active and inactive states.
The simulations clearly show that the wild-type
EGFR prefers the inactive state. This result is in
agreement with experiments that indicate that the
EGFR remains dormant under most physiological con-
ditions [27]. The mutation changes the stabilities of
both the active and inactive conformations, and shifts
the equilibrium between the two conformations. The
mutant EGFR also displays the initial steps of confor-
mational transferring between the two conformations,
while the wild-type EGFR remains in its initial state
throughout the course of the simulations [27]. The overall
conformational transformation is expected to occur on
microsecond timescales, which we are planning to investi-
gate on Anton, a purpose-built machine for molecular
dynamics simulation.

The simulator, called the binding affinity calculator
(BAC) [28], is an automated workflow tool that performs
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Figure 5. (a) Axial slice of the patient image. (b) Atlas after MRF-based tumour growth. (c) Registered atlas. (d) Labelled
patient image.
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rapid simulations and analyses across multiple super-
computing resources. Rapid turnaround is achieved by
use of the workflow tools developed in this project (see
section ‘Integrated ContraCancrum technical environ-
ment’). Our results show that the simulator can
accurately rank drug-binding affinities at clinically rel-
evant timescales, and offer real-time support for clinical
decision-making [26].
2.5. Biomolecular (molecular network level)
simulations

Another molecular-level model aims to provide a statis-
tical model of the individual response to therapy. This
component defines the means to incorporate molecular
information within the context of the in silico simulation
of patient-specific therapy by modifying the cell survival
probability within the tissue-level component. The
molecular state of the tumour is a key factor in the
therapeutic outcome.

With recent developments in the field of high-
throughput molecular profiling, it is now practical to
consider the contribution of an individual patient’s
molecular profile to their therapeutic outcome. Using
drug growth inhibition 50 (GI50) or radiation 50
per cent lethal dose (LD50) in vitro sensitivity data,
coupled with microarray expression data from a
panel of cell lines, we have identified signatures of
sensitivity and resistance to these cytotoxic thera-
peutic modalities. A statistical model is constructed
based on the correlation between gene expression
and therapy-induced cytotoxicity. The known molecu-
lar profiles of the tumour type under consideration
(e.g. GBM) are classified from the treatment (e.g.
temozolomide) responsiveness standpoint into either
three groups (sensitive, intermediate and resistant)
or a more continuous set of sensitivity grades. This
grouping is used in order to perturb the population-
based average values of the CKR or equivalently
the cell kill probability (CKP) or the survival fraction
(SF) so that molecular personalization of the multi-
scale model is achieved. The quantitative extent of
the perturbation is performed by starting with an
empirically plausible fraction of the CKR (e.g. þ1/3
CKR) to be added to the CKR in the case of a sen-
sitive tumour or to be subtracted from the CKR
(e.g. 21/3 CKR) in the case of a resistant tumour,
Interface Focus (2011)
and by subsequently applying an optimization loop.
This statistical model is then used to assess a given
patient’s tumour profile, providing an estimation of
cellular therapy response.
2.6. Image analysis modules

ContraCancrum has developed the necessary image
analysis components for in silico modelling of tumours
with the aim of extracting as much personalized patho-
physiological information as possible from each
patient’s medical imaging data. Such data are both
multi-modal (including T1/T2 MRI and positron emis-
sion tomography (PET)/CT) and temporal (the patient
is scanned at least once before and after treatment). A
variety of powerful tools are provided to enable the clin-
ician to segment multi-modality images of tumours for
both applications—gliomas as well as lung cancer.
Because sophisticated image analysis methods always
depend on the organ of interest as well as on the image
modality used, specialized algorithms for both clinical
applications have been developed.

Segmenting and labelling brain tissues in tumour-bear-
ing images are difficult tasks. We chose to segment brain
volumes implicitly by applying an atlas to the patient
image. Atlas-based segmentation has the advantage of
being robust while also providing other relevant infor-
mation, for example on subcortical structures and
fibre maps. To adapt the standard approach to tumour
images, a Markov random field (MRF)-based tumour
growth method has been developed, which introduces a
tumour seed into the atlas and grows the lesion to its
approximate shape, displacing the surrounding tissues
according to their biomechanical properties. In a final
step, a non-rigid Demons registration accounts for the
accurate mapping of the atlas labels to the patient
image. The method is presented in detail in Bauer et al.
[29] and Bauer & Reyes [30] and was shown to be accurate,
featuring state-of-the-art Dice coefficients of approxi-
mately 0.8 for white matter and grey matter. Results on
one patient image from the ContraCancrum database
are shown in figure 5.

For the glioma application, a novel segmentation tech-
nique extending the traditional adaptive snakes algorithm
and taking into account spatial image information has
been proposed [31]. The method outperforms traditional
snakes with an average overlap with the expert clinician’s
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Figure 6. Results of the spatially adaptive active contours on semi-automatic tumour detection on four different magnetic
resonance images of glioma cases.
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annotation of 89 per cent, while traditional snakes were at
82.5 per cent and region growing at 59.2 per cent [31].
Figure 6 shows the results of spatially adaptive active
contours on brain tumour segmentation.

A large number of the mentioned imaging function-
alities as well as others, including registration and
resampling, have been integrated in the DrEye tool
that is available free to the scientific community [32].

In the case of lung cancer, the image analysis tools
developed within ContraCancrum aim at registering
time series of PET/CT images as well as tumour and
normal tissue in both CT and PET images. We use a
fast multi-resolution rigid registration in order to initi-
alize a local block matching in CT images in the
region around the tumour [33]. The tumour segmenta-
tion is done semi-automatically with little interaction.
A segmentation result in one image of a time series
can be propagated to images at other time points and
adapted automatically. In order to correct for eventual
segmentation errors, tools are provided to interact with
the segmentation result and to adapt it manually [33].
2.7. Simulation module interconnections

The simulation modules have been integrated to form the
composite simulator (integrator), which will ultimately
perform the simulation tasks as submitted by the end
users. Integration across biocomplexity scales is achieved
by applying the ‘summarize and jump’ strategy [1]. The
method starts from the macroscopic imaging data (a
highbiocomplexity level) andproceeds towards lower bio-
complexity levels. When there is a need for an upwards
movement in the biocomplexity scales, a summary of
the available information pertaining to the previous
lower level is used, most commonly in the form of
appropriate parameter value perturbations.

Logical and technical validations of the composite
simulator have been performed before the initiation of
the clinical testing, optimization andvalidation procedure.

The input and output of the various simulators as
well as their interconnections are basically as follows:

— Biochemical simulator fINPUT: receptor protein
mutations, candidate targeted drugs; OUTPUT:
sorting of candidate drugs based on their binding
affinities and selection of the apparently best drug
for a given patientg.

At this early stage, the connection of the bio-
chemical simulator with the rest of the simulator
modules is to be seen only as a demonstrator of a
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future scenario in which the selection of the optimal
drug in the targeted therapy context for a given
patient would be based on in silico experimentation.
According to that scenario, the drug properties and
data would feed the molecular network simulator,
which would provide estimates of the CKR to be
input into the cellular and higher level simulators.

— Molecular network-level simulator fINPUT: mol-
ecular profile of tumour; OUTPUT: CKRg. The
CKR will be the input into the cellular and higher
level simulators.

— Normal tissue toxicity limits, based on available
phase I clinical trial outcomes is used to avoid in
silico experimentation involving treatment doses
that would be forbidden owing to extreme toxicity.

— Cellular and higher level simulators (microscopic and/
or mesoscopic–macroscopic approaches) fINPUT:
processed multi-scale data referring to tumour cell
density, cell cycling, mitotic potential of the various
cell categories, neovascularization/necrosis field,
treatment data and CKR; OUTPUT: spatio-temporal
prediction of the tumour constitution regarding cell
phase and mitotic potentialg. The latter may be the
input into the biomechanical simulator if a refined pre-
diction of tumour morphology is sought. The output
(with or without the utilization of the biomechanical
simulator) is the input into the image analysis modu-
les for visualization and clinical adaptation and
validation purposes.

— Biomechanical simulator fINPUT: tumour cell con-
centration distribution in space at any simulated
instant;OUTPUT:updatedmacroscopicmorphology
of the tumourg.

— Image analysis modules fINPUT: tomographic
slices or simulation output files; OUTPUT: three-
dimensional reconstruction of the tumour and its
internal structureg.

It is noted that the simulator and technological mod-
ules can be interconnected in either a bottom-up or a
top-down sense, depending upon whether the user is
seeking a new in silico prediction or a model clinical
adaptation and/or a validation procedure.
3. INTEGRATED CONTRACANCRUM
E-SCIENCE ENVIRONMENT

One of the problems faced by ContraCancrum—sharing
clinical data—presents a significant hurdle if patient-
specific medical simulation is to be incorporated into
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clinical practice, and for the facilitation of research
using those data. The data sources held by hospitals
represent a major resource that is currently not ade-
quately exploited, by either researchers or clinicians.
At the heart of the matter is the need to gain access
to these distributed data sources in a routine, transpar-
ent way, while remaining subject to appropriate
anonymization and security procedures. While sol-
utions exist to enable access to federated, distributed
data sources, in many cases these are neither appropri-
ate nor acceptable to a hospital, nor insufficiently
generic to be used in anything other than the narrow
scenarios for which they were originally developed.

In ContraCancrum, several different classes of users
need to gain access to these clinical data in order to
run the various simulation techniques described in
this paper. They do this through the IMENSE, which
provides a central platform for researchers from which
these data can be accessed, and from which simulation
tools can be launched via Web services and orchestrat-
ing workflow tools. One of the initial tasks carried out in
the ContraCancrum project was a requirements gather-
ing exercise to assess the capabilities that the technical
environment must offer in order to meet the needs of
researchers.

This involved clinicians, scientists and IT specialists
and led to the design of the IMENSE system [34], which
comprises three main components. Firstly, IMENSE
provides a data warehousing system, hosted at the
Centre for Computational Science at University College
London (UCL), London, UK, in which anonymized
patient data can be stored. These data fall into three
broad categories: imaging data, stored in the DICOM
format, structured clinical records, and file-based
data, generated by the different types of simulation
used in the project. The data environment ties together
these different types of data after pseudonymization
through the use of unique patient identifiers (and, in
future, through ontologies [35]). This means that a
user of the data environment can query and view mul-
tiple different data types held on a single patient or
on a population. The second component of IMENSE
is a set of Web services, which provide a standard
way to access different simulation tools, including the
ability to segment medical images and launch simu-
lations on high-performance computing resources. The
third component of IMENSE is a workflow engine,
which couples together data resources and simulation
services to automate the processing of the different
types of data available, and to tie different simulation
scales together. All components of the technical
environment are accessed through a Web portal,
which manages access policies and presents data and
results to users.

To address the aforementioned clinical data access
problems, the data-sharing component of the IMENSE
system is designed so that the hospital IT managers
(the information controllers) can be assured that their
data are adequately protected by implementing a range
of security measures; patient data are managed in compli-
ance with relevant data protection legislation (i.e. UK
Data Protection Act and EU Health Directive [36]). A
clinician or clinical worker identifies a set of data to be
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shared and ensures, with the assistance of the hospital’s
data manager, that the data are curated to an acceptable
level. The data are then ‘pushed’ from the hospital system
to a central project data repository. This approach has
been successfully used in the GENIUS project [37],
which involves pushing X-ray CT and magnetic reson-
ance angiography (MRA) images from an NHS hospital
in the UK to the Centre of Computational Science at
UCL. This removes the need to punch inbound holes in
hospital firewalls when creating federated databases.

A user wanting to gain access to the data can do so
by retrieving it from the central repository. The cura-
tion stage can be quite labour intensive, but it is
necessary for the system to be usable. The use of
data-checking algorithms and ontologies (used to map
between disparate datasets) can help to alleviate the
problem.

A common feature of computational biomedical
simulation scenarios such as those considered in Contra-
Cancrum is the need to perform many tasks in a specific
order to achieve a desired end result—ultimately,
perhaps, a clinical decision. Typically, a scenario will
involve data acquisition, pre-processing using low-end
computational resources such asworkstations, simulation
using high-performance computational resources, and
post-processing using high- or low-end resources. Such
steps can present stumbling blocks for even experienced
computational scientists; if these techniques are to be
taken upby clinical researchers, andultimately clinicians,
then they need to be automated. Developments in
e-Science have seen the emergence of workflow toolkits
[38,39], designed to connect together discrete processing
steps using distributed resources and to provide a trivial
interface from which to create and launch a workflow.
Workflows are essential to the entire Virtual Physiologi-
cal Human (VPH) effort [40], as they are to many other
medical computing scenarios beyond the scope of the
VPH; a major goal of VPH research is to integrate simu-
lations at different levels, which is essentially a workflow
scenario [41].

The ContraCancrum ‘virtual laboratory’ consists of
a number of different simulation techniques that can
be usefully employed by the clinical oncologist and
that are described in §2. All of these simulation para-
digms have one thing in common: they are driven by
the use of clinical datasets supplied by the clinical part-
ners in the project. The simulation components must be
automatically connected and should access datasets
from the ContraCancrum technical environment. The
logical way to do this is through a workflow tool,
which allows multiple computational components to
be linked together and accessed as a single application.

There are many such workflow tools available, but
the one that most closely meets the needs of this project
is GSEngine; this was originally developed in the EU
FP6 ViroLab project [38] and now forms part of the
VPH ToolKit [39]. GSEngine provides facilities to
develop workflows using the Ruby scripting language,
and then to execute them through a remote runtime
engine. This is coupled with a workflow repository
system, which means that workflows can be developed
and used following a community model—workflows
are first developed by ‘expert’ users or developers in a
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community and placed in the workflow repository. End
users can then access and execute the workflows in the
repository by specifying a few required parameters, with-
out worrying about the details of how the workflow is
constructed. Different interfaces exist for workflow devel-
opment and execution, shielding users from the internals
of how the workflow works. This fits the model of the
IMENSE system well, since researchers within the com-
munity develop domain-specific, clinically relevant
workflows, which are then executed by clinicians and
other users for clinical and research purposes.

We have deployed the components of GSEngine as
part of the IMENSE. GSEngine is connected to the
Application Hosting Environment (AHE) [42] server
in order to launch computational simulations across a
range of distributed computing resources, and to the
data environment in order to access the clinical and
imaging data on which the simulations are based.
Security of data and access to remote resources are pro-
vided via the Audited Credential Delegation [43,44]
extension to the AHE.
4. MULTISCALE CANCER MODEL
INTEGRATION IN THE CLINICAL
CONTEXT: A CLINICAL DECISION-
SUPPORT SCENARIO

Provided that the system has been validated (retrospec-
tively and prospectively) for a specific tumour type, the
simulator executes the simulation code for a number of
candidate treatment schemes. The clinician uses the
results in conjunction with his/her clinical experience
and specialist knowledge to decide upon the optimal
treatment scheme. Subsequent comparison of the pre-
dictions with the real outcome provides feedback for
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further optimization of the ContraCancrum integrated
simulator.

More importantly, the integration across different
scales is driven by the planned clinical decision-support
scenario. This is illustrated in figure 7.

The clinician introduces multi-scale patient-specific
data (molecular, clinical, treatment and imaging) to
the ContraCancrum simulators. The molecular-level
models (as described in §§2.4 and 2.5) allow the clini-
cian to use drug-binding affinity models for ranking
drug-binding affinities. At the same time, the clinician
can query the drug-sensitivity model with a patient’s
tumour transcriptome profile and estimate a priori sen-
sitivity (either binary or continuous as discussed
above). This gives a direct input to the tissue-level
oncosimulator (described in §2.2) defining CKPs for
the candidate therapy questioned.

In the clinical decision-support layer, the set of
responses to potential treatments (i, i þ 1, . . . ) is
simulated by the oncosimulator to provide a four-
dimensional therapy outcome. It might also be possible
to run these simulations automatically with a variety of
drugs that are chosen beforehand. In this way, the clin-
ician runs the oncosimulator for all candidate therapies
to define the ‘best’ for the individual patient. This, in
turn, is validated against the actual therapy outcome
in the optimization layer where the predictive oncology
results are compared against the actual experimental
results. Any deviations from the actual response to
therapy may be used to refine and optimize the models.
5. CONCLUSIONS

ContraCancrum is built on the basis of instigating the
clinical translation of predictive in silico oncology, for
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which a supportive and interdisciplinary environment is
essential. The mission is to bring to life a novel but also
feasible plan for translating multi-level cancer modelling
into a clinical setting and to prove its worth, thereby
establishing it as an important part of the VPH vision.
Through the development of integrated multi-scale
cancer models, the ContraCancrum integrated strategy
is expected to contribute to the advancement of in
silico oncology through the optimization of cancer treat-
ment in the patient-individualized context by simulating
the response to various therapeutic regimens.

In this paper, a paradigm for designing clinically driven
multi-scale cancer models by combining multi-scale basic
biomedical science with information technology has been
delineated. While it is hard (and in some cases unfeasible)
to integrate all ContraCancrum components into a single
piece of software, several integrated components (onco-
simulators) have been achieved, as described in §2.7.
However, the most important novelty is the presented sys-
temic integration of cancer modelling components under
tight clinical expert supervision and interaction.This inte-
gration is highlighted in the proposed predictive oncology
clinical decision-support scenario presented in §4 that
draws a novel predictive medicine workflow in the context
of model-assisted clinical decision support for oncology.

The ultimate goal of the work presented here is an inte-
grated predictive in silico oncology environment that can
be adapted, optimized and validated within the wider
clinical oncology environment. The anticipated impact is
a contribution to the optimization of personalized cancer
treatment strategies,while the socio-economic and societal
impacts are expected to be the alleviation of the societal
burden caused by cancer.

This work is partially supported by the European Commission
under the project ‘ContraCancrum: Clinical Oriented
Translational Cancer Multi-level Modelling’ (FP7-ICT-2007-
2-223979).
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