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Interpretability-Driven Sample Selection Using Self
Supervised Learning For Disease Classification And
Segmentation
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Abstract—In supervised learning for medical image analysis,
sample selection methodologies are fundamental to attain opti-
mum system performance promptly and with minimal expert
interactions (e.g. label querying in an active learning setup). In
this paper we propose a novel sample selection methodology
based on deep features leveraging information contained in
interpretability saliency maps. In the absence of ground truth
labels for informative samples, we use a novel self supervised
learning based approach for training a classifier that learns
to identify the most informative sample in a given batch of
images. We demonstrate the benefits of the proposed approach,
termed Interpretability-Driven Sample Selection (IDEAL), in an
active learning setup aimed at lung disease classification and
histopathology image segmentation. We analyze three different
approaches to determine sample informativeness from inter-
pretability saliency maps: (i) an observational model stemming
from findings on previous uncertainty-based sample selection
approaches, (ii) a radiomics-based model, and (iii) a novel
data-driven self-supervised approach. We compare IDEAL to
other baselines using the publicly available NIH chest X-ray
dataset for lung disease classification, and a public histopathology
segmentation dataset (GLaS), demonstrating the potential of
using interpretability information for sample selection in active
learning systems. Results show our proposed self supervised
approach outperforms other approaches in selecting informative
samples leading to state of the art performance with fewer

samples.

Index Terms—Interpretability, Sample Selection, Self-
supervised, Lung disease classification, Histopathology
segmentation.

I. INTRODUCTION

Supervised Deep Learning (DL) approaches trained on
large datasets have shown state of the art performance [1]
on medical image analysis tasks such as classification and
segmentation. While DL approaches thrive on large labeled
datasets, obtaining them is a challenge due to: 1) limited expert
availability; 2) intensive manual effort to curate datasets (i.e.
sample labeling process); and 3) paucity of images for specific
disease labels leading to class imbalance.
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Recent methods have taken different approaches to address
the data shortage issue by using data augmentation, semi
supervised learning and active learning, to name a few. Al-
though conventional data augmentation methods relying on
transformations such as rotations, random cropping, flipping,
intensity rescaling, etc., artificially increase dataset size, they
do not ensure incorporation of true distribution variability.
Improved data augmentation via generative models has been
proposed for medical image applications, where realistic syn-
thetic images are used for data augmentation purposes [2]-[6].
While synthetic images leverage a better data augmentation
process, these approaches are not designed to streamline the
time-consuming data curation process needed to incorporate
novel real samples. Semi-supervised learning solves the issue
of limited expert availability and expert annotation work,
as it leverages many unlabeled samples and a few labeled
samples to train a classifier [7]. However, performance of
these methods is known to be dependent upon the quality and
informativeness of samples, which is not ensured by semi-
supervised learning itself [8].

Active learning (AL) is an interesting learning paradigm to
progressively improve a model’s performance. AL systems en-
able a progressive learning capability, which is ideal in clinical
setups where improvements over time, based on user-feedback
is desired!. However, limited expert availability and required
high clinical expertise hampers the annotation of medical
images. Hence sample selection methodologies in medical
image analysis applications based on supervised learning are
fundamental to attain system performance promptly with min-
imal clinical expert interactions. We refer to this as active
sample selection, where most informative unlabeled samples
are selected, queried for labels, and subsequently added for
further model training [9]. Additionally, we remark that active
sample selection methodologies leveraging improved learn-
ability of models is particularly important when AL-based
technologies are required to swiftly adapt to potential changes
of the imaging protocol, vendor type, model, etc. In the next
section we review the state of the art in active sample selection.

II. PRIOR WORK ON ACTIVE SAMPLE SELECTION

Classical approaches for sample selection in AL meth-
ods include entropy-based sample selection [10], uncertainty
sampling [11], query-by-committee (QBC) [12] and density

le.g. The FDA organization has even recently mentioned their interest to
adapt their regulations to facilitate exploitation of active learning
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weighting [13]. These approaches have been used in medical
imaging applications such as segmenting anatomical structures
[14], [15] and detecting cancerous regions [16].

With the advent of deep learning based approaches, active
sample selection has been investigated to accelerate learning
in deep active learning setups. Different sample selection
strategies have been investigated, including sample entropy
[9], [17]-[19], model uncertainty [20]-[25], Fisher information
[26], and clustering [27]. Proposed entropy-based approaches
vary in the way the entropy metric is used. In [9], given a
pool of candidate samples, the approach selects informative
samples by a combination of maximal conditional entropy of
the label variable given a candidate sample (sample informa-
tiveness), and mutual-information-based density estimation of
samples (sample representativeness). In [17], sample entropy
along with least confidence and margin sampling metrics
are proposed in a general framework where least uncertain
samples are pseudo-annotated with a trained oracle. In [28], a
query synthesis approach was proposed where a Generative
Adversarial Network (GAN) synthesizes samples close to
the decision boundary, which are then annotated by human
experts. Inspired by this work, instead of querying annotations
of synthetic samples, in [19] a GAN model is used to generate
high entropy samples, which are used as proxy to find most
similar real samples from a pool of candidates to be annotated
by experts.

Uncertainty-based sample selection approaches are the most
popular among different informative sample selection method-
ologies. In this paradigm, the basic idea is to select samples
for which a model is most uncertain, as they contain new
information for model training. In [20], a two-step sample
selection approach was proposed for computer vision applica-
tions, where samples are first selected based on an uncertainty
estimation derived via model bootstrapping, followed by a
second selection based on a maximum set coverage similarity
metric to select representative samples. This idea was followed
in [25], but instead of using a two-step approach, the authors
propose to combine MC dropout uncertainty-based sample
selection, and sample representativeness via a borda-count
approach. In addition, different from [20] where a cosine
distance was used as maximum set coverage, the authors in
[25] propose to measure representativeness of samples via
an additional loss cost term optimizing maximum entropy of
activation layers. From reported results in [25], it is however
not clear how feasible it is to find a good balance between
the employed cross-entropy loss (loss term for the main task)
and the additional representative loss term, since in their
experiments the representative loss term is assigned a very
small weight.

Originally proposed in [22], and later adopted by [21],
[23], [24] test-time Monte-Carlo dropout was used to estimate
uncertainty of samples, and select most informative ones
for label annotation. The approaches in [23] and [24] differ
from [22] as they incorporate a conditional GAN based data
augmentation to synthesize similar samples to those selected
by the uncertainty criteria, in order to further boost the
learning rate. Based on Fisher information metric, the authors
in [26] propose to select samples based on an efficient low-

dimensional approximation of the Fisher information metric
targeting Convolutional Neural Networks. The approach how-
ever, relies on a pre-selection step based on sample uncertainty
estimation, and its performance hence depends on the sen-
sitivity level of such uncertainty-based pre-selection. In [27]
sample selection is based on a representativeness approach
where image patches are projected into a latent space (e.g.
via a Variational Autoencoder), clustered in the latent space
and sorted by their representativeness using a cosine distance
maximum set coverage metric, as done in [20].

In this paper we propose a novel sample selection approach
based on information derived from interpretability saliency
maps. Development of interpretability methods for deep learn-
ing systems emerged from the need to leverage understanding
and insights driving a model’s predictions [29]. For classifica-
tion tasks, interpretability saliency maps have been proposed
to yield levels of pixel attribution for a given queried class
label [28], [30]-[32]. Interpretability saliency maps have been
proposed to enhance interpretability of deep learning models
via visualization of image areas driving predictions, and to
perform quality assurance [33]. Different from prior works, in
this paper we propose to use interpretability saliency maps
in the context of selecting informative samples for active
learning. Our proposition is motivated by the observation that
in medical images, sample informativeness strongly relates to
information about the studied pathology or condition, which
in turn is target of saliency maps highlighting image areas
driving a model’s prediction.

A. Contributions

In this paper we make the following contributions:

1) We propose a novel Interpretability-DrivEn sAmple
seLection (IDEAL) framework. Up to our knowledge
this is the first study showing how interpretability
saliency maps can be used to leverage active sample
selection.

2) As part of the proposed framework we present results
exploring three different popular approaches, featuring
different levels of complexity, to design imaging features
extracted from interpretability saliency maps, such as
hand-crafted features (observational model), radiomics
features, and deep features (data-driven model). We
motivate their design and analyze their effectiveness
in lung disease classification and histopathology image
segmentation.

3) We propose a novel end-to-end deep learning approach
to extract deep features from saliency maps, which is
trained to identify most informative samples in a self-
supervised approach.

4) We demonstrate the added value of the proposed
interpretability-driven active sample selection approach
by means of comparison to an standard active learning
(i.e. no sample selection involved), and a state-of-the-art
uncertainty-driven active learning approach, on a public
database of lung-disease classification, and a publicly
available dataset for histopathology segmentation.
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III. METHODS
A. Intuition behind IDEAL

In this section we describe the proposed IDEAL approach
and its components. We start by presenting the intuition behind
using interpretability methods for active sample selection,
and the original observation that led us to explore this ap-
proach. From our previous studies [23], [24] using pixel-wise
uncertainty maps to perform sample selection we observed
a relationship between saliency and uncertainty maps, indi-
cating the possibility of extracting information from these
saliency maps to drive sample selection. Figure 1 shows two
example cases of patients with pleural effusion condition,
with high and low levels of uncertainty (accumulated pixel-
wise uncertainties via MC Dropout). As we compared the
corresponding interpretability saliency (derived from Deep
Taylor method [34]) and uncertainty maps (shown in Fig. 1(b)
and Fig. 1(d), respectively) and their histograms, Fig. 1(c)
and I(e), we observed that the histograms of high and low
informative images are quite distinct, thus verifying the fact
that high and low informative images have different values
for the most salient regions. Comparing between the high
informative image histograms of interpretability saliency and
uncertainty maps, we observed that the highest peak of the
saliency map histogram (i.e. the “primary” peak) has a higher
count than the corresponding uncertainty map’s histogram
“primary peak”. Additionally, the interpretability saliency map
histogram “secondary peaks” have lower count than those
of the uncertainty map histogram. These point to the fact
that, compared to the uncertainty method, the interpretability
saliency approach identifies salient regions in a more focused
manner. This is beneficial when the goal is to identify the
most informative saliency maps for improved classification and
segmentation.

Similarly, we verified how interpretability saliency maps and
uncertainty maps vary through the course of training. We se-
lected saliency maps after adding 10%, 20%, 40%, 60%, 90%
of training samples. As shown in Figure 2, initially the saliency
maps are not well defined since the classifier is not yet
trained with sufficient informative samples. However, as more
informative samples are being added to the training set, we
observe that the saliency maps become more well defined and
highlight specific regions of interest. Interestingly, we also
observe that saliency maps are sharper and more detailed than
uncertainty maps, suggesting an improved description of sam-
ple informativeness. The saliency map’s informative regions
are concentrated and focused on important regions, while the
uncertainty maps present dispersed regions. Furthermore at the
same percentage of training data, interpretability saliency maps
highlight qualitatively better informative regions.

These seminal observations led us to the hypothesis that
saliency maps could be used as a proxy to guide an ac-
tive sample selection. We investigated this hypothesis by
investigating how information from saliency maps could be
used to guide sample selection. We studied three different
approaches to extract information: starting from a simple
histogram feature (stemming from our initial observation),
followed by a radiomics-based approach, and finally, an end-

to-end deep learning based approach cast as a self-supervised
learning problem. In the following sections we describe the
components of the proposed IDEAL approach, including the
different investigated information extraction approaches.

B. Main components of IDEAL

Figure 3 depicts a general pipeline of the proposed IDEAL
approach. Given unlabeled testing samples (i.e. sample pool),
and an associated deep learning classification model (e.g.
DenseNet) trained iteratively during active learning, an inter-
pretability saliency map generator is used to produce saliency
maps, from which a sample informativeness score (IDEAL
Scoring) is calculated to rank pool samples by their infor-
mativeness. The IDEAL scoring can be produced in different
ways, depending on how the information from the saliency
maps is distilled to produce a ranking score for each pool
sample. In this study we investigated three different ways of
extracting information and scoring samples, which are pre-
sented in order of complexity: (i) From our original observa-
tion, a single feature extracted from the histogram of saliency
maps (Fig. 1(c)) is used to derive the IDEAL scoring, (ii)
Multivariable radiomics features are extracted and combined
into single IDEAL scores, and (iii) Our proposed novel Deep
features extracted and used within a self-supervised approach
to score informative samples.

In the following we describe each component in detail
and in relation to the clinical problem of automating lung
disease classification and histopathology segmentation, as well
as baseline methods used to benchmark the proposed IDEAL
approach.

C. Classification model

The classification model is not per se a component of
the IDEAL approach but rather an input its calculations are
based on. We present it here to facilitate the presentations
and descriptions of the data workflow, as presented in Fig. 3.
Any robust classification model can be used as the approach
is not restricted to particular architectures. For lung disease
classification from X-ray images, we experimented with 3
different models namely, DenseNet-121 [35],ResNet-50 [36]
and VGG16 [37], and found the DenseNet-121 architecture to
perform the best. We denote as M, the DenseNet-121 model,
and point the reader to section IV-C, for further implemen-
tation details of the trained model. For the histopathology
image segmentation task we used a DenseNet-121 classifier of
the histopathology images (benign vs. malign), as a proxy of
informativeness for the main task of image segmentation. This
was motivated by multi-task learning where tasks are typically
intertwined, and the availability of interpretability approaches
for classification tasks. As shown in the results section, we
show that this approach is effective in the segmentation task
as well.

D. Interpretability Saliency Map Generator

Image-specific saliency maps operate under the the basic
principle of highlighting areas of an image that drive the
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Fig. 1: Visualization of saliency maps from different methods. Top row shows a high informative image and bottom row
shows a low informative image for pleural effusion condition. (a) original image; (b) saliency map from Deep Taylor method;
(c) histograms of saliency maps for high and low informative images using Deep Taylor; (d) saliency map obtained using
Uncertainy; (e) histograms of saliency maps for high and low informative images using Uncertainty.
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Fig. 2: Uncertainty maps (top row), and interpretability saliency maps (bottom row) for a given sample input image at different
training data levels. (a) Original image (b) 10% of informative samples (¢) 20% of informative samples; (d) 40% of informative

() (d) (©) (d)

samples; (e) 60% of informative samples; (f) 90% of informative samples.

prediction of a model. The importance of these areas can
be obtained by investigating the flow of the gradients of a
DL model calculated from the model’s output to the input
image, or by analyzing the effect of a pixel (or region) to
the output when that pixel (or region) is perturbed. This type
of visualization facilitates interpretability of a model but also
serves as a confirmatory tool to check that machine-based
decisions align with common domain knowledge [29]. As
mentioned, differently from previous works in interpretability,
we aim here to employ saliency maps to perform active sample
selection. To generate interpretability saliency maps we use the
iNNvestigate library [34] 2, which implements several known
interpretability approaches. We employ Deep Taylor, a known
interpretability approach to generate saliency maps, due to its
ability to highlight informative regions while yielding minimal
importance to other regions. Deep Taylor operates similarly
as other interpretability approaches by decomposing back-
propagation gradients, of the studied model, into layer-wise

Zhttps://github.com/albermax/innvestigate

relevance maps of individual cell activations, as a function of
a queried input sample and class label (e.g. disease class) [38].

E. IDEAL Sample Informativeness Score

In this section we formalize the definition of the IDEAL
sample scoring. Given a test image I € R™*"™, a predic-
tion model M being updated via active learning, and the
corresponding saliency map S(I, M) € R™*™, we map the
saliency map S(I, M) into a sample informativeness score,
termed IDEAL score as:

IDEALgeore : f(S(I,M)) € R™*™ = R. (1)

The function f can have different forms, depending on the
way the information is extracted from the saliency map and
converted into an informative sample score. We present results
investigating three different approaches, described in further
detail below.

The IDEAL scores obtained for the set of testing samples
are sorted in decreasing order and the top-n ranked samples are
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Fig. 3: Proposed IDEAL approach. Given testing samples (i.e. pool samples) and a trained classifier, interpretability saliency
maps are generated for each testing sample, and an IDEAL score is generated from the saliency maps to characterize sample
informativeness. Top-ranked samples are then prioritized for label query and for the next active learning training cycle.

chosen for expert label querying and added to the next active
learning cycle. The complete IDEAL process is summarized in
Algorithm 1. In Algorithm 1 the model M can be a pretrained
network or, as in our experiments, trained with a small part
of the training dataset (e.g. 10% of training).

Algorithm 1 Interpretability-Driven Sample Selection -
IDEAL

Require: Pretrained model My, Saliency map operator S(),

Lyatidations AUCtarget

1: M + M,

2: repeat

3: L < {Lin} > define set of input testing images

4: Sin < {S{;n, M)} > saliency maps given input set
and current model

5: {scores}in < IDEALgcore(Sin)
informativeness scores

> calculate

6: Tsort < sort(Lin, {scores}tin) > sort I, in
decreasing order by scores

7: Lirain < Lsort{i = 1,...,t0p_n} > select top-n
ranked samples

8: Lipain < expert_query(lirq:n) > label querying of
selected samples

9: Mpew  train(M, Tirqin, Lirgin) > train new model

10: until AUC (Mpew, Lyatidation) > AUCarger > Repeat
until target AUC is attained

11: return M, ¢,

We now describe in detail each of the three studied feature
extractor approaches:

1) Single Hand-crafted Feature - Kurtosis: This first
approach is motivated by the observation made from the his-
tograms between high and low uncertainty samples, Figure 1.
As operator f in Equation 1, we defined f = k(H(S(I))),
with H and k corresponding to the histogram and kurtosis
operators, respectively. Consequently, and based on our obser-
vations, informative samples are associated to larger kurtosis
values and sorted accordingly to select informative ones. In
the results section, this approach is referred to as Kurtosis.

2) Multivariate Radiomics Features: As second approach,
we used the PyRadiomics package [39] to extract different

radiomics features from the saliency maps. Owing to the large
number of potential features we employ a feature selection
strategy. PyRadiomics has 8 feature categories. We trained
random forest (RF) classifiers to predict the image’s disease
label using each feature category. Based on the in-built in-
formation gain of the RF model, we identified the 3 best
performing categories as: “First Order Statistics” (19 features),
“Gray Level Co-occurrence Matrix (GLCM)” (24 features),
and “Shape Based (2D)” (10 features). The final features
for each category is identified by performing an exhaustive
search over all possible feature combinations and using it to
predict disease labels with a RF classifier. The final features
are summarized in Table 1.

In order to combine extracted selected radiomics features for
ranking, we rank different metrics based on the Borda count,
which has been used before for ranking informative samples
[25]. With Borda count samples are ranked for each metric,
and samples are selected based on the best combined rank as:

i* = arg min Zfrankmk(Ii) 2)

my

where m;, denotes the k' pyradiomic feature calculated on
image I;.

In the results section, this approach is referred to as
PyRad_category, with category being one of the following
{Ist-order, GLCM, 2DShape}.

TABLE I: Description of selected Pyradiomics and Deep
Saliency Features.

Feature Type | Comments

Kurtosis Obtained from histogram of the intensity distribution

Initial 19 features. Exhaustive search on 219 — 1
combinations. 4 best features - ‘Kurtosis’, ‘Skewness’,
‘Entropy’ and ‘Total Energy’.

Radiomics-
First Order

Radiomics- Initial 24 features. Exhaustive search on 22% — 1
GLCM combinations. 4 best features -‘Sum Entropy’, ‘Inverse
Difference Normalized’,‘Difference Entropy’ and
‘Maximal Correlation Coefficient’.
Radiomics- Initial 10 features. Exhaustive search on 210 — 1
Shape combinations. 3 best features -‘Sphericity’, ‘Spherical

Disproportion’, and ‘Elongation’

Deep Saliency
Features

Ordinal Clustering of latent feature vector
followed by Self-Supervised step. Details in text.
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3) Deep Saliency Features: Ordinal Clustering And Self
Supervised Learning For Informative Sample Selection: In
this section we present the third and more advanced approach.
We propose a novel approach that uses deep features extracted
from an autoencoder and self supervised learning based ordinal
clustering of informative samples.

The goal in self-supervised learning is to identify a suitable
self supervision task (or pretext task) that provides additional
knowledge (in the form of network weights) to successfully
train a model to solve the main task. Some common pretext
tasks include for example, estimating relative position of
patches [40], simulated deformation [41], segmentation [42],
aggregation learning [43], local context [44], and colour [45].
Additionally, exemplar learning has been proposed as a self-
supervised learning strategy [46] where the task is to classify
each data instance into a unique class.

Given a set of candidate pool samples, saliency maps are
generated and, as first step, an auto encoder is trained to
reconstruct them. The output of the encoding stage is a
l—dimensional latent feature vector representation (referred to
as Deep Saliency Features), which is used as input for the next
stage of ranking them. In order to discriminate informative
samples from Deep Saliency Features, and in the absence
of information to distill which Deep Saliency Features are
associated to sample informativeness, we cast the problem as
a self supervised learning approach to assign informativeness
labels to saliency maps. Figure 5 depicts the proposed self
supervised learning approach, which is also explained in
Algorithm 2. It consists of the following steps:

1) Extracted latent feature vector representations are clus-
tered using an ordinal cluster approach into K (= 10)
clusters.

2) Identify most representative sample of each cluster via
measuring the closest sample to its centroid using L2
distance between extracted latent feature vectors.

3) Query labels of the most representative sample per
cluster (e.g. K = 10 queries)

4) Add the corresponding original image to the training set,
and determine the change in AUC values (AAUC) for
a fixed validation set (independent of the training set).
Rank samples according to decreasing AAUC.

5) Identify cluster whose representative image yields max-
imum positive AAUC on validation set.

a) Select this cluster as most informative

b) Label each cluster as [1,---, K] where 1 is most
informative cluster and K denotes least informative
cluster.

¢) Ranking and queried labels for each representative
sample are propagated to all samples within each
cluster.

6) Use labelled samples from the previous step, and their
corresponding deep saliency features to train a random
forest classifier. In order to efficiently train the random
forest classifier as new samples are selected, we use
online random forests [47], which performs incremental
training of the RF using the previously trained RF as
a starting point. The saliency map is classified into

30

Cluster 2 + Cluster3 « Cluster4 - Cluster 5

* Cluster 1 Cluster 6 - Cluster 7 - Cluster 8 - Cluster 9 - Cluster 10

20

-20

-50 -40 -30 -20 -10 0 10 20 30

Fig. 4: t-SNE plots of different informativeness clusters.
‘Cluster 1’ denotes most informative cluster and ‘Cluster 10’
denotes least informative cluster.

one out of K possible levels of informativeness. Use
RFfina (Algorithm 2) to rank new (test) samples based
on informativeness.

Figure 4 shows the t-SNE plots of features from samples
belonging to different informativeness clusters, where ‘Cluster
1’ denotes the most informative image cluster while ‘Cluster
10’ denotes the least informative cluster. We see a clear
separation between different informativeness clusters. There
is some overlap of neighboring clusters, which is due to
the similar feature characteristics of similarly informative
images/samples.

The choice of K = 10 was to strike a balance between level
of granularity and avoid clusters with too few or no samples.
If K is too high then we have to increase the batch size
(from 32 to higher) to ensure sufficient samples in each cluster
for accurately determining a representative vector. However,
increased batch size leads to higher computation cost and
poses challenges during training. If K is too low then we
lose granularity of informativeness rankings. For example, if
K =5 then samples with different levels of informativeness
will be in one cluster and make it difficult to train a reliable
classifier to predict informativeness. Thus K = 10 gives the
best tradeoff between these two considerations.

The proposed ordinal clustering and self supervised learning
approach for informative sample selection leverages feature
extraction information using modern deep learning technolo-
gies. This comes at the cost of a minimal label expert querying
of representative samples (i.e. number of cluster K'), which
based on our experience and the results obtained, yields a
good trade-off for clinical utilization.

In the results section this approach is referred to as Deep
Features. In the next section we present results obtained with
the proposed and baseline approaches, along with several
ablation experiments aiming at leveraging further insights and
confirmatory evidence on the benefits of the proposed IDEAL
approach.

IV. BASELINE METHODS FOR COMPARISON

In this section we describe the baseline methods used for
comparison purposes.
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Fig. 5: Workflow for Ordinal Clustering and Self Supervised learning for informative sample selection. Deep features extracted
from an autoencoder are used for ordinal clustering samples into to K (e.g.K = 10) clusters. Representative images from
each cluster (i.e. samples closest to each cluster’s centroid) are queried for labels and added to the training set. Changes in
AUC values on a validation set are determined after updating the classification model. Based on AAUC of each cluster’s
representative image, the K clusters are assigned different levels of informativeness in a self supervised manner. Labels and
ranking of representative samples are propagated to samples within each cluster, and random forest is trained on to learn to
classify each saliency map into each of K-level informative levels.

Algorithm 2 Self Supervised Deep Features - Training Stage

Require: Random forest RFp, Set of Deep Saliency feature
vectors F', Ordinal Clustering operator C(), number of
clusters K, Lyatidations Ltrain
RF +— RFy,n=1
repeat
F, « {F.} > Feature vectors for iteration n
C, + {C(F,)} v clustering output given input set
and clustering operator
5: Identify representative samples of each cluster .., >
sample closest to each cluster’s centroid
Identify corresponding original images I,.c,
Query label of most representative sample per cluster
> For all K clusters
8: L,ep < expert_query(Lyep)
representative samples

E

> label querying of

9: RF,, « train(RF,_1,Lcp, Lyep) > update
pre-trained model using online RF

10: Identify cluster k& with highest + AAUC

1L Label each cluster [1,--- , K] > 1 is most
informative cluster and K is least informative

12: Lirain = Lirain \ Lrep > Update training set

> Go to next iteration
> Repeat until all training samples are

13: n+<n+1

14: until I;,.q, = 0
used

15: return RFyinq1 > Random forest classifier that ranks
samples based on informativeness
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A. Standard Active Learning

As first baseline we considered a standard active learning
framework where no sample selection is considered. In this
setup, given a set of testing samples, a subset of samples
are randomly chosen for label querying and active learning
training. It is worth noting, that in clinical practice the number
of samples reflects the amount of user interaction needed to
incorporate new samples into the next cycle of active learning,
and hence it needs to be kept as low as possible. In the results
section we refer to this approach as Random.

B. Uncertainty-driven sample selection

This corresponds to our second baseline. As proposed in
[23], [24], uncertainty estimation can be used as a metric of
sample informativeness for active learning. Given the deep
learning model M used for disease classification, mapping
an input image I, to a unary output y € R, the predictive
uncertainty for pixel y is approximated using:

1 <& 1 I\ 1 &
Var(y)wTZﬁ— TZ@ +TZE§ 3)
t=1 t=1 t=1

52 is the model’s output for the predicted variance for pixel
yt, and Yy, Gtthzl being a set of T sampled outputs.

Similarly as for the other compared approaches, the obtained
uncertainty estimates are sorted from high to low uncertainty,
and the top-n samples are chosen for label querying, and added
to the next active learning cycle. In the results section we refer
to this approach as Uncertainty.
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C. Implementation details

Our method was implemented in TensorFlow. We trained
DenseNet-121 [48] on NIH ChestXrayl4 dataset [49], and
for the histopathology datasets. We used Adam [50] with
61 = 0.93, B2 = 0.999, batch normalization, binary cross
entropy loss, learning rate le — 4, 10° update iterations
and early stopping based on the validation accuracy. The
architecture and trained parameters were kept constant across
compared approaches. Training and test was performed on a
NVIDIA Titan X GPU having 12 GB RAM. Images are fed
into the network with size 320 x 320 pixels.

We employed 4-fold data augmentation (i.e. each sample
augmented 4 times) using simple random combinations of ro-
tations ([—25, 25]°), translations ([—10, 10] pixels in horizontal
and vertical directions), and isotropic scaling ([0.95 — 1.05]
scaling factors). For generation of interpretability saliency
maps, we used default parameters of the iNNvestigate im-
plementation of Deep Taylor [34]. For uncertainty estimation
we used a total of T" = 20 dropout samples with dropout
distributed across all layers [51]. During active learning the
batch size for our experiments was set to 16.

As shown in Figure 5 the encoder stage has 3 layers of
256, 128,64 neurons. The output is a 32 dimensional latent
feature vector which is fed to the decoding stage. The output
is supposed to reconstruct the original input using the mean
square error loss.

V. RESULTS AND DISCUSSION
A. Dataset Description

As use-case applications we applied and analyzed the pro-
posed IDEAL method and baseline approaches on two tasks:
Lung disease classification and histopathology segmentation.
Classification Dataset: For lung disease classification we
adopted the NIH ChestXrayl4 dataset [49] having 112,120
expert-annotated frontal-view X-rays from 30, 805 unique pa-
tients.

Segmentation Dataset: For histopathology segmentation
we used the public GLAS digital histopathology image dataset
[52] that has manual segmentation maps of glands in 165
H&E stained images derived from 16 histological sections
from different patients with stage 7T'3 or T'4 colorectal ade-
nocarcinoma. The slides were digitized with a Zeiss MIRAX
MIDI Slide Scanner having pixel resolution of 0.465um. The
WSIs were rescaled to a pixel resolution of 0.620um (equiv-
alent to 20x magnification). 52 visual fields from malignant
and benign areas from the WSIs were selected to cover a wide
variety of tissues. An expert pathologist graded each visual
field as either ‘benign’ or ‘malignant’. Further details of the
dataset can be found in [52].

For the lung classification task, we chose pleural effusion as
target condition of a classification model, since it is clinically
well defined and among the most important lung disease condi-
tions requiring effective computer assisted diagnosis solutions.
We selected 1036 patient images from the NIH dataset with
pleural effusion, which are free of artefacts (e.g. incomplete
lung regions) and which can lead to accurate visual assessment
by an expert radiologist. As sanity check, we additionally

8

asked our expert chest radiologist to inspect and confirm the
training and testing cases, corresponding labels, as well as the
corresponding interpretability saliency maps.

For each task, the dataset was split into training (70%),
validation (10%) and test (20%), at the patient level such that
all images from one patient are in a single fold.

B. Results for IDEAL and Baseline approaches

In this section we present the main results obtained by the
proposed IDEAL approach, and the baselines described in
section IV. As evaluation metrics we adopted the Area Under
the Curve (AUC), as typically done for active sample selection
studies in classification tasks, and the Dice coefficient for the
segmentation task. For both tasks, we assessed the metrics for
different methods at every 10% increment of training data.
Note that we perform the training from scratch using data
augmentation and do not use any pre-trained network weights.

For readability purposes, we split the presentation of our
main results in Figure 6 in two plots: Figure 6(a) shows re-
sults for baselines (Uncertainty and Random), and approaches
of Kurtosis and best Radiomics (PyRad-1st-order), and Fig-
ure 6(b), where we present results for Deep Saliency Features,
and the best result from Figure 6(a) using Radiomics (PyRad-
Ist-order), which is shown as a dotted line to provide a
performance comparison reference with Figure 6(a).

For completeness, we additionally include in Fig. 6(b) other
radiomics-based results yielded via GLCM texture features,
and 2D-shape based features. On both plots in Fig. 6, results
with a fully-supervised model (FSL, AUC=0.8686)) are also
included (horizontal lines in Fig. 6(a) and (b)).

From Fig. 6(a) we observe that, except for Random-
based sample selection, all approaches outperform the fully-
supervised learning model. Moreover, IDEAL approaches
based on Kurtosis and Radiomics outperform uncertainty-
based sample selection. Additionally, the uncertainty-based
approach required 53% of the training data to surpass FSL,
which was surpassed at a much lower value for IDEAL
approaches: Kurtosis: 44%, and PyRad: 37%. We remark that
this finding aligns with other similar reports, [19], [20], [26],
but its exploration goes beyond the scope of this study.

Amongst the different Radiomics based features, best AUC
was attained with First-Order features, while GLCM per-
formed poorly, followed by 2D-Shape. We attribute this lower
performance of GLCM and 2D-shape based features to a com-
bination of an absence of rich texture and shape information
of saliency maps, as well as the difficulty to reliably extract
shape parameters with pyradiomics (e.g. finding an appropriate
parameterization of threshold values to binarize saliency maps
before extracting shape information).

As shown in Fig. 6(b), the third approach, based on Deep
Saliency Features in combination with the proposed self-
supervised ordinal clustering, yielded the best results, outper-
forming all other approaches in terms of learning rate and
final attainable accuracy. Using IDEAL with Deep Saliency
Features, enables the approach to attain same performance as
the fully-supervised model at only 33% (versus 53% using
uncertainty-based sample selection), with best final perfor-
mance at 95%. We highlight these results in light of the
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Fig. 6: AUC measures at different percentage levels of training
percentage for baselines and proposed IDEAL approach. (a)
Baselines (Random and Uncertainty)), IDEAL: Kurtosis and
Radiomics based features for active sample selection; (b)
IDEAL: Deep Saliency Features with proposed self-supervised
ordinal clustering. As reference, in (b) we show best results
from (a) using Radiomics Ist-order (PyRad-1st-order). Ad-
ditionally, other radiomics-based results yielded via GLCM
texture features, and 2D-shape based features are presented for
completeness. As reference, AUC of a fully-supervised model
(FSL) is also included as an horizontal line.

importance of minimizing expert annotations in the clinical
routine while targeting high accuracy levels.

The AUC values were derived from an average of 10
runs and the statistical significance with respect to Deep
Saliency Features was calculated using a paired {—test. The
final AUC values and the corresponding p—values for different
methods are as follows: 1) FSL-0.8638, p = 0.0008; 2) ‘Deep
Saliency Features’-0.9783; 3) Kurtosis- 0.0.9341,p = 0.01;
4) Uncertainty -0.9101,p = 0.005; 5) PyRad-1st-Order -
0.9536,p = 0.02; 6) PyRad-GLCM -0.9189,p = 0.009; 7)
PyRad-2DShape- 0.7013, p = 0.0001.

C. Relationship Between Batch Size And Interaction Cost

We analyzed the interplay between varying the number of
queried samples (line 7 in Algorithm 1)), and the total number
of training iterations required for the active learning system.
For this experiment we used the classification task. As refer-
ence we used the performance of the fully-supervised model
and measured the number of queried samples and training
iterations needed by IDEAL to surpass the performance of the
fully-supervised model. Figure 7 (a) shows that with reduced
number of samples per batch the system can surpass FSL
with fewer samples. During the initial phase of fixed-batch
size training, queried samples within a single batch might
indeed be assessed as being informative, but redundant as
they share similar characteristics, leading to the effect that
a higher percentage of training dataset is needed to surpass
the performance of the fully-supervised model. In the extreme
case of selecting one sample per iteration the system will
always choose the most informative sample and there will be
no redundancy in subsequent sample selections.

However, as shown in Figure 7 (b), for both IDEAL and
uncertainty-based sample selection approaches, a reduction in
the number of selected samples per iteration comes at the cost
of an exponential increase in the number of training iterations.
However, IDEAL requires fewer iterations (on average 10
fewer iterations) than an uncertainty-based sample selection
approach.

This also connects with the phenomenon shown in Fig-
ure 6 where the baselines based on sample informativeness
outperform the fully-supervised model at lower number of
training samples. This observation can also be linked to the
known phenomenon of influential observations, where samples
(observations) have greater influence during the initial training
stages than in later ones. We remark that this phenomenon has
been reported by others [19], [20], [26].

Although fewer queried samples per batch can lead to
lower percentages of training dataset needed to attain a given
performance (compared to using larger batches), there is the
higher cost of successive retraining of the model. This can
be computationally prohibitive depending on the model size,
available resources, etc. For the studied use-case, we found
that a batch size of 16 queried samples per iteration could
provide in practice a good trade-off between queried expert
labeling and model retraining.

An interesting strategy for sample selection could be that
of selecting fewer samples per iteration in the initial learning
stages, to then increase the number of selected samples when
the classifier has reached a certain performance level. This can
potentially ensure that the classifier observes diverse samples
in the initial stages while being computationally efficient to
reach optimal performance.

D. Ablation Studies

We performed two ablation experiments to (i) analyze the
effect of choosing the least informative samples (instead of
the most informative) on the learning curves, and (ii) utilize
the input images, instead of the interpretability saliency maps
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Fig. 7: Interplay between number of selected samples in each
iteration and performance: (a) percentage of total training data
required to surpass the fully-supervised model (F£SL); (b)
number of iterations required to surpass the fully-supervised
model (F'SL) for varying number of selected samples per
iteration.

for feature extraction. For these experiments we used the lung
disease classification task.

For the first ablation experiment, Figure 8 (a) shows the
classification performance when using the least informative
samples ( marked as “-Reversed”). As expected, we observe a
very slow increase in the learning rate. Nevertheless, the least
informative “Deep Features” select better quality features and
hence outperform other methods. Similarly, we observed that
around 60% of training, the learning rate increases, since the
remaining samples are actually the most informative samples
in the dataset. This experiment confirms the importance of
selecting informative samples.

Figure 8 (b) shows the AUC curves when applying the
different IDEAL based methods on the original images instead
of the saliency maps (marked as “-Image”). The performance
of each approach is lower than the corresponding one when
extracting features from the saliency maps. We attribute this
to our intuition that saliency maps highlight information
regarding the pathology, which is in turn the target of the
classification model being explained. In contrast, the X-ray
image includes other sources of information, including the
overall anatomy, that is of much lower relevance for the trained
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Fig. 8: Ablation studies on the lung classification task to
(a) analyze the effect of choosing the least (marked as “-
Reversed)”informative samples (instead of the most infor-
mative) on the learning curves, and (b) effect in extracting
features from the input images (marked as “-Image”), instead
from the interpretability saliency maps.

model.

E. Sample Selection Performance when Switching Datasets

We assessed the proposed approach on a scenario where,
after initial training with one dataset, the sample selection
method may be used on a different new dataset in a clinical
scenario (e.g. change of imaging vendor). To simulate this sit-
uation we used the the ChexPert Dataset [53], which contains
224,316 chest radiographs of 65,240 patients as our second
dataset. The initial trained model was trained on the NIH
ChestXray14 dataset, as described previously. We selected
1057 patient images from the ChexPert dataset having pleural
effusion. The dataset was split into training (70%), validation
(10%) and test (20%), at the patient level such that all images
from one patient are in a single fold.

To simulate this situation we started training with dataset 1
(e.g. NIH) and at mid way of training (50%) we switched to
dataset 2 (e.g. the CheXpert dataset [53]). Figure 9 shows the
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Fig. 9: Classification performance when switching between
two datasets (NIH — ChexPert) at 50%. For comparison
purposes dotted lines correspond to performance when no
switching is performed.

AUC curves for different IDEAL approaches. From this exper-
iment we observe that the performance for both IDEAL and
Uncertainty-based methods improved when switching to the
CheXpert dataset, compared to the reference plots of Figure 6
(shown as dotted lines in Figure 9). The improvement can be
attributed to the better quality of the CheXpert dataset (due to
higher image resolution and higher SNR). This observation is
also supported by the results in [35] where the AUC values
on the CheXpert dataset are higher than those reported for the
NIH dataset for the same disease label.

F. Results For Semantic Segmentation

For the task of histopathology image segmentation, the
principle of informative sample selection holds true for seg-
mentation as the segmentation network will benefit by learning
from diverse and informative images. The motivation is to
select the most informative images and their masks for training
such that maximum performance gain can be achieved with
minimal annotation cost. In order to derive saliency maps
for the segmentation task, a classifier (DenseNet-121) for
histopathology images (that identifies images as “benign” and
“malign”) was used as proxy to derive interpretability features
and guide sample selection.

Similar to the approach for classification we identify in-
formative samples based on classification labels and use the
images with their masks for segmentation. A standard UNet
[54] is trained to perform segmentation, and the correspond-
ing Dice metric values for every 10% increase in dataset
size are shown in Figure 10. The UNet has 3 convolution
blocks followed by downsampling in the contracting path,
followed by 3 upsampling stages in the expansion stage. Each
convolution block in the contracting path has 3 convolution
steps consisting of 64,3 x 3 filters with ReLU activation
followed by batch normalization and 2 x 2 downsampling.
In the expansion path each deconvolution layer has stride 2
followed by concatenation with the corresponding cropped
feature map from the contracting path. It is followed by two
3 x 3 convolution layers with ReLU activation function (with
batch normalization).
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In the initial stages when the segmentation network encoun-
ters new samples, the rate of increase of Dice metric is high
but flattens in the later stages. Similar to the results for pleural
effusion classification we also observed that sample selection
outperforms fully supervised learning based segmentation.
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Fig. 10: Dice Metric values at different percentage levels

of training percentage for baselines and proposed IDEAL
approach. IDEAL: Deep Saliency Features with proposed self-
supervised ordinal clustering.

G. Performance on Simulated Noise

In an attempt to simulate low informativeness we
added simulated noise of x4 = 0 and different ¢ €
{0.005,0.01,0.05,0.1}. Figure 11 shows the AUC values for
o = 0.05. The performance for ‘Deep-Features’ without noise
is shown as a dotted line for reference. With added noise
the performance of all feature extraction methods degrade.
However the deep features obtained using self supervision still
perform the best and are more robust than other methods.
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Fig. 11: AUC measures for different features for added Gaus-
sian noise of © = 0,0 = 0.05. In dotted lines, ‘Deep Features’
without noise are shown as reference.
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Fig. 12: Results on a second lung condition. AUC measures
for Pneumonia at different percentage levels of training per-
centage for baselines and proposed IDEAL approach. Plots are
shown for Uncertainty, Kurtosis, Deep Saliency Features with
proposed self-supervised ordinal clustering, and Radiomics
Ist-order (PyRad-1st-order). As reference, AUC of a fully-
supervised model (FSL) is also included as an horizontal line.

H. Results on Pneumonia

We additionally tested on a second lung condition to check
generalization of the findings on a different condition. Fig-
ure 12 shows AUC plot for pneumonia. We used 1132 images
from different patients having pneumonia and the dataset was
split into training (70%), validation (10%) and test (20%), at
the patient level such that all images from one patient are in
a single fold. The characteristics of the different methods are
similar to their pleural effusion counterpart in Figure 6. The
results show that sample selection based on informativeness
improves classifier performance for multiple diseases, and our
proposed deep features do better than conventional feature
extraction methods.

L. Influence of Saliency Map Computation

In this section we show results when using a different
saliency map extraction method such as Grad-CAM [55] to
check for generalization of the findings when using a different
interpretability approach.

Figure 13 shows the saliency map visualizations using
Deep Taylor and Grad-CAM for high-informative and low-
informative images. In the case of high-informative images
both approaches identify similar areas as salient. However, for
low informative image (bottom row) the localized regions are
quite different. Deep Taylor method highlights regions near
the lung but the Grad-CAM method tend to localize an area
beyond the lung region where there is no anatomy of interest.
This justifies our choice of using Deep Taylor approach for
generating saliency maps. Moreover, Figure 14 shows AUC
plots using Grad-CAM generated saliency maps. The trends
are similar to Deep Taylor generated maps, showing the
superiority of proposed approach over the baselines. However
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(a) (b) (©)

Fig. 13: Comparative visualization of GradCAM and Deep
Taylor models. (a) original image; Saliency maps using (b)
Deep Taylor method; (¢) Grad-CAM method. Top row shows
high informative image while bottom row shows a low in-
formative image. Especially for low informative images, the
Deep Taylor method gives a more accurate localization of
informative regions than Grad-CAM.
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Fig. 14: AUC measures for Pleural Effusion using Grad-CAM
saliency maps at different percentage levels of training per-
centage for baselines and proposed IDEAL approach. Plots are
shown for Uncertainty, Kurtosis, Deep Saliency Features with
proposed self-supervised ordinal clustering, and Radiomics
Ist-order (PyRad-1st-order). As reference, AUC of a fully-
supervised model (FSL) is also included as an horizontal line.

in comparison with Deep Taylor, the AUC values yield via
Grad-CAM are lower for each of the corresponding feature
extraction methods (see Figure 6). The plots also quantify
the superior performance via Deep Taylor saliency maps, and
point to the differences in interpretability maps studied in the
literature [29], [33].
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nDCG Values for Image Ranks

Uncertainty Kurtosis PyRad-1st-Order  PyRad-GLCM  PyRad-2DShape

Fig. 15: Box plots of nDCG values of different methods
compared with ‘Deep Features’. Higher values indicate better
agreement with ‘Deep Features’.

J. Similarity Analysis Of Selected Images

1) Quality of Unlabeled Image Rankings: We analyzed
the rankings produced by the different sample selection ap-
proaches. To this end we used the normalized Discounted
Cumulative Gain (nDCG) to compare rankings [56]. The
nDCG is defined as

DCGy,
D 4
nDCG, ~ IDCG, @
where DCG is Discounted Cumulative Gain and is defined as
p rel;
2
DCG, 5
Z log, (i + 1) )

where p represents the number of retrieved images considered.
Relevance values (rel;) were assigned from 1 to 5.5, 1 being
the least similar image according to the reference ranking and
5.5 the most similar one (i.e., the relevance of two contiguous
positions differs by 0.5).

The reference ranking was set as the Deep Features, which
was compared with the informativeness ranking provided by
the other methods. Figure 15 shows the comparison results,
where higher values indicate better agreement. Particularly,
the highest agreement was found between ‘Deep Features’
and PyRadst—order features. The plots support our previous
observations (e.g., Figure 6) where PyRad;s;—order Showed
to have the closest performance to ‘Deep Features’.

2) Analysis of selected samples across methods: We further
analyzed the number of common samples chosen by the
different feature types of the IDEAL approach. Figure 16
shows the percentage of common samples chosen for the
following informative sample selection approaches: 1) All 3
methods - Kurtosis, PyRad;s;—orqer and Deep Features; 2)
‘Deep Features vs. Kurtosis’- the common informative samples
chosen by our proposed Deep Features and Kurtosis; 3) ‘Deep
Features vs. Uncertainty’- the common informative samples
chosen by our proposed Deep Features and Uncertainty; 4)
‘Kurtosis vs. Uncertainty’- the common informative samples
chosen by Kurtosis and Uncertainty; 5) ‘Deep Features vs.
PyRad;s;—order - the common informative samples chosen
by Deep Features and PyRadisi—order. We observed from
Figure 16 that during the initial stages the percentage of
common samples is higher and then decreases subsequently.
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Fig. 16: Percentage of common samples for every 10% in-
crease of training set. “All 3 methods” correspond to analyzing
common samples when using Uncertainty, Kurtosis and Deep
Features.

This is explained as in the initial stages there are more
informative samples to choose from and hence a larger overlap
of common samples appears. As the training progresses, the
subsequent chosen informative samples tend to be different
depending upon the accuracy of the classifier.

K. Analysis Of Clinician Workload

We engaged an experienced lung radiologist, with over 15
years of experience in analysing chest X-ray images, to assess
differences when analyzing different levels of informative
images, as selected by our method. We selected 100 images
having pleural effusion - split in two groups of 50 high
informative and 50 low informative images. The level of
informativeness was chosen by our algorithm using Deep
Features. The clinician was blinded to the informativeness
label as well as to the image’s disease label, and was asked
to diagnose the images by recording the time taken for each
diagnosis.

On average the clinician spent 3.4 seconds on each of
the low informative images and he correctly diagnosed
36/50(72%) of the cases. For high informative images he
spent on average 4.02 seconds on each image and correctly
diagnosed 41/50(82%) of the cases. The clinician spent an
extra 18% time (i.e. 0.62 seconds) time to diagnose the high
informative images, and commented on the higher subtlety of
the diagnosis as well as other factors such as fluid overload
and not congestive heart failure, increasing the complexity.
Hence, the time difference between diagnosing low and highly
informative samples is negligible for an expert. The proposed
approach requires 33% of training samples to attain the same
performance as a fully-supervised approach (Figure 6(b)) com-
pared to 50% for the Uncertainty based baseline (Figure 6(a).
Our automated algorithm can classify an image in 0.2 seconds.
In light of these findings assessing clinician’s workload and
learning rates we conclude on the time benefits the proposed
IDEAL approach can bring to clinicians. We also observed a
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slightly higher percentage of accurately diagnosed cases for
high informative images. The higher information content of
the images leads to a better diagnosis accuracy which is along
expected lines. The results show that the images chosen as
highly informative by our method are indeed so as supported
by the high analysis time and higher diagnostic accuracy by
clinicians. Thus our algorithm can effectively contribute to
reducing clinician workload.

VI. CONCLUSIONS

In this work we have presented results of an interpretability-
driven active sample selection (IDEAL). IDEAL uses informa-
tion from interpretability saliency maps to select informative
samples for active learning. We propose a novel self super-
vised approach using deep features and ordinal clustering to
determine the most informative sample. Results on publicly
available datasets for lung pleural effusion and pneumonia dis-
ease classification and on histopathology image segmentation,
show that the proposed IDEAL self supervised deep features
outperform other methods in selecting the most informative
samples for an effective active learning system. Additionally,
the use of interpretability saliency maps provides experts with
a mechanism to audit and monitor the active learning process,
which we believe is an important added value of the proposed
IDEAL approach.

As presented here, we believe interpretability approaches
not only can be used to enhance understanding of model’s
predictions, but also to assist and provide further information
of value in other areas of model performance, training and
evaluation. In this regards, an area of potential research relates
to the possibility of linking interpretability approaches with
recent work on minimization of stochastic gradient to improve
training of deep neural networks [57], [58].
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APPENDIX
A. Training, Validation and Testing Loss Error Plots

Figure 17 shows the variation of training, validation and
test error values with increasing number of epochs when
training the model on pleural effusion images. The training
and validation losses are at similar values indicating there is
no overfitting to the training set. The test error is expectedly
higher but not significantly when compared to the training loss.
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