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Abstract— In fully supervised learning-based medical
image classification, the robustness of a trained model is
influenced by its exposure to the range of candidate dis-
ease classes. Generalized Zero Shot Learning (GZSL) aims
to correctly predict seen and novel unseen classes. Current
GZSL approaches have focused mostly on the single-label
case. However, it is common for chest X-rays to be labelled
with multiple disease classes. We propose a novel multi-
modal multi-label GZSL approach that leverages feature
disentanglement and multi-modal information to synthesize
features of unseen classes. Disease labels are processed
through a pre-trained BioBert model to obtain text em-
beddings that are used to create a dictionary encoding
similarity among different labels. We then use disentangled
features and graph aggregation to learn a second dictio-
nary of inter-label similarities. A subsequent clustering step
helps to identify representative vectors for each class. The
multi-modal multi-label dictionaries and the class represen-
tative vectors are used to guide the feature synthesis step,
which is the most important component of our pipeline,
for generating realistic multi-label disease samples of seen
and unseen classes. Our method is benchmarked against
multiple competing methods and we outperform all of them
based on experiments conducted on the publicly available
NIH and CheXpert chest X-ray datasets.

Index Terms— Multi-label, GZSL, Text Embeddings,
Chest x-rays, Feature synthesis, Disentanglement

I. INTRODUCTION

Fully supervised deep learning methods provide state-of-
the-art (SOTA) performance for a variety of medical image
analysis tasks, such as diabetic retinopathy grading [17] and
chest X-ray diagnosis [21]. A key element to the success of
fully supervised methods is having access to all classes during
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the training process. However, in a radiological workflow
disease types not seen previously can be encountered, e.g., new
strains of COVID-19 or tumour types in histopathological data.
Hence, in conventional fully supervised approaches, new dis-
ease subtypes will be misclassified into one of the previously
seen classes. Apart from these unfavorable misclassifications,
the lack of adaptability of deep learning classification systems
to new classes can also result in lengthy system re-certification
loops for clinically deployed AI systems.

In contrast, self-supervised learning offers a paradigm that
does not rely entirely on labeled data, potentially enhanc-
ing the model’s ability to generalize to unseen classes. By
learning rich feature representations from unlabeled data, self-
supervised learning methods [4], [5] can complement super-
vised approaches by providing preliminary insights into novel
classes without explicit prior knowledge [51]. However, while
self-supervised learning can mitigate some of the challenges
posed by unlabeled and unseen data, it typically requires
subsequent fine-tuning with labeled data to achieve optimal
performance, which may not be feasible in scenarios where
new class data remains scarce or unavailable.

Zero-Shot Learning (ZSL) aims to learn plausible represen-
tations of unseen classes from the available features of seen
classes. In a more generalized setting, we expect to encounter
both seen and unseen classes during the test phase. This is
the case of Generalized Zero-Shot Learning (GZSL), which
is more challenging. Previous works on GZSL in medical
images have mostly focused on the single label scenario where
an image is assigned a single disease class [34], [36], [42].
However, chest X-ray (CXR) datasets have multiple labels
assigned to the images and single-label methods do not work
well in this setting. [18] proposed a multi-label GZSL method
to predict multiple seen and unseen diseases in CXR images.
The approach consists of mapping both visual and semantic
modalities to a latent feature and learn a visual representation
guided by the input’s corresponding semantics extracted from
a medical text corpus. However, their approach yields sub-
optimal results on the external NIH chest xray dataset [53]
in terms of AUROC values of seen (0.79) and unseen (0.66)
classes. This is possibly due to the sub-optimal use of text
and imaging data. We propose a multi-label GZSL approach
that uses multi-modal dictionaries encoding text and imag-
ing information to encode the semantic relationship between
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multiple disease labels. This enables us to learn a highly
accurate feature representation which plays an important role
in synthetic feature generation.

In contrast with medical imaging datasets for GZSL,
datasets for GZSL in natural images [15], [47] have the
advantage of providing attribute vectors for all classes to
enable a model to correlate between attribute vectors and
corresponding feature representations of the seen classes.
Defining unambiguous attribute vectors for medical images
requires deep clinical expertise and extensive invested time
to annotate radiological images. This complexity is further
exacerbated for the multi-label scenario, where many disease
conditions have similar appearances and textures. In our pre-
vious work [36] we proposed a method to perform GZSL
without using attribute vectors. In this approach, we used a
baseline clustering method, called SwAV [8], and incorporated
additional constraints based on self-supervised learning to
perform single-label GZSL. However, the primary challenge
of multi-label GZSL is to generate features incorporating
characteristics of multiple labels. This is a challenging task
since it requires an appropriate disentanglement between class-
specific and class-agnostic features. To address this non-trivial
feature generation challenge, we build upon [36] and introduce
the following contributions for multi-label GZSL:

1) We propose a novel feature disentanglement method
where a given image is decomposed into class-specific
and class-agnostic features. This step is necessary since
for multi-label problems an accurate combination of
class-specific features is needed.

2) We apply graph aggregation on class-specific features
to learn an image feature based multi-label dictionary
based on interactions between different labels at a global
scale. This leads to more discriminative feature learning
and contributes to better multi-label feature synthesis.

3) We learn the semantic relationships between text embed-
dings of different disease classes and use this knowledge
to guide the generation of realistic feature vectors that
preserve the semantic relationship among multiple dis-
ease labels.

II. PRIOR WORK

A. Feature Disentanglement

[32] provide a comprehensive overview of feature dis-
entanglement techniques in medical image analysis. Feature
disentanglement has been used for various tasks like segmen-
tation [52], classification [37] and superresolution [35]. [9]
propose Spatial Decomposition Network (SDNet) to decom-
pose 2D medical images into spatial anatomical factors and
non-spatial modality factors. They use it for different cross
modal segmentation tasks. [40] propose a disentanglement ap-
proach using margin loss, conditional convolution and a fusion
function, with applications to three multi-modal neuroimaging
datasets for brain tumor segmentation. [48] propose Attention-
enhanced Disentangled Representation (ADR) learning model
for unsupervised domain adaptation in cardiac segmentation.

B. (Generalized) Zero-Shot Learning

In ZSL, the goal is to recognize classes not encountered
during training. External information about the novel classes
may be provided in the form of semantic attributes [27], visual
descriptions [1], or word embeddings [38]. ZSL has been
addressed using GANs [13], Variational Autoencoders (VAE)
[45] or both of them [58]. In GZSL, the purpose is to recognize
images from known and unknown domains. Prior work on
natural images show promising results by training GANs in
the known domain and generating unseen visual features from
semantic labels [14], [58].

The work by [19] describes a Generative Dual Adversarial
Network (GDAN) that couples a generator, a regressor, and a
discriminator. In [23], the authors used over-complete distribu-
tions to generate features of the unseen classes, while [39] used
domain-aware visual bias elimination for synthetic feature gen-
eration. [15] proposes a non-generative model for synthesizing
edge-pseudo and center-pseudo samples to introduce greater
diversity. The work by [25] proposes an Intra-Class Compact-
ness Enhancement method (ICCE) for GZSL, which promotes
intra-class compactness with inter-class separability on both
seen and unseen classes in the embedding space and visual
feature space. [47] leverage visual and semantic modalities
to distinguish seen and unseen categories by deploying two
variational autoencoders to generate latent representations for
visual and semantic modalities in a shared latent space.

C. Multi-Label Zero-Shot Learning

The work of [28] proposes a novel deep learning archi-
tecture for multi-label zero-shot learning (ML-ZSL), which
is able to predict multiple unseen class labels for each input
instance using an information propagation mechanism from
the semantic label space. As an extension to ZSL, ML-ZSL
further requires one to assign multiple unseen labels. The work
of [61] considers the separability of relevant and irrelevant
labels, proposing a model that learns principal directions for
images in the embedding space. Differently, the work of [16]
leverages co-occurrence statistics of seen and unseen labels
and learns a graphical model that jointly models the label
matrix and the co-occurrence matrix.

D. GZSL In Medical Images

GZSL in medical image analysis is a much less explored
topic with limited applications primarily because conventional
methods from the natural image domain cannot be directly
applied due to lack of class attribute vectors for medical im-
ages. Some initial works explored registration [26] and artifact
reduction [10]. In earlier work [?], [34], [36] we proposed
a class-attribute-free method for GZSL on different medical
images by using saliency maps and self-supervised learning. In
[42], the authors proposed a GZSL method for chest X-ray di-
agnosis by learning the relationship between multiple semantic
spaces (from X-ray, CT images, and reports). However, not all
datasets have multiple image modalities and text reports. The
primary challenge of multi-label GZSL lies in synthesizing
features that capture the characteristics of multiple classes. A
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robust method requires appropriate disentanglement between
class-specific and class-agnostic features. The class specific
features can then be appropriately combined to synthesize
feature vectors representing multiple-labels.

Recently, language models pre-trained on large corpora
have been considered for ZSL [6]. More specifically in the
biomedical domain, [18] learn an image’s visual representation
guided by the input’s corresponding semantics extracted from
BioBERT [29], a BERT [12]-based language model. [49] pro-
pose a method that relies on image similarity and embeddings
with self-supervised learning. Different from other works, our
method, combining image and text, works with images from
a single modality and shows state-of-the-art performance on
multiple public CXR datasets. In the following, we provide
an overview of the proposed method as well as a detailed
description of its components, followed by experimental setup
and results obtained comparing seven previously proposed
GZSL on two publicly available chest X-ray datasets.

III. METHOD

A. Method Overview:
Figure 1 depicts the proposed workflow. Let us denote a

given image as xi and the corresponding latent representation
is denoted as zi. The corresponding encoder for class L is
denoted as El and the decoder is denoted as Gl. Our method
consists of the following stages: 1) Image feature disentan-
glement to get class-specific component, zspecli for class l,
and a class-agnostic component, zagnl

i from the original latent
vector zi using LDisent (Eqn. 1); 2) Creating two multi-label
dictionaries, DictSpe (from class specific image features) and
DictText using text embeddings of disease labels. The class-
specific features are used to learn more global relationship
between label features, whereas the text embeddings for dif-
ferent labels are obtained from BioBert [29]; 3) Clustering of
seen and unseen class samples using LML−Seen in Eqn 7
and LML−All in Eqn.8 to obtain class centroids that function
as class representative vectors. LML−Seen is the difference
between DicSpe and centroid of seen classes and defined
in Eq. 7. LML−All is the difference between DicText and
centroids of all classes and is defined in Eq. 8. Both are part
of the clustering step.; 4) Feature synthesis to generate multi-
label features of different label combinations using Eqn.13.
The centroid vectors are used as reference vectors for feature
synthesis. The synthesized vectors are compared with the
centroids using LML−Syn defined in Eq. 12 to determine
whether they belong to the desired classes; 5) Training a
classifier to identify the correct set of labels for each test
image (Eqn.14). Synthesized and real features of unseen and
seen classes are used to train a multi-label classifier. Different
from [36] we propose novel loss functions introduced in the
clustering stage (Eqns. 7,8). The feature synthesis stage (Step
4) is similar to [36], but we use a completely different loss
function (Eqn. 12) for multi-label considerations.

B. Feature Disentanglement
Feature disentanglement for domain adaptation separates

the features into domain-specific and domain-invariant com-
ponents [41]. The task of domain adaptation becomes one

of minimizing the distance among domain-invariant features.
In the case of GZSL, the data is from the same domain
with different labels. Hence we propose to decompose the
feature space of the seen class samples into ‘class-specific’
and ‘class-agnostic’ features. The class-specific features of
each class will encode information specific to the particular
class, and the class-specific features of different classes will
be dissimilar. On the other hand, the class-agnostic features
(e.g., characterization of bone in X-ray scans) of each class
will be highly similar to each other. In this setup, we aim to
yield class-specific and class-agnostic features to be mutually
complementary and hence have minimal overlap in semantic
content. This feature disentanglement helps to obtain features
specific to each class which in turn allows for more accurate
synthesis of multi-label features, by combining incorporating
characteristics of the desired classes.

Figure 2 shows the architecture of our feature disentangle-
ment network (FDN). The FDN consists of L encoder-decoder
architectures corresponding to the L classes in the training
data. We train different autoencoders for each class in order
to obtain class specific features. The encoders and decoders
(generators) are denoted, respectively, as El(·) and Gl(·). Sim-
ilar to a classic autoencoder, the encoder, El (l ∈ (1, · · · , L)),
produces a latent code zi for image xi ∼ p. Each decoder, Gl,
reconstructs the original image from zi. Furthermore, to divide
the latent code, zi, into two components we have two heads
for the final embedding output (insead of one) corresponding
to: a class-specific component, zspecli for class l, and a class-
agnostic component, zagnl

i . Both components are vectors, and
they are combined and fed to the decoder, which reconstructs
the original input. The disentanglement network is trained
using the following loss function:

LDisent = LRec + λ1Lspec + λ2Lagn + λ3Lagn−spec (1)

where λ1, λ2, λ3 are the weights for above loss terms. Recon-
struction Loss: LRec, is the commonly used image recon-
struction loss and is defined as:

LRec =

L∑
l=1

Exi∼pl

[∥∥xl
i −Gl(El(x

l
i))

∥∥] (2)

The above term is a sum of the reconstruction losses from the
class specific autoencoders.

Class Specific Loss: For given class l the class specific
component zspecli will have high similarity, according to some
metric (e.g. cosine similarity), with samples from the same
class. Since this feature is class specific it will have low
similarity with the zspecki of other classes k (k ̸= l). These
two conditions are incorporated using the following terms

Lspec =
∑
i,j

∑
l

(
1− ⟨zspecli , zspeclj ⟩

)
+

∑
k

⟨zspecli , zspeckj ⟩

(3)
where ⟨.⟩ denotes cosine similarity. The first term encourages
high similarity for class specific features of samples having
the same training labels. The second term encourages different
classes, l and k to have highly dissimilar class specific features.
The sum is calculated for all classes indexed by

∑
l and over

all samples indexed by i, j.
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Fig. 1: Workflow of the proposed method. Training data goes through a feature disentanglement stage, followed by multi-
modal and multi-label dictionary learning and clustering, feature synthesis and training of a multi-label classifier. Our novel
contributions and loss functions are highlighted as green blocks and letters. DicSpe is the dictionary created from class specific
features of seen classes and DicText is the dictionary obtained from label texts. LML−Seen is the difference between DicSpe

and centroid of seen classes and defined in Eq. 7. LML−All is the difference between DicText and centroids of all classes and
is defined in Eq. 8. Both are part of the clustering step. LML−Syn is defined in Eq. 12 and is part of the feature generation
step.

Class Agnostic Loss: The class agnostic features of differ-
ent classes have, by definition, similar semantic content and
hence they will have high cosine similarity. Lagn is defined
as,

Lagn =
∑
i,j

∑
l

∑
k

(
1− ⟨zagnl

i , zagnk

j ⟩
)
. (4)

The above formulation ensures that the loss is minimized.
Finally, we want the class specific and class agnostic fea-

tures of same-class samples to be mutually complementary
and have minimal overlap in semantic content. This implies
that their cosine similarity values should be minimal. Hence
the final loss term is defined as

Lagn−spec =
∑
l

⟨zagnl

i , zspeclj ⟩ (5)

Since the above loss terms are minimized it helps us achieve
our stated objectives.

Figure 3 (a) shows the t-sne plots of image features (taken
from the fully connected layer of a DenseNet-121 trained
for image classification) while Figure 3 (b) shows the plot
using the class-specific features. The plots of the original
features shows different image class clusters that overlap and
that makes it challenging to have good classification. On
the other hand, the clusters obtained using the class-specific
features are well separated and there is less overlap between
different clusters. Figure 3 (c) shows the output of using
class agnostic features where a significant overlap is observed
among classes. This clearly demonstrates the efficacy of our
feature disentanglement method, i.e., the class-specific and
class-agnostic features fulfil their desired objectives. In the
example in Figure 3, the features are taken from images
belonging to 5 classes (Atelectasis,Consolidation, Effusion,
Infiltration and Nodule) from the NIH dataset.

Fig. 2: Architecture of class specific feature disentanglement
network. Given training images from different classes of
the same domain, we disentangle features into class-specific
and class-agnostic using autoencoders. The different feature
components are used to define the different loss terms.

C. Embeddings
We generate embeddings of image class labels using

BioBERT [29], a BERT [12]-like pre-trained model. BioBERT
is pre-trained on biomedical literature, more specifically the
model available from Huggingface1, which is a base and cased
model. BioBERT (Bidirectional Encoder Representations from
Transformers for Biomedical Text Mining) [29] is a pre-
trained language representation model for the biomedical
domain. It’s input is the label (disease name of the sample)
and the output is the corresponding label embedding vector.
BioBERT is initialized with weights from BERT (Bidirectional
Encoder Representations from Transformers) , which was pre-
trained on general domain corpora (English Wikipedia and
BooksCorpus). Then, BioBERT is pre-trained on biomedical
domain corpora (PubMed abstracts and PMC full-text arti-
cles). BioBERT is fine-tuned and evaluated on three popular

1https://huggingface.co/dmis-lab/biobert-v1.1

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2024.3429471

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



MAHAPATRA et al.: MULTI-LABEL GENERALIZED ZERO SHOT LEARNING 5

(a) (b) (c)

(d) (e) (f)

Fig. 3: T-sne results comparison between original image features and feature disentanglement output. (a) Original image features;
(b) Class specific features; (c) Class agnostic features. Visualizations of synthetic features for: (d) ML-GZSLw/o Lspec

; (e)
ML-GZSLw/o LML−Seen

; (f) ML-GZSLw/o LML−All

biomedical text mining tasks: named entity recognition (NER),
relation extraction (RE) and question answering (QA). Various
pre-training strategies with different combinations and sizes
of general domain corpora and biomedical corpora are tested,
and the results of the effect of each corpus on pre-training
is analyzed. The pooled embeddings have 768 dimensions.
[18] used a multi-layer perceptron and further adapted the
embeddings to a lower dimension in a supervised fashion. In
our work, we do not fine-tune the language model and propose
reducing the dimensionality by projecting the embeddings to
a lower dimensional space using t-sne (t distributed stochastic
neighbor embedding) [50]. As per the implementation2, to
guarantee reproducibility, we set the random seed to a specific
value. Table I shows the actual cosine similarity values
between all the 15 classes - 14 diseased classes and ‘No
Finding’. The 15 × 15 matrix in Table I has all diagonal
elements equal to 1 as it is the cosine similarity of a class’s
embedding with itself. During the feature generation stage,
we enforce the constraint that the unseen class feature vectors
should have cosine similarity values (with respect to other
seen and unseen classes) close to the values shown in Table
I. This matrix, which we refer as DictText - dictionary for
text embeddings, is a realistic substitute for class attribute
vectors. Notably, DictText avoids the labor-intensive process

2https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

of defining class attribute vectors and provides a quantitative
relationship between different disease labels.

Since our approach to obtain the BioBERT feature embed-
dings is based on t-sne, reproducibility is an important factor.
We use different fixed values (total of 10 values) of the seed
parameter and obtain the corresponding set of feature values.
Thereafter we calculate the cosine similarity of each label pair
similar to what is shown in Table I ((seed value= 1367). We
calculate the element-wise difference of each such table to
the values shown in Table I. The diagonal elements are not
considered since they are always equal to 1. The mean element
wise difference is 0.012 (max= 0.02, min=0.0004) which
indicates a minor difference in terms of semantic similarity for
each seed value. This shows that despite using different seeds
the relative semantic similarity between feature embedding
vectors does not change significantly.

D. Learning a Multi-Modal Multi-Label Dictionary
A multi-label dictionary is useful in quantifying the rela-

tionship between different labels and is used to guide the
feature synthesis module. The dictionary is constructed from
two sources (modalities): 1) class-specific features of seen
class samples from images; 2) from text embeddings of the
label vectors for all classes. We have already described in
Section III-C the steps to generate DictText - the dictionary
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Atl. Cardio. Consol. Edema Eff. Emphy. Fibr. Hernia Infil. Mass None Nodule Pl.Th. Pneu. Pneumoth.
Atelectasis 1.00 0.84 0.93 0.92 0.66 0.99 0.77 0.99 0.93 0.93 0.49 0.70 0.79 0.99 0.89
Cardiomegaly 0.84 1.00 0.97 0.97 0.93 0.88 0.98 0.83 0.95 0.97 0.81 0.96 0.98 0.87 0.60
Consolidation 0.93 0.97 1.00 0.99 0.84 0.95 0.93 0.92 0.99 0.99 0.69 0.88 0.93 0.94 0.72
Edema 0.92 0.97 0.99 1.00 0.86 0.95 0.93 0.91 0.99 0.99 0.70 0.89 0.94 0.94 0.71
Effusion 0.66 0.93 0.84 0.86 1.00 0.71 0.96 0.65 0.84 0.85 0.91 0.98 0.95 0.70 0.40
Emphysema 0.99 0.88 0.95 0.95 0.71 1.00 0.82 0.99 0.95 0.95 0.54 0.75 0.83 0.99 0.86
Fibrosis 0.77 0.98 0.93 0.93 0.96 0.82 1.00 0.76 0.91 0.93 0.87 0.98 0.99 0.80 0.52
Hernia 0.99 0.83 0.92 0.91 0.65 0.99 0.76 1.00 0.92 0.91 0.48 0.70 0.78 0.99 0.91
Infiltration 0.93 0.95 0.99 0.99 0.84 0.95 0.91 0.92 1.00 0.99 0.68 0.87 0.92 0.95 0.73
Mass 0.93 0.97 0.99 0.99 0.85 0.95 0.93 0.91 0.99 1.00 0.70 0.88 0.94 0.95 0.72
No Finding 0.49 0.81 0.69 0.70 0.91 0.54 0.87 0.48 0.68 0.70 1.00 0.91 0.85 0.53 0.23
Nodule 0.70 0.96 0.88 0.89 0.98 0.75 0.98 0.70 0.87 0.88 0.91 1.00 0.97 0.74 0.45
Pleural Thickening 0.79 0.98 0.93 0.94 0.95 0.83 0.99 0.78 0.92 0.94 0.85 0.97 1.00 0.82 0.54
Pneumonia 0.99 0.87 0.94 0.94 0.70 0.99 0.80 0.99 0.95 0.95 0.53 0.74 0.82 1.00 0.87
Pneumothorax 0.89 0.60 0.72 0.71 0.40 0.86 0.52 0.91 0.73 0.72 0.23 0.45 0.54 0.87 1.00

TABLE I: Table showing the Cosine similarity values of the labels’ BioBERT embeddings (seed value=1367). This information
is used to guide the clustering and feature generation stages.

from text embedding vectors of all the disease classes. In this
section, we further describe our approach of using the class-
specific features and graph aggregation to learn a dictionary
for seen class samples.

Note that we only learn an image feature based dictionary
of the seen classes. Since we do not know the actual image
samples of unseen classes, it is difficult to identify features
corresponding to them, and hence we cannot construct the
corresponding dictionary. We construct a graph from the seen
class samples in the following manner:

1) We represent each image sample as a separate graph.
2) Within a graph each of the seen class labels (representing

a disease or condition) is a node, which is represented
by the class-specific features.

3) Edge weights in the graph represent the similarity be-
tween corresponding nodes using cosine similarity of
class specific features.

Assuming there are K nodes in each graph (i.e., K seen
classes), each node has K − 1 edge weights to all the other
nodes. We define the edge weight wij between nodes i, j as

wij = cosine similarity(zspeclI , zspeckI ) = Sc (z
specl
I , zspeckI ) ,

(6)
where zspeclI and zspeckI are the class specific features, re-
spectively, of classes l and k for sample images I . Cosine
similarity is a commonly used metric employed to compare
latent representations. Since its range of values is bounded ,
the cosine similarity is also a good option for its inclusion in
a loss. Note that each graph has a total of K(K−1)

2 edge links.
1) Informativeness Dictionary: Our objective is to create

a dictionary that quantifies the multi-label relationships. We
average the inter-node edge weights across all graphs, to get
an ‘average’ graph. Each inter-node link value quantifies the
average cosine similarity across all training samples from the
seen class. An example inter-node similarity matrix is depicted
in Table II with the mean and standard deviations(std), and we
refer to this matrix as DictSpe the multi-label dictionary from
class specific features. Each row shows the average cosine
similarity for the label with other corresponding labels. The
diagonal elements are all one and the matrix is symmetric.
Note that the std values are provided for completeness whereas
the mean values are used for further calculations. Any synthet-

Atl. Card. Cons. Edema Eff.
Atelectasis 1 0.80(0.37) 0.89(0.32) 0.90(0.30) 0.68(0.39)

Cardiomegaly 0.80(0.37) 1 0.91(0.31) 0.91(0.32) 0.89(0.33)
Consolidation 0.89(0.32) 0.91(0.31) 1 0.94(0.30) 0.80(0.35)

Edema 0.90(0.30) 0.91(0.32) 0.94(0.30) 1 0.83(0.35)
Effusion 0.68(0.39) 0.89(0.33) 0.80(0.35) 0.83(0.35) 1

TABLE II: Example of the multi-label similarity dictionary
from saliency maps for seen classes only. This is an example
dictionary for K=5 seen classes.

ically generated sample will preserve this relationship between
seen labels by using appropriate loss functions. The values of
cosine similarity for the same labels is different than in Table I
as the features are taken from different sources. However, we
do observe that the values are similar for many label pairs in
Table I.

E. SSL Based Clustering

Having created multi-label dictionaries from text reports and
imaging, our next step is to synthesize multi-label features
that will play an important role in training the classifier to
recognize seen and unseen classes. Before determining the
centroids of different class specific features, which function
as reference vectors (or class anchor vectors for individ-
ual classes [30]), to determine whether synthesized features
have characteristics of the desired classes. We use class-
specific features, zspecl , and apply self-supervised learning
(SSL) based online clustering approach, SwAV (Swapping
Assignments between multiple Views) [8] to determine the
seen class centroids. Our experimental results in Figure 3
show clustering using class-specific features results in better
cluster separability than image features obtained from pre-
trained feature extractors.

Let the number of seen and unseen classes be, respectively,
nS and nU . We first cluster seen class features into nS

clusters and obtain their centroids as CS = c1, · · · , cnS
. We

enforce the constraint that the semantic relationship between
the seen class centroids should be close to that obtained from
DictSpe. This is achieved by constructing a matrix of inter-
label similarities using the cosine distance between the cluster
centroids at each iteration, denoted as CentSeen(i, j). We
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then calculate an element-wise difference between DictSpe

and CentSeen(i, j):

LML−Seen =
1

n2
S

∑
i

∑
j

DictSpe(i, j)− CentSeen(i, j).

(7)
Since the matrix of cosine similarities is a square matrix
having nS rows and columns, it is divided by a factor of n2

S

to get a normalized distance measure. LML−Seen is the loss
for multi-label seen classes.

In the next pass, we compute the clusters CU =
cnS+1, · · · , cnS+nU

of the nU unseen classes using the fol-
lowing additional constraints:

1) The centroids in CS are kept fixed. Since the centroids
CS have been computed from labeled samples, we
assume that the computed centroids are reliable and are
not changed in the second stage.

2) We add a constraint that the semantic relationship
between the seen and unseen class centroids should
follow the dictionary DictText created using the text
embedding vectors, as described in Section III-C. This
condition is implemented using:

LML−All =
1

N2

∑
i

∑
j

DictText(i, j)−CentAll(i, j),

(8)
where CentAll refers to the changing matrix of cluster
centroid similarities for all seen and unseen classes. N =
nS + nU is the total number of classes - including seen
and unseen classes.

Given image features xt and xs from two different transfor-
mations of the same image, we compute their cluster assign-
ments qt and qs by assessing the distance of the features to a
set of K cluster centers c1, · · · , cK . A “swapped” prediction
problem is solved with the following loss function [8]:

L (xt, xs) = ℓ(xt, qs) + ℓ(xs, qt), (9)

where ℓ(x, q) measures the fit between features x and assign-
ment q. Thus we compare features xt and xs using their
intermediate cluster assignments qt and qs. If the two x’s
capture the same information, we can predict the cluster
assignment from the other feature.

The final loss term for clustering all class samples is

LClust = L (xs, xt) + λ4LML−Seen + λ5LML−All. (10)

where λ4, λ5 are the weights for above loss terms. Thus, we
obtain a set of cluster centroids for both the seen and unseen
classes which guide the feature generation step.

F. Feature Generation Network
In the feature generation step we synthesize the class-

specific features of unseen and seen classes following the
steps in [57]. Given the training images of seen classes and
unlabeled images of the unseen classes, we learn a generator
G : E ,Z −→ X , which takes a class label vector ey ∈ E
and a Gaussian noise vector z ∈ Z as inputs, and generates a
feature vector x̃ ∈ X . The discriminator D : X ,E −→ [0, 1]
takes a real feature x, or synthetic feature x̃, and corresponding

class label vector ey as input, and determines whether the
feature vector matches the class label vector. The generator G
aims to fool D by producing features highly correlated with
ey using a Wasserstein adversarial loss [3]:

LWGAN = min
G

max
D

E[D(x, ey)]− E[D(x̃, ey)]

−λE[(∥∇x̃D(x̃, ey)∥2 − 1)2],
(11)

where the third term is a gradient penalty term, and x̃ = αx+
(1−α)x̃. α ∼ U(0, 1) is sampled from a uniform distribution.

The discriminator D is a classifier that determines whether
the generated feature vector x̃ belongs to one of the seen
classes. As the anchor vectors (i.e., the cluster centers) are
fixed, we calculate the cosine similarity between the generated
vector x̃ and the anchor vector corresponding to the desired
classes. Since we are synthesizing multi-label features, it is
expected that the cosine similarities of the synthetic vector will
be high with respect to the centroids of the desired classes.
We integrate these conditions in the following formulation:

LML−Syn =
∑
ly

(1− ⟨x̃, cy⟩) (12)

LML−Syn is termed as the multi-label synthetic loss. If x̃
truly represents the set of desired classes y, then the cosine
similarity between x̃ and the corresponding anchor vectors cy
should be high and the corresponding loss is low.

As part of our method we assume that the total number
of classes are known which we divide into seen and unseen
classes. During model training we have knowledge of the seen
class samples and their labels. However, for the unseen classes
we only know the number of unseen classes without any label
information. The standard practice in GZSL [56] is to learn
plausible representations of unseen classes from seen class
features, and a reference for the unseen classes is assumed,
e.g. class attribute vectors in natural images or embeddings
of labels of unseen classes as in our proposed approach. The
label domain for seen and unseen classes is the same.

G. Training, Inference and Implementation
The final loss function for feature generation is:

L = LWGAN + λ6LML−Syn (13)

where λ6 is a weight balancing the contribution of the different
terms. Once training is complete, we specify the label of
desired classes and input a noise vector to G which synthesizes
a new feature vector. We combine the synthesized target
features of the unseen classes x̃u with real and synthetic
features of seen class xs, x̃s to construct the training set. We
then train a multi-label sigmoid classifier by minimizing the
negative log-likelihood loss:

min
θ

− 1

|X |
∑

(x,y)∈(X ,Y )

logP (y|x, θ), (14)

where P (y|x, θ) = exp(θT
y x)

1+exp(θT
y x)

is the classification probability
and θ denotes classifier parameters.

The steps in Eqns.11,12 are part of the training process.
The core step is the feature generation or synthesis part
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(Section III-F) where the objective is to generate features
for unseen classes from the available seen class features.
To achieve this objective we first obtain cluster centroids of
seen and unseen classes. Thereafter when a feature vector
is generated we compare it with the centroid of the desired
class label (either seen or unseen class) to determine its
authenticity. After generating multiple samples of unseen
classes, they are combined with seen class samples to train
a multi-label classifier. This multi-label classifier is then used
at test time to classify each sample. We note that relying only
on clustering unseen classes is not very informative due to
which we incorporate additional information from multi-modal
dictionaries.

Inference: Given initial seen and unseen class samples, the
clustering stages yield class centroids. The subsequent feature
synthesis module generates samples of different classes for
classifier training, and applying to test features.

Implementation Details: We compare the results of our
method for medical images with seven other existing GZSL
methods. For methods developed for natural images we replace
the class label vector ey with the corresponding class attribute
vectors. For feature extraction, we use our feature disentangle-
ment approach to obtain class-specific features. The generator
(G) and discriminator (D) are all multilayer perceptrons. G has
two hidden layers of 2000 and 1000 units respectively while
the discriminator D is implemented with one hidden layer of
1000 hidden units. We chose Adam [24] as our optimizer,
and the momentum was set to (0.9, 0.999). The values of
loss term weights are λCL = 0.6, λ3 = 0.9. Training the
Swav Clustering algorithm takes 12 hours and the feature
synthesis network for 50 epochs takes 17 hours, all on a single
NVIDIA V100 GPU (32 GB RAM). PyTorch was used for all
implementations.

H. Evaluation Protocol
The seen class S can have samples from 2 or more disease

classes, and the unseen class U contains samples from the
remaining classes. We use all possible combinations of labels
in S and U . Following standard practice for GZSL, average
class accuracies are calculated for two settings: 1) S: training
is performed on synthesized samples of S + U classes and
test on the seen test set STe. 2) U: training is performed on
synthesized samples of S +U classes and test on unseen test
set UTe. We also report the harmonic mean defined as,

H =
2×AccU ×AccS
AccU +AccS

, (15)

where AccS and AccU denote the accuracy of images from
seen (setting S) and unseen (setting U ) classes respectively:

IV. EXPERIMENTAL RESULTS

A. Dataset Description
We demonstrate our method’s effectiveness on the following

chest X-ray datasets for multi-label classification tasks.
1) NIH Chest X-ray Dataset: For lung disease classifica-

tion we adopted the NIH Chest X-ray14 dataset [53]
having 112, 120 expert-annotated frontal-view X-rays

from 30, 805 unique patients and has 14 disease labels.
Original images were resized to 224×224. A pre-trained
ResNet-101 was fine-tuned using the CheXpert dataset
[21] and the chosen baseline FSL was from [44]. We
assume different combinations of 7 seen classes and 7
unseen classes, and the reported results are an average of
25 runs across different combinations. Hyperparameter
values are λ1 = 1.1, λ2 = 0.7, λ3 = 0.9, λ4 = 1, λ5 =
1.1, λ6 = 0.9.

2) CheXpert Dataset: We used the CheXpert dataset [21]
consisting of 224, 316 chest radiographs of 65, 240
patients labeled for the presence of 14 common chest
conditions. Original images were resized to 224× 224.
A pre-trained ResNet-101 was finetuned using the NIH
dataset [53] and the baseline FSL method was of [43],
which is ranked second for the dataset with shared code.
We assume different combinations 7 seen classes and 7
unseen classes, and the reported results are an average of
25 runs across different combinations. Hyperparameter
values are λ1 = 1.2, λ2 = 0.8, λ3 = 1.1, λ4 = 1.1, λ5 =
1.0, λ6 = 1.1.

3) PadChest Dataset [7]: consisting of 160, 868 images
from 67, 625 patients. Hyperparameter values are λ1 =
1.3, λ2 = 0.9, λ3 = 0.9, λ4 = 1.3, λ5 = 1.2, λ6 = 1.1.

A 70/10/20 split at patient level was done to get training,
validation and test sets for all datasets.

B. Comparative Study Methods

We compare our method’s performance with the follow-
ing GZSL methods employing different feature generation
approaches such as CVAE or GANs:

1) SDGN- Self-supervised learning GZSL method of [55].
2) FSL- Top performing fully supervised methods of cor-

responding datasets. For FSL baselines we implement
the different methods referred in the description of
individual datasets.

3) Method of [15] using feature disentanglement and con-
trollable pseudo-sample synthesis.

4) [25] that promotes intra-class compactness with inter-
class separability on both seen and unseen classes in the
embedding space and visual feature space.

5) [47] leveraging visual and semantic modalities to dis-
tinguish seen and unseen categories.

6) [18]: the Multi-label GZSL method using BioBERT
features.

7) [28]: a graph-based Multi-Label GZSL approach
8) MedCLIP: the medical vision language model trained

on Xrays [54]

Following common practices for GZSL we report accuracy
for seen and unseen classes. Our method is denoted as ML-
GZSL (Multi Label GZSL) and is suffixed with the appro-
priate language model used for encoding text features. The
GZSL methods dealing with natural images use class attribute
vectors, and when applying them to medical images we replace
the attribute vectors with class centroids.
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C. Generalized Zero Shot Learning Results

Classification results for medical images shown in Table III
show our proposed method significantly outperforms all com-
peting GZSL methods including SDGN. Note that we use the
anchor vectors in place of attribute vectors for these feature
synthesis methods. This significant difference in performance
can be explained by the fact that the complex architectures
that worked for natural images will not be equally effective
for medical images which have less information.Our proposed
ML-GZSL method does as good as the multi-label fully
supervised learning (FSL) benchmark (using a DenseNet-121
classifier). Class specific features play an important role here
since they focus on the features relevant to specific classes
and provide more discriminatory information than an FSL
approach.

The feature generation network is an important component
of the entire pipeline. Its purpose is to generate plausible
representations of the unseen class. Consequently the gener-
ated feature vectors are compared with representative vectors
(or centroids) of the desired class. Without using the feature
generation component, an alternative approach to unseen class
feature generation is a weighted combination of seen class
features (similar to MixUp [59]). However, it is observed
that such an approach generates unrealistic feature vectors
which leads to poor performance (as shown by the values in
Table III).

We used the image encoder output, and the text encoder
output of MedCLIP to create new multimodal dictionaries and
the results are shown in Table III (ML-GZSLMedCLIP−Dict).
The output performance is slightly better than our proposed
method since the text encoder is a BioClinicalBERT model3,
which is an enhanced version of the BioBERT model used in
our method. The use of SwinTransformer as the vision encoder
model also contributes to the better performance over DictSpe.
Additionally, the MedCLIP model can also output a joint
visual-text encoder embedding, which is a multimodal feature
vector. When using this vector for classification we obtain
much improved results (ML-GZSLMedCLIP−Joint) than our
approach and ML-GZSLMedCLIP . This is due to the more
representative vectors learned by using the joint learning
layer in MedCLIP and enables the model to better capture
the multimodal interactions. We also show results when
using the clinical version of RoBERTa (Robustly optimized
BERT approach) [33]. The results demonstrate the modular
nature of our approach wherein different text encoders and
vision language models can be used without affecting system
performance.

D. Ablation Studies

Table IV shows results for ablation studies, which are
grouped under two categories: 1) Feature disentanglement
and 2) Clustering using multi-label dictionaries. For the ab-
lation methods related to feature disentanglement we exclude
each of the three loss terms - Lagn,Lspec and Lagn−spec-
and report the results as ML-GZSLMedCLIP−Joint −

3https : //huggingface.co/emilyalsentzer/Bio ClinicalBERT

w/o Lagn, ML-GZSLMedCLIP−Joint−w/o Lspec, and ML-
GZSLMedCLIP−Joint − w/o Lagn−spec. We also compare
with the results of using image features obtained from a CNN-
based feature extractor (ResNet50 trained on Imagenet), which
we denote as ‘pre-train’. We observe that the class-specific fea-
tures has the greatest influence on the results and excluding it,
ML-GZSLMedCLIP−Joint − w/o Lspec results in maximum
degradation of performance compared to ML-GZSL. ML-
GZSLMedCLIP−Joint−w/o Lagn−spec shows the next worst
performance, while ML-GZSLMedCLIP−Joint − w/o Lagn

shows the least difference among the three methods. These
results highlight the importance of the class-specific features
and at the same time illustrate that the class-agnostic fea-
tures have a relatively smaller influence on the method’s
performance. This is desirable since our objective for feature
disentanglement was to get complementary features.

The second category of ablation experiments are related
to learning the multi-modal multi-label dictionary, cluster-
ing and feature synthesis. The primary goal of dictionary
learning is to influence clustering and feature synthesis. We
conduct two set of experiments where we exclude DictSpe

(ML-GZSLMedCLIP−Joint − w/o LML−Seen) and DictText

(ML-GZSLMedCLIP−Joint − w/o LML−All). The results in
Table IV show the two dictionaries have similar influences on
the outcome, with DictText exerting a greater influence due
to its ability to encode more information from all classes.
Excluding LML−Syn uses only the Wasserstein loss for
feature synthesis, without including the class centroids. This
results in significant performance degradation since there is
no mechanism to check the realism of synthetic features. This
leads to a severe reduction in performance as the classifier is
trained with lots of spurious samples, which affects the final
performance.

In Figures 3 (d,e,f) we show the t-sne visualizations of
different settings where specific terms are excluded in the
cost function. We observe that the worst results are shown in
Figure 3 (f) for ML-GZSLw/o LML−All

(since the clusters are
very close to each other, thus hampering accurate classifica-
tion), followed by ML-GZSLw/o LML−Seen

(Figure 3 (e)) and
ML-GZSLw/o Lspec

(Figure 3 (d)). The visualizations support
the observations reported in Table IV about the performance
of the corresponding ablation methods.

E. Hyperparameter Selection

Figure 4 shows the harmonic mean values for the NIH
Chest X-ray dataset for different values of hyperparameters
λ1, λ2, λ3. The λ’s were varied between [0.4 − 1.5] in steps
of 0.05 and the performance on a separate test set of 10, 000
images were monitored. We start with the base cost function
of Eqn. 1, and first select the optimum value of λ1 by keeping
λ2 = λ3 = 1. λ1 value is fixed and we then determine optimal
λ2, and subsequently λ3. Similarly for values of λ4, λ5, we
start with the cost function of Eqn. 10, fix λ5 = 1 and search
for the optimum value of λ4. Then we fix λ4 and search for
the optimal value of λ5. ‘Finally we search for the optimal
value of λ6 in Eqn. 13. The plots for the loss function with
different values of λ are shown in Figure 4.
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Method NIH X-ray CheXpert PadChest
S U H S U H S U H

Single Label GZSL Methods
f-VAEGAN [58] 82.9(3.6) 80.0(3.7) 81.4(3.7) 88.5(3.3) 87.6(3.7) 88.0(3.7) 81.0(3.5) 78.4(3.7) 79.7(3.6)

SDGN [55] 84.4(3.3) 81.1(3.7) 82.7(3.5) 89.8(3.3) 88.3(3.4) 89.0(3.4) 82.3(3.2) 80.0(3.5) 81.1(3.5)
Feng [15] 84.7(3.4) 81.4(3.9) 83.0(3.7) 90.2(3.2) 88.6(3.4) 89.4(3.3) 82.5(3.3) 80.2(3.4) 81.3(3.4)
Kong [25] 84.8(3.6) 81.2(3.7) 82.9(3.7) 90.0(3.3) 88.7(3.4) 89.3(3.4) 82.7(3.4) 80.5(3.5) 81.6(3.5)

Su [47] 84.5(3.5) 81.4(3.5) 82.9(3.5) 90.3(3.3) 88.6(3.4) 89.4(3.4) 82.3(3.6) 79.8(3.8) 81.03(3.7)
Multi Label GZSL Methods

Hayat [18] 79.1(3.8) 69.2(4.3) 73.8(4.1) 81.2(3.7) 79.8(3.9) 80.5(3.8) 77.3(4.2) 68.1(4.3) 72.4(4.3)
Lee [28] 85.1(3.5) 81.3(3.7) 83.1(3.6) 87.4(3.2) 85.7(3.1) 86.5(3.2) 82.9(3.5) 78.4(3.6) 80.6(3.6)

Huynh [20] 84.7(3.4) 80.8(3.5) 82.7(3.5) 86.9(3.1) 85.1(3.3) 86.0(3.2) 82.5(3.3) 77.3(3.6) 79.8(3.5)
Mixup [59] 79.3(3.8) 77.1(3.8) 78.2(3.8) 81.6(3.4) 80.2(3.5) 80.9(3.5) 78.4(3.5) 75.8(3.7) 77.1(3.6)

Multi Label Benchmarks
FSL(Multi Label) 86.0(3.2) 85.1(3.3) 85.5(3.3) 90.8(3.1) 90.5(3.1) 90.6(3.1) 88.4(3.3) 86.5(3.4) 87.4(3.4)
Mahapatra [36] 84.3(3.3) 83.2(3.6) 83.7(3.5) 88.9(3.1) 88.5(3.2) 88.7(3.2) 86.2(3.3) 84.1(3.5) 85.1(3.5)

Proposed Method And Variants
ML-GZSLBioBERT 86.2(3.4) 85.0(3.6) 85.6(3.5) 90.8(3.1) 90.2(2.9) 90.5(3.0) 88.2(3.4) 86.1(3.6) 87.1(3.5)

ML-GZSLMedCLIP−Dict 87.7(2.2) 86.8(2.3) 87.2(2.3) 91.9(2.3) 91.6(2.4) 91.7(2.4) 89.5(2.6) 87.7(2.7) 88.6(2.7)
ML-GZSLMedCLIP−Joint 88.3(2.3) 87.2(2.2) 87.7(2.2) 92.2(2.0) 92.0(2.4) 92.1(2.2) 90.1(2.4) 88.3(2.5) 89.2(2.4)

ML-GZSLRoBERTa 87.0(3.5) 85.8(3.6) 86.4(3.6) 91.8(3.1) 91.2(3.3) 91.4(3.3) 89.4(3.3) 87.2(3.5) 88.1(3.4)

TABLE III: GZSL Results For chest xray Images in Multi-Label setting: Average per-class classification accuracy (%) and
harmonic mean accuracy (H) of generalized zero-shot learning when test samples are from seen or unseen classes. Results
demonstrate the superior performance of our proposed method. The FSL performance is the upper bound for a specific classifier.
The best results are shown in bold.

Method NIH X-ray CheXpert PadChest
S U H S U H S U H

ML-GZSLMedCLIP−Joint 88.3(2.3) 87.2(2.2) 87.7(2.2) 92.2(2.0) 92.0(2.4) 92.1(2.2) 90.1(2.4) 88.3(2.5) 89.2(2.4)
Feature Disentanglement Effects

w/o Lagn−spec
(Eqn. 5) 85.6(2.5) 84.1(2.2) 84.8(2.3) 90.1(2.5) 89.8(2.4) 89.9(2.4) 88.3(2.1) 85.7(2.3) 87.0(2.1)

pre-train 85.3(2.7) 84.1(2.6) 84.7(2.6) 89.7(2.6) 89.1(2.5) 89.4(2.5) 87.6(2.6) 85.1(2.8) 86.3(2.7)
w/o Lagn

(Eqn. 4) 86.4(2.8) 84.3(2.9) 85.3(2.8) 90.6(2.4) 88.0(2.7) 89.3(2.6) 88.2(2.9) 85.4(3.1) 86.8(3.0)

w/o Lspec
(Eqn. 3) 84.4(3.1) 82.7(3.4) 83.5(3.3) 88.9(3.0) 86.9(2.9) 87.9(3.0) 87.0(3.1) 86.1(3.2) 86.5(3.2)

Effect of Dictionary/Clustering
w/o LML−Seen

(Eqn. 7) 85.1(3.2) 82.8(3.4) 83.9(3.4) 88.8(2.9) 86.6(3.2) 87.7(3.1) 87.4(3.1) 84.4(3.4) 85.9(3.3)

w/o LML−All
(Eqn. 8) 83.9(3.2) 82.1(3.6) 83.0(3.3) 88.2(2.9) 86.2(3.4) 87.2(3.2) 86.1(3.2) 83.8(3.5) 84.9(3.3)

w/o LML−Syn
(Eqn. 12) 82.5(3.6) 81.1(3.7) 81.8(3.6) 87.0(3.1) 84.1(3.4) 85.5(3.2) 85.0(3.4) 83.4(3.7) 84.2(3.5)

TABLE IV: Ablation Results using ML-GZSLMedCLIP−Joint: Average per-class classification accuracy (%) and harmonic
mean accuracy (H) of generalized zero-shot learning when test samples are from seen (Setting S) or unseen (Setting U )
classes. The best results are shown in bold.

F. Realism of Synthetic Features

We reconstruct the x-ray images from the synthetic feature
vectors using the feature disentanglement autoencoders’ de-
coder part. We select 1000 such synthetic images from 14
classes of the NIH dataset and ask two trained radiologists,
having 12 and 14 years experience in examining chest xray
images for abnormalities, to identify whether the images are
realistic or not in terms of images with the correct type of the
disease. Each radiologist was blinded to the other’s answers.

Results for ML-GZSL show one radiologist (RAD 1)
identified 912/1000 (91.2%) images as realistic while RAD 2
identified 919 (91.9%) generated images as realistic. Both
of them had a high agreement with 890 common images
(89.0% -“Both Experts” in Table V) identified as realistic.
Considering both RAD 1 and RAD 2 feedback, a total
of 941 (94.1%) unique images were identified as realistic
(“Atleast 1 Expert”). Subsequently, 59/1000 (5.9%) of the
images were not identified as realistic by any of the experts
(“No Expert”). Agreement statistics for other methods are

Agreement Both Atleast 1 No
Statistics Experts Expert Expert

ML-GZSLBioBERT 89.0 (890) 94.1 (941) 5.9 (59)
ML-GZSLMedCLIP−Joint 92.2 (922) 95.2 (952) 4.8 (48)

[28] 85.1 (851) 88.0 (880) 12.0 (120)
[20] 83.4 (834) 85.1 (851) 14.9 (149)
[55] 81.9 (819) 83.9 (839) 16.1 (161)

TABLE V: Agreement statistics on NIH dataset for different
GZSL methods amongst 2 radiologists. Numbers outside the
bracket indicate agreement percentage while numbers within
brackets indicate actual numbers out of 1000 samples. The
best results are shown in bold.

summarized in Table V.

G. Results on Additional Datasets

We also show in Table VI results on the multi-class
MedMNIST dataset [60] due to its balanced and standard-
ized datasets spanning across various modalities. The im-
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(a)

(b)

Fig. 4: Hyperparameter Plots showing the value of H and
classification accuracy for different values of λ. The observed
trends justify our final choice of the values.

ages in the dataset have one label out of multiple pos-
sible labels. We select subsets of the collection appropri-
ate for multi-class disease classification, namely, BreastM-
NIST [2] having 546/78/156 breast ultrasound images in the
training/validation/test split for malignancy detection, Reti-
naMNIST [31] having 1080/120/400 training/validation/test
fundus images for diabetic retinopathy severity grading,
and TissueMNIST having 165, 466/23, 640/47, 280 train-
ing/validation/test Kidney Cortex Microscope images for mul-
tiple disease classification. The results show clearly that our
approach outperforms other competing methods for the multi-
class setting where images can have only one label out of
multiple possible labels.

V. DISCUSSION

Our approach is particularly useful in scenarios where the
number of disease classes are known but labeled samples of
all classes cannot be accessed due to the infrequent occurrence
of such cases or lack of expert clinicians to annotate complex
cases. While fully supervised settings still provide the best
performance, they are dependent upon sufficient labeled sam-
ples. Our system can identify the new diseases and clinical
experts will be able to diagnose and label them. There is also
a need for systems that can adapt to new classes introduced
and incorporated into the nomenclature used in radiology (e.g.
Fleischner society pulmonary nodule where recommendations
are provided regarding the follow-up and management of in-
determinate pulmonary nodules detected incidentally on CT).

Importance of Multi-Modal Multi-Label Dictionary: We
create two multi-label dictionaries based on class-specific and
text features. These help us have two references for deter-
mining the class centroids of seen and unseen classes, which
subsequently improves the accuracy of synthesized features.
The cosine similarities between text embeddings of different
disease classes quantifies their mutual semantic relationships,
which is helpful in generating features involving unseen
disease classes. We also quantify the semantic relationship
between seen classes using class-specific features, which plays
an important role during clustering and feature generation
steps. Our experiments show the importance of the two multi-
label dictionaries in improving overall GZSL performance. A
limitation of our method is the use of multiple encoders (equal
to the number of classes) for feature disentanglement. This
adds to computational complexity with increasing number of
labels. However a mitigating factor is the computation burden
is encountered during the training stage and during test-time
we only use the class-specific encoders. Nevertheless we aim
to address this factor in future work by use of foundation
models trained on multimodal data.

Importance of Multi-Label GZSL: Multi-label GZSL is
important in the context of CXRs in particular and medi-
cal image analysis in general. Since new images may have
multiple co-occurring disease labels it is essential to have a
mechanism that can generate synthetic samples with different
co-occurring disease labels. Since SOTA methods focus on
synthesizing samples of single-label cases, there is a need for
methods that can effectively learn discriminative features for
multi-label samples. This makes multi-label feature synthesis
an important step in the whole setup. Our experiments show
the importance of creating text and class-specific feature-based
dictionaries for better multi-label feature synthesis.

Importance of Feature Disentanglement: We propose a
novel method to disentangle image features into class-specific
and class-agnostic features. This is motivated by previous work
[22], which show that the current approach of using pre-trained
networks to learn image features is sub-optimal for multi-label
classification. The original features for all 14 classes when
viewed through t-sne does not show a common region for
all the classes although there are varying degree of overlap
across different pairs of classes. The obtained class-specific
features are highly discriminative for the specific class and
the class-agnostic features are more common for all classes.
In the feature synthesis step we focus on synthesizing features
that are a good match across different disease labels. As a
result, we are able to achieve high agreement with the template
vectors of different desired classes.

Realism of Synthetic Images: We engaged experienced
clinicians to examine generated images (obtained from the
synthetic features), and they determined that a high percentage
of generated images are realistic. This shows that our method
generates realistic features and does not suffer from uncon-
strained feature generation wherein the features come from
arbitrary distributions.

Performance In Extreme Low-Data Scenarios:
In the GZSL scenario there are many unseen classes.

However there is no general assumption on the number of

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2024.3429471

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



12 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2021

Method Breast MNIST Retina MNIST Tissue MNIST
S U H S U H S U H

Single Label GZSL Methods
f-VAEGAN [58] 90.2(0.39) 88.2(0.41) 89.2(0.4) 92.8(0.37) 90.2(0.34) 91.5(0.36) 88.2(0.43) 85.1(0.44) 86.6(0.44)

SDGN [55] 92.1(0.35) 89.5(0.39) 90.8(0.37) 95.0(0.31) 91.9(0.34) 93.4(0.33) 90.0(0.36) 87.8(0.39) 88.9(0.38)
Feng [15] 93.7(0.35) 92.1(0.34) 92.9(0.34) 96.1(0.31) 94.2(0.33) 95.1(0.32) 92.1(0.35) 91.1(0.38) 91.6(0.36)
Kong [25] 91.6(0.38) 89.1(0.39) 90.3(0.38) 95.1(0.34) 91.7(0.35) 93.3(0.35) 89.8(0.36) 87.9(0.33) 88.8(0.34)

Su [47] 90.6(0.33) 88.7(0.36) 89.6(0.34) 92.9(0.34) 90.6(0.32) 91.7(0.33) 88.4(0.36) 85.7(0.38) 87.0(0.38)
Multi Label Benchmarks

FSL(Multi Class) 96.0(0.31) 95.1(0.32) 95.6(0.32) 97.8(0.29) 96.5(0.3) 97.1(0.32) 95.4(0.33) 93.2(0.35) 94.3(0.35)
Mahapatra [36] 94.0(0.3) 93.1(0.32) 93.5(0.31) 96.4(0.28) 94.5(0.32) 95.4(0.31) 93.4(0.33) 91.2(0.35) 92.3(0.35)

Proposed Method And Variations
ML-GZSLBioBERT 95.5(0.27) 94.7(0.3) 95.1(0.29) 96.9(0.26) 95.8(0.29) 96.3(0.28) 94.8(0.29) 92.9(0.33) 93.8(0.31)

ML-GZSLMedCLIP−Dict 96.7(0.26) 96.1(0.29) 96.4(0.27) 97.1(0.23) 96.3(0.26) 96.7(0.25) 95.7(0.30) 93.7(0.33) 94.6(0.32)
ML-GZSLMedCLIP−Joint 97.3(0.26) 96.9(0.29) 97.1(0.28) 97.6(0.22) 96.9(0.24) 97.3(0.23) 96.2(0.24) 94.1(0.25) 95.2(0.25)

ML-GZSLRoBERTa 96.1(0.25) 95.2(0.27) 95.6(0.26) 97.5(0.24) 96.3(0.27) 96.8(0.25) 95.4(0.25) 93.5(0.29) 94.4(0.28)

TABLE VI: GZSL Results for different subsets of MedMNIST dataset in Single-Label setting: Average per-class
classification accuracy (%) and harmonic mean accuracy (H) of generalized zero-shot learning when test samples are from
seen or unseen classes. Results demonstrate the superior performance of our proposed method. The FSL performance is the
upper bound for a specific classifier. The best results are shown in bold.

labeled samples available for the seen classes. In all datasets
and previous works it is assumed that a sizable number of
samples are available for the seen classes. However, in many
scenarios we face the situation of having very few samples
of seen (and unseen) classes. Our preliminary experiments in
such low data scenarios (less than 5% labeled samples) suggest
that our current method demonstrates very poor performance
(AUC< 0.70). This is due to the fact that the current frame-
works require many samples to be trained or finetuned. In the
absence of networks pre-trained on suitable images the task is
very challenging and we hypothesize that use of pre-trained
networks like MedCLIP might make it easier to learn suitable
representations. In future work we aim to address this problem
with potential directions being few-shot classification of seen
and unseen classes [11], [46].

VI. CONCLUSION

We propose a multi-label GZSL approach for chest xray
images. Our novel method can accurately synthesize feature
vectors of unseen classes by learning multi-modal multi-label
dictionary using graph aggregation and class-specific features,
along with text embedding relationships. Experimental results
show our method outperforms other recent GZSL approaches
in literature, and is consistently better across multiple public
CXR datasets. Our approach is useful in scenarios where the
number of disease classes are known but labeled samples of all
classes cannot be accessed due to the infrequent occurrence
of such cases or lack of expert clinicians to annotate com-
plex cases. While fully supervised settings still provide the
best performance, they are dependent upon sufficient labeled
samples.

VII. ACKNOWLEDGEMENTS

This work was supported by the Swiss National Foundation
grant number 212939, and Innosuisse grant number 31274.1.

REFERENCES

[1] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of
output embeddings for fine-grained image classification. In In Proc.
IEEE CVPR, pages 2927–2936, 2015.

[2] W. Al-Dhabyani, M. Gomaa, H. Khaled, and A. Fahmy.
Dataset of breast ultrasound images. In Data Brief 28,
https://doi.org/10.1016/j.dib.2019.104863, 2020.

[3] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. In arXiv
preprint arXiv:1701.07875, 2017.

[4] Behzad Bozorgtabar, Dwarikanath Mahapatra, and Jean-Philippe Thi-
ran. Amae: Adaptation of pre-trained masked autoencoder for dual-
distribution anomaly detection in chest x-rays. In International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention,
pages 195–205. Springer, 2023.

[5] Behzad Bozorgtabar, Dwarikanath Mahapatra, Guillaume Vray, and
Jean-Philippe Thiran. Salad: Self-supervised aggregation learning for
anomaly detection on x-rays. In Medical Image Computing and
Computer Assisted Intervention–MICCAI 2020: 23rd International Con-
ference, Lima, Peru, October 4–8, 2020, Proceedings, Part I 23, pages
468–478. Springer, 2020.

[6] S. Bujwid and J. Sullivan. Large-scale zero-shot image classifi-
cation from rich and diverse textual descriptions. arXiv preprint
arXiv:2103.09669, 2021.

[7] A. Bustos, A. Pertusa, J.-M. Salinas, and M. de la Iglesia-Vayá.
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