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Abstract— In many real world medical image classifica-
tion settings, access to samples of all disease classes is
not feasible, affecting the robustness of a system expected
to have high performance in analyzing novel test data. This
is a case of generalized zero shot learning (GZSL) aiming
to recognize seen and unseen classes. We propose a GZSL
method that uses self supervised learning (SSL) for: 1)
selecting representative vectors of disease classes; and 2)
synthesizing features of unseen classes. We also propose
a novel approach to generate GradCAM saliency maps that
highlight diseased regions with greater accuracy. We ex-
ploit information from the novel saliency maps to improve
the clustering process by: 1) Enforcing the saliency maps
of different classes to be different; and 2) Ensuring that
clusters in the space of image and saliency features should
yield class centroids having similar semantic information.
This ensures the anchor vectors are representative of each
class. Different from previous approaches, our proposed
approach does not require class attribute vectors which
are essential part of GZSL methods for natural images
but are not available for medical images. Using a simple
architecture the proposed method outperforms state of the
art SSL based GZSL performance for natural images as well
as multiple types of medical images. We also conduct many
ablation studies to investigate the influence of different loss
terms in our method.

Index Terms— Generalized zero shot learning, self super-
vised learning, saliency, classification, X-ray, pathology

I. INTRODUCTION

In the present era, deep learning methods have achieved
state of the art performance for many medical image classifi-
cation tasks such as diabetic retinopathy grading [22], digital
pathology image classification [36] and chest X-ray diagnosis
[26], [62], to name a few. State of the art (SOTA) fully su-
pervised methods have access to both the ‘seen’ and ‘unseen’
class labels, and trained models learn the characteristics of all
classes. However many real-world scenarios do not provide
access to samples of all possible diseases. As a result, unseen
classes are generally classified into one of the seen classes,
resulting in wrong diagnosis. For deployment in clinical set-
tings, it is therefore essential that a machine learning model
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have an acceptable level of accuracy in recognizing novel test
cases.

In Few Shot Learning a model learns class characteristics
from very few labeled samples. In Zero Shot Learning (ZSL)
the aim is to learn plausible representations of unseen classes
without having access to their labels, and recognize them
during test time only from features learned through labeled
data of seen classes. Hence, ZSL is a specific case of few
shot learning and much more challenging due to the absence
of labeled samples of unseen classes. In a more generalized
setting we expect to encounter both seen and unseen classes
during the test phase, where a reliable model should accurately
predict both classes. This is a case of generalized zero shot
learning (GZSL) and is challenging since predicting unseen
classes as one of the seen classes can lead to incorrect diag-
nosis. In this work we propose a GZSL method for medical
image classification using self supervised learning (SSL) and
knowledge derived from saliency maps, and demonstrate its
effectiveness across multiple medical image datasets.

GZSL is a widely explored topic for natural images [61],
[67] where seen and unseen classes are characterized by class
attribute vectors. A model learns to correlate between class
attribute vectors and corresponding feature representations.
This gives a strong reference point in synthesizing features
of both seen and unseen classes, since by inputting the
attribute vector of the desired class the corresponding feature
representation can be generated. However medical images do
not have such well defined class attributes since it requires high
clinical expertise and time to define unambiguous attribute
vectors for different disease classes. Hence it is not a trivial
task to apply state of the art GZSL methods from natural image
applications to medical image classification. For example, in
the case of lung X-ray diagnosis many conditions co-occur
frequently such as Atelectasis, Effusion, and Infiltration. An
effective class attribute vector should be able to precisely
identify the attribute categories and the corresponding entries,
which is very challenging. Solving the GZSL problem for
medical images without using attribute vectors is a challenging
task but essential nevertheless due to the potentially immense
benefits of reducing annotation effort of clinicians. It also helps
to alleviate the critical issue of data shortage for many classes.
The main contribution of our work is to perform GZSL for
medical images without class attribute vectors.

Initial approaches to tackle ZSL [12] learnt cross-modal
relationships between visual feature and semantic embeddings
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(class attribute vectors) of natural images. Subsequently, recent
generative approaches to GZSL [19], used generative adver-
sarial networks (GANs) to optimize the divergence between
the data distribution of seen classes and generated features.
However, generators trained on seen class features cannot
accurately represent unseen classes. The sub-optimal synthetic
data does not lead to high performance of such models. As
an attempt to circumvent this problem, some methods [46]
utilize unlabeled data of unseen classes in a transductive way.
However it leads to increased system complexity since two
GANs are needed to model seen and unseen classes as they do
not consider the relations between source and target domains.

Methods leveraging transductive approaches are particularly
relevant for medical image classification tasks [63] since a
large amount of medical images are acquired but not annotated
due to high expertise required for such tasks. Consequently
many image analysis tasks make use of semi-supervised
learning to leverage the information from unlabeled classes.
Absence of any supervised information from the unseen do-
main makes it very challenging to differentiate among disease
labels, especially when many labels show similar appearance
to the untrained eye.

Another tricky issue facing GZSL applications in general,
and medical images in particular, is the different complexity
of feature representations between images of seen and unseen
classes. For natural image classification the difference in fea-
ture representations is addressed using attribute vectors. Since
it is not feasible in practice to get manually defined attribute
vectors of medical images, synthesizing unseen class features
from seen classes is challenging. Leveraging unlabeled unseen
class data (e.g., using anchors) can be effective in bridging
the semantic gap [63]. In an attempt to address the above
challenges our paper makes the following contributions:

1) Our main contribution is to achieve GZSL of medical
images without using class attribute vectors, commonly
required for natural image applications. This is important
for real world clinical scenarios where defining class
attribute vectors is a time consuming and expensive task.

2) We build on a contrastive learning baseline clustering
method and propose novel additional SSL loss terms
for: 1) deriving anchor vectors through clustering; and
2) feature synthesis of seen and unseen classes.

3) We propose a new approach to calculate interpretable
GradCAM saliency maps that highlights disease regions
with greater accuracy. This is particularly helpful when
different diseases are localized in nearby locations.

4) We exploit attention focused information from the en-
hanced saliency maps to improve the clustering process
by: 1) enforcing the saliency maps of different classes to
be different; and 2) ensuring that clustering in the space
of image and saliency features yield class centroids
having similar semantic information.

In [38] we proposed a preliminary version of our method
and, in comparison, our current work has the following nov-
elties: 1) we propose a novel approach to calculate GradCAM
saliency maps and use saliency information for clustering; 2)
we perform extensive ablation and validation studies under

different settings to determine the contribution of different
components, and realism of synthetic features.

II. PRIOR WORK

A. (Generalized) Zero-Shot Learning
In ZSL the goal is to recognize classes not encountered

during training. External information about the novel classes
may be provided in form of semantic attributes [33], visual
descriptions [1], or word embeddings [42]. ZSL has been
addressed using GANs [19], Variational Autoencoders (VAE)
[55] or both of them [67].

In GZSL the purpose is to recognize images from known
and unknown domains. Many works [20], [61], [67] have
shown promising results by training GANs in the known
domain and generate unseen visual features from the semantic
labels. This allows them to train a fully supervised classifier for
two domains, which is robust to the biased recognition prob-
lem. The work by Huang et. al. [25] describes a Generative
Dual Adversarial Network (GDAN) which couples a generator,
a regressor and a discriminator. The interaction among the
three components produces various visual features conditioned
on class labels. Keshari et al. [30] use over-complete distribu-
tions to generate features of the unseen classes, while Min et.
al. [43] use domain aware visual bias elimination for synthetic
feature generation. Different from the above works we achieve
GZSL without the need for descriptive class attribute vectors,
but by generating anchor vectors that define specific classes
and specifying the class label of the desired output feature.

B. Self-Supervised Learning
SSL methods consist of two main approaches; 1) pretext

tasks and 2) contrastive learning based approaches. Common
pretext tasks include estimating relative position of patches
[17], local context [45], colour [68] and exemplar learning
[18]. Down-stream tasks are used to evaluate the quality of
features learned by self-supervised learning and are indepen-
dent of pre-text tasks. Contrastive learning approaches such as
MoCo [24] and SimCLR [14] are popular and give state-of-
the-art results for down-stream task-based methods.

Recent works also use self supervision for domain adapta-
tion [54] and can be considered as the first work to combine
GZSL and SSL [63]. SSL has found wide use in medical image
analysis by using innovative pretext tasks such as patients’ MR
scan recognition to detect vertebra [27], context restoration
for classification, segmentation, and disease localization [13],
image registration [60], and anomaly detection [6]. Other
works include surgical video re-colourisation as a pretext task
for surgical instrument segmentation [53], rotation prediction
for lung lobe segmentation and nodule detection [58], and data
augmentation [40]. For histopathology based domain specific
pretext tasks SSL has been used for semi-supervised histology
classification [37], active learning [41], stain normalization
[39], and cancer sub-typing using visual dictionaries [44].

While our work is inspired from [63] in using SSL for
GZSL, and using GANs for feature synthesis, there are sig-
nificant differences such as: 1) we do not use class attribute
vectors for training. Since definition of class attribute vectors
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for medical images is unfeasible we use a simpler yet effective
architecture for GZSL. 2) [63] used a single generator but
two discriminators to differentiate between seen and unseen
classes. However we make use of a single generator and one
discriminator to differentiate between all classes by leveraging
anchor vectors; 3) we use a SSL based clustering approach
to derive the anchor vectors of each class, including unseen
classes. We use high level knowledge of the number of classes
as a supervisory signal.

C. Few/Zero Shot Learning In Medical Images

Few-shot methods have been relatively less explored in
medical image analysis applications. Chen et. al. in [15]
propose a generative network based approach for one-shot
MRI segmentation. Paul et. al. in [48] proposed an ensemble
learning based approach for chest X-ray diagnosis. Other
applications for FSL have been proposed for brain imaging
modality recognition [50], volumetric medical image segmen-
tation [21], and differential diagnosis of brain MRI [52]. Zero
shot medical image analysis is a much less explored topic
with limited applications such as registration [32] and artefact
reduction [16]. Paul et al. [47] proposed a GZSL method for
chest X-ray diagnosis by learning the relationship between
multiple semantic spaces (from X-ray, CT images and reports).
However not all datasets have multiple image modalities
and text reports. Hayat et al. [23] learn an image’s visual
representation guided by the input’s corresponding semantics
extracted from a rich medical text corpus such as BioBert
[34]. Our proposed method works with images from a single
modality and shows state of the art performance on multiple
public datasets.

III. METHOD

Method Overview: Figure 1 depicts our proposed work-
flow. In the first step we generate anchor vectors (cluster
centroids) by modifying the SwAV clustering approach [11].
We have two clustering stages: one for seen class samples and
second for unseen classes. Anchor vectors of the seen class
samples are used to get SSL based loss terms for the second
clustering stage, and we also use saliency map features to
improve the clustering output. The second step involves feature
generation, which takes a noise vector and desired class label
of output vector to synthesize features. Synthesized and real
features of unseen and seen classes are used to train a softmax
classifier for identifying different disease classes.

A. SSL And Saliency Based Clustering

Let the number of classes in the seen set be nS , and
the number of classes in the unseen set be nU . We assume
that the total number of classes is known. We learn anchor
vectors of different classes by using the SSL based online
clustering approach SwAV (Swapping Assignments between
multiple Views) [11], and introduce additional SSL and
saliency inspired loss terms. Typical offline clustering methods
[4], [9] alternate between cluster assignment and centroid
update resulting in high training time. To overcome this and

inspired by contrastive instance learning [64], [11] enforces
that different augmentations of the same image are mapped
to the same cluster. Multiple image views are contrasted by
comparing their cluster assignments instead of features.

We use cluster centers as class anchor vectors since they
provide a reliable representation of the corresponding class
[35]. The anchor vectors are computed in an online fashion
since the number of unseen classes may change in a dynamic
way when the system adds new classes. We describe the
baseline SwAV approach using notation from the original
paper [11]. Given image features xt and xs from two
different transformations of the same image, we compute their
cluster assignments qt and qs by assessing the distance of the
features to a set of K cluster centers c1, · · · , cK . A “swapped”
prediction problem is solved with the following loss function:

L (xt, xs) = `(xt, qs) + `(xs, qt), (1)

where `(x, q) measures the fit between features x and as-
signment q. Thus we compare features xt and xs using
their intermediate cluster assignments qt and qs. If the two
x’s capture same information, we can predict the cluster
assignment from the other feature.

Online clustering: Given image In, it is transformed to
Int using transformation t from a set T of image transforma-
tions. A non-linear mapping fθ transforms Int to a feature
vector which is projected to the unit sphere, i.e., xnt =
fθ(xnt)/ ‖fθ(xnt)‖2. The cluster assignment qnt is computed
by determining the distance between xnt and the set of cluster
centroids, c1, · · · , cK . C denotes a matrix whose columns are
c1, · · · , ck.

a) Swapped prediction problem: Each term in Eq.1 repre-
sents the cross entropy loss between q and the probability
obtained by taking a softmax of the dot products of xi and all
columns in C, i.e.,

`(xt, qs) = −
∑
k

q(k)s log p
(k)
t , p

(k)
t =

exp
x>
t ck
τ∑

k′ exp
x>
t ck
τ

, (2)

where τ = 0.1 is a temperature parameter [64]. Computing this
loss over all images and augmentations results in the following
loss function for swapped prediction:

L (xt, xs) = −
1

N

N∑
n=1

∑
s,t∼T

[
x>ntCqns

τ
+
x>nsCqnt

τ

− log
K∑
k=1

exp

(
x>ntck
τ

)
− log

K∑
k=1

exp

(
x>nsck
τ

)]
.

(3)

This loss function is jointly minimized with respect to the
centroids in C and parameters θ of fθ.

Computing the cluster assignments: The clustering as-
signments q are computed in an online fashion using image
features within a batch. Since the centroids in C are used
across different batches, SwAV clusters multiple instances
to their appropriate clusters. Given feature vectors X =
[x1, · · · , xB ], we map them to centroids C = [c1, · · · , cK ]
using Q = [q1, · · · , qB ], and we optimize Q to maximize the
similarity between X and C,

max
Q∈Q

Tr(Q>C>X) + εH(Q), (4)
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Fig. 1: Architecture of proposed SC-GZSL method. In the first step we generate anchor vectors (cluster centroids) by using
SSL using the SwAV clustering approach [11]. We have two clustering stages: one for seen class samples and second for
unseen classes. Feature generation leverages one Generator and one Discriminator along with anchor vectors to derive SSL
loss terms.

where H is the entropy function, H(Q) = −
∑
ij Qij logQij

and ε = 0.05 controls the mapping smoothness. A high ε could
potentially result in a trivial solution where all samples col-
lapse into an unique representation and are assigned uniformly
to all prototypes.

1) Our Novel Contribution: We make two novel contribu-
tions in the clustering stage - the first involves the use of
SSL based loss terms, and the second is the use of additional
information from saliency maps to identify accurate cluster
centers. To obtain cluster centers we use the concept of anchor
vectors to bridge the gap between seen and unseen classes.
The cluster centers also function as the anchor vectors and are
determined by the following steps: Assuming we have nS seen
classes we first cluster the seen class images into nS clusters
and obtain their centroids as CS = c1, · · · , cnS

. In the next
pass we compute the clusters CU = cnS+1, · · · , cnS+nU

of the
nU unseen classes using the following additional constraints:

1) The centroids in CS are kept fixed. Since the centroids
CS have been computed from labeled samples we can
assume that the computed centroids are reliable and
hence the current network weights are stable, and not
changed in the second stage.

2) A self supervised constraint is added where the centroids
of the unseen classes are forced to be different from
the seen class centroids. This is done to account for
the situation that some of the unseen classes may be
semantically close to one or more seen classes. This
may happen when images of different disease labels
have very similar appearance, which can be a common
occurrence for radiology images. This condition is im-
plemented using:

LSSL1 = min
(
CoSim(CiS , C

j
U ), σ1

)
(5)

Here σ1 = 0.15 is a parameter that determines the
semantic distance between the centroids, and CoSim
denotes cosine similarity with values ranging from 0

(i.e. no similarity) and 1 (i.e. maximum similarity). The
above equation imposes the constraint that the cosine
similarity between centroids of seen and unseen classes
should not exceed σ1, in order to impose uniqueness.

3) We add a second self supervised constraint such that
the similarity of seen class sample, xis, with its corre-
sponding class centroid CiS is higher than its similarity
with all the unseen class centroids CjU . This is achieved
by randomly selecting samples from the seen class
training set during minibatch training and computing the
different cosine similarities. This is implemented by

LSSL2 =

max
(
CoSim(xiS , C

i
S)− CoSim(xiS , C

j
U ), σ2

)
∀j

(6)

σ2 = 0.25 controls the minimum degree of semantic
difference between different classes and i, j index seen
and unseen classes. This ensures that there is sufficient
difference between seen and unseen class centroids in
order not to have overlapping samples.

Note that while clustering the seen classes we do not
add any label supervision. However in the second stage of
clustering unseen classes we enforce that seen and unseen
classes are different.

2) Additional Constraints From Saliency Maps: In medical
images there are multiple structures of interest in a neighbor-
hood. We propose to use an additional source of information
in the form of interpretable saliency maps obtained using
GradCAM [56], although other saliency methods can be used.

Interpretable saliency maps highlight regions identified as
informative by the trained classifier. Consequently, for disease
classification saliency maps highlight regions with disease
activity. Saliency maps are an effective way to incorporate
an attention mechanism. In our approach we seek to produce
distinctive saliency maps for different class labels. Given
image I and a classification neural network M the saliency
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maps are obtained for the second to last layer as {SI,n}Nn=1

for each class n. We then calculate their corresponding latent
representations {zSI,n

}Nn=1 using an autoencoder trained to
reconstruct the saliency maps. Deep latent representation has
been effectively used as an image perception similarity metric
[69], and for image retrieval [57]. In order to enhance differ-
entiability of saliency maps for different classes, we calculate
the following class distinctiveness loss term:

LCD =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

CoSim(zSI,i
, zSI,j

), (7)

Equation (7) therefore enforces distinctiveness of the different
N saliency maps for each label class generated by the model
M .

An additional constraint from saliency information is also
incorporated into the loss function. Saliency maps are expected
to have semantically relevant information derived from the
original images. Hence a clustering of the saliency features
should map the clusters in such a way that they are semanti-
cally similar to the clusters in the image feature space. This
is achieved by enforcing that the cosine similarity between
image-based feature cluster centroids and saliency-based fea-
ture cluster centroids of the same class are as high as possible,
and is implemented as the cosine loss of the two centroids of
the corresponding classes.

LCent =
∑
i

(
1− CoSim(CImagei , CSali )

)
, (8)

where CImagei denotes the centroid of class i derived from
image features, while CSali is the centroid of the same class
from the saliency maps, and i denotes all classes. The final
loss term for clustering the unseen class samples is

LUnseen =L (xs, xt) + λ1LSSL1

− λ2LSSL2 + λCDLCD + λCentLCent

(9)

where L (xs, xt) is defined in Eqn. 3.

B. Feature Generation Network

For feature generation we follow the steps in [66]. Given
the training images of seen classes and unlabeled images of
the unseen classes we learn a generator G : E ,Z −→ X ,
which takes a class label vector ey ∈ E and a Gaussian
noise vector z ∈ Z as inputs, and generates a feature vector
x̃ ∈ X . The discriminator D : X ,E −→ [0, 1] takes a real
feature x or synthetic feature x̃ and corresponding class label
vector ey as input and determines whether the feature vector
matches the class label vector. The generator G aims to fool
D by producing features highly correlated with ey using a
Wasserstein adversarial loss [3]:

LWGAN = min
G

max
D

E[D(x, ey)]− E[D(x̃, ey)]

−λE[(‖∇x̃D(x̃, ey)‖2 − 1)2],
(10)

where the third term is a gradient penalty term, and x̃ = αx+
(1−α)x̃. α ∼ U(0, 1) is sampled from a uniform distribution.

1) Our Contribution: Self Supervised Loss From Anchor
Vectors: The discriminator D is a classifier that determines
whether the generated feature vector x̃ belongs to one of the
seen classes. Since the unseen classes are not labeled we do
not have a data distribution for them and hence we use self
supervision to determine whether the generated feature vector
matches an unseen class. As the anchor vectors (i.e., the cluster
centers) are fixed, we calculate the cosine similarity between
the generated vector x̃ and the anchor vector corresponding to
the desired class y, i.e.

LSSL3 = 1− CoSim(x̃, cy) (11)

If x̃ truly represents the desired class y then the cosine
similarity between x̃ and the corresponding anchor vector cy
should be highest amongst all K(= nS +nU ) anchor vectors,
and the corresponding loss is lowest.

2) Classifier Loss: We expect that x̃s (synthesized feature
vector for seen classes) are predicted correctly by a pre-trained
classifier CL with a loss defined as below

LCL = −E(x̃s,ys)∼Px̃s [logP (y
s|x̃s, θCL)] (12)

where P (ys|x̃s, θCL) is the classification probability and θCL
denotes fixed parameters of the pre-trained classifier.

C. Training, Inference and Implementation
The final loss function for feature generation is defined as

L = LWGAN + λCLLCL + λ3LSSL3 (13)

where λCL, λ3 are weights that balance the contribution of
the different terms. Once training is complete we specify the
label of desired class and input a noise vector to G which
synthesizes a new feature vector. We combine the synthesized
target features of the unseen class x̃u and real and synthetic
features of seen class xs, x̃s to construct the training set. Then
we train a softmax classifier by minimizing the negative log
likelihood loss:

min
θ
− 1

|X |
∑

(x,y)∈(X ,Y )

logP (y|x, θ), (14)

where P (y|x, θ) =
exp(θTy x)∑|Y |

j=1 exp(θTy x)
is the classification prob-

ability and θ denotes classifier parameters. The final class
prediction is by f(x) = argmaxy P (y|x, θ)

Inference: Given a set of initial seen and unseen class
samples, the clustering stages yields class centroids. The
subsequent feature synthesis module generates samples of
different classes which are used to train a softmax classifier.
Given a test feature we use the softmax classifier to obtain its
class label.

Implementation Details: We compare the results of our
method for medical images with existing GZSL methods. For
methods developed for natural images we replace the class
label vector ey with the corresponding class attribute vectors.
For feature extraction, similar to [65], we use a pre-trained
ResNet-101 to extract 2048 dimensional CNN features for
natural images. The feature extractors for individual medical
image datasets are described separately (ref Section IV-A).
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The generator (G) and discriminator (D) are all multilayer
perceptrons. G has two hidden layers of 2000 and 1000 units
respectively while the discriminator D is implemented with
one hidden layer of 1000 hidden units. We chose Adam [31]
as our optimizer, and the momentum was set to (0.9, 0.999).
The values of loss term weights are λCL = 0.6, λ3 = 0.9.
Training the Swav Clustering algorithm takes 12 hours and
the feature synthesis network for 50 epochs takes 17 hours,
all on a single NVIDIA V100 GPU (32 GB RAM). PyTorch
was used for all implementations.

D. Evaluation Protocol

The seen class S can have samples from 2 or more disease
classes, and the unseen class U contains samples from the
remaining classes. We use all possible combinations of labels
in S and U . Following standard practice for GZSL, average
class accuracies are calculated for two settings: 1) S: training
is performed on synthesized samples of S + U classes and
test on the seen test set STe. 2) U: training is performed on
synthesized samples of S +U classes and test on unseen test
set UTe. We also report the harmonic mean defined as,

H =
2×AccU ×AccS
AccU +AccS

(15)

where AccS and AccU denote the accuracy of images from
seen (setting S) and unseen (setting U ) classes respectively:

IV. EXPERIMENTAL RESULTS

A. Dataset Description

We demonstrate our method’s effectiveness on natural im-
ages and the following medical imaging datasets for classifi-
cation tasks.

1) CAMELYON17 dataset [7]: contains 1000 whole slide
images (WSIs) with 5 slides per patient: 500 slides for
training and 500 slides for testing. Training set has anno-
tations of 3 categories of lymph node metastasis: Macro
(Metastases greater than 2.0 mm), Micro (metastasis
greater than 0.2 mm or more than 200 cells, but smaller
than 2.0 mm), and ITC (single tumor cells or a cluster
of tumor cells smaller than 0.2mm or less than 200
cells). We extract 224× 224 patches from the different
slides and obtain 130, 000 tumor patches and 200, 000
normal patches. We take a pre-trained ResNet-101 and
fine tune the last FC layer using the CAMELYON16
dataset [5], which is closely related but different from
CAMELYON17. A baseline fully supervised learning
(FSL) method is implemented1 which is the top ranked
in the leaderboard. We assume different combinations
of 2 seen classes and 1 unseen classes, and the reported
results are an average of 10 runs across different com-
binations. Hyperparameter values are λ1 = 1.3, λ2 =
0.8, λCD = 1.0, λCent = 0.8, λCL = 0.7, λ3 = 1.0.

2) NIH Chest X-ray Dataset: For lung disease classifica-
tion we adopted the NIH Chest X-ray14 dataset [62]

1https://grand-challenge-public.s3.amazonaws.com/evaluation-
supplementary/80/46fc579c-51f0-40c4-bd1a-7c28e8033f33/Camelyon17 .pdf

having 112, 120 expert-annotated frontal-view X-rays
from 30, 805 unique patients and has 14 disease labels.
Original images were resized to 224×224. A pre-trained
ResNet-101 was finetuned using the CheXpert dataset
[26] and the chosen baseline FSL was from [51]. We
assume different combinations of 7 seen classes and 7
unseen classes, and the reported results are an average of
25 runs across different combinations. Hyperparameter
values are λ1 = 1.1, λ2 = 0.7, λCD = 1.2, λCent =
0.9, λCL = 0.6, λ3 = 0.9.

3) CheXpert Dataset: We used the CheXpert dataset [26]
consisting of 224, 316 chest radiographs of 65, 240
patients labeled for the presence of 14 common chest
conditions. Original images were resized to 224× 224.
A pre-trained ResNet-101 was finetuned using the NIH
dataset [62] and the baseline FSL method was of [49],
which is ranked second for the dataset with shared code.
We assume different combinations 7 seen classes and 7
unseen classes, and the reported results are an average of
25 runs across different combinations. Hyperparameter
values are λ1 = 1.2, λ2 = 0.8, λCD = 1.1, λCent =
1.3, λCL = 0.7, λ3 = 1.1.

4) Kaggle Diabetic Retinopathy dataset: has approxi-
mately 35, 000 images in the provided training set
[28]. Images are labeled by a single clinician with
the respective DR grade, out of 4 severity levels: 1-
mild (2443 images), 2-moderate (5291 images), 3-severe
(873 images), and 4-proliferative DR (708 images).
The normal class 0 has 25810 images. A pre-trained
ResNet-101 was finetuned using [59] which has 9939
color fundus images (2720× 2720) from 2740 diabetic
patients. Although the number of classes are different
from Kaggle the features are accurate since the end task
is DR detection. The chosen baseline method was of
[2]. Original images were resized to 224 × 224. We
assume different combinations 2 seen classes and 2
unseen classes, and the reported results are an average of
15 runs across different combinations. Hyperparameter
values are λ1 = 1.4, λ2 = 0.9, λCD = 1.1, λCent =
0.8, λCL = 0.8, λ3 = 1.1.

5) Gleason grading challenge dataset 2 for prostate cancer
(PCA) [29]. It has 333 Tissue Microarrays (TMAs) from
231 patients and has 5 Gleason grades. Six pathologists
with 27, 15, 1, 24, 17, and 5 years of experience anno-
tated the data and majority voting was used to construct
the “ground truth label”. The training set had 200 TMAs
while the validation set had 44 TMAs. A separate test
set consisting of 87 TMAs from 60 other patients. The
baseline FSL was the classification outcome of the top
ranked method3. The feature extractor was a pre-trained
ResNet-101 finetuned using the CAMELYON16 dataset
[5]. Since both are histopathology image datasets, the
feature extractor is quite accurate. The high dimensional
images were divided into 224×224 patches. The individ-
ual labels patches from normal images were all ‘normal’.

2https://gleason2019.grand-challenge.org/Home
3https://github.com/hubutui/Gleason
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(a) (b) (c) (d)

Fig. 2: Feature visualizations for NIH Chest X-ray Dataset: (a) All classes from actual dataset; distribution of synthetic samples
generated by (b) SC-GZSL; (c) SC-GZSLwLSSL3

; (d) SDGN [63]. Different colours represent different classes. (b) is similar
to (a) in terms of the clusters being separate with minimal overlap. (c) and (d) are quite different due to overlapping and
compact clusters.

For the diseased images (all Gleason grades except 1),
the labels of individual patches were obtained using the
multiple instance learning method of [8]. Thus we ob-
tained more than 5, 000 patches of each label. Although
a much larger dataset for PCA using WSIs is available4,
the data cannot be used for external submissions5. We
assume different combinations of 3 seen classes and 3
unseen classes, and the reported results are an average of
20 runs across different combinations. Hyperparameter
values are λ1 = 1.2, λ2 = 0.8, λCD = 1.4, λCent =
1.2, λCL = 0.9, λ3 = 1.1.

Since we did not have labels of the organizer designated test
sets of all datasets, a 70/10/20 split at patient level was done
to get training, validation and test sets for NIH Chest X-ray,
CheXpert and Kaggle DR datasets.

B. Baseline Methods

We compare our method’s performance with the follow-
ing GZSL methods employing different feature generation
approaches such as CVAE or GANs:

1) GDAN - CVAE based generation method of [25].
2) OCD - The over complete distribution (OCD) method

of [30]
3) SDGN- Self-supervised learning GZSL method of [63].
4) SUP- Top performing fully supervised methods of cor-

responding datasets. For FSL baselines we implement
the different methods referred in the description of
individual datasets. For each case we do a 70/10/20
split for training/validation/test sets at the patient level
to ensure images from the same patient are in one fold
only. Note that the FSL baselines are different from the
feature extractors, which are used for subsequent feature
synthesis.

5) DeepCluster- Uses DeepCluster-v2 [10] clustering in-
stead of SwaV.

4https://www.kaggle.com/c/prostate-cancer-grade-assessment/overview
5https://www.kaggle.com/c/prostate-cancer-grade-

assessment/discussion/201117

6) K − Means- Uses conventional k-means clustering
instead of SwaV.

Following common practices for GZSL we report accuracy for
seen and unseen classes. Our method is denoted as SC-GZSL
(Selfsupervised Clustering based GZSL). The GZSL methods
dealing with natural images use class attribute vectors, and
when applying them for medical images we replace the
attribute vectors with class centroids. SCGZSLGC denotes the
use of modified GradCAM saliency maps.

C. Visualization of Synthetic Image Features
Figure 2 (a) shows t-SNE plot of features of actual data

from the NIH chest X-ray dataset where the different classes
are spread over a wide area, with slight overlap between
some classes. Figure 2 (b) shows the distribution of synthetic
features generated by our method. Although the corresponding
clusters for the different classes have separate locations in the
two figures they are similar to that of Figure 2 (a) in the sense
that the different classes are similarly separated and there is
minimal overlap. Figure 2 (c) shows the feature distribution
for our method without using self-supervision in the feature
generation stage. The resulting distribution is compact with-
out overlap between classes, which is not representative of
the real-world case. Classifiers trained on such distributions
perform poorly on unseen classes. Figure 2 (d) shows the
feature distributions using SDGN [63] for feature synthesis.
Although it also uses SSL the resulting feature representation
is less accurate than our proposed method which contributes
to the corresponding lower performance.

D. Generalized Zero Shot Learning Results
Classification results for medical images shown in Table I

and the corresponding 95% confidence intervals for harmonic
mean, H , in Table II show our proposed method significantly
outperforms all competing GZSL methods including SDGN.
Note that we use the anchor vectors in place of attribute
vectors for these feature synthesis methods. This significant
difference in performance can be explained by the fact that
the complex architectures that worked for natural images will
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not be equally effective for medical images which have less
information. Absence of attribute vectors for medical images
is another contributing factor. The class attributes provide a
rich source of information about natural images which can
be leveraged using existing architectures. Since those are not
available for medical images these methods do not perform
equally well.

To determine confidence values we calculate average Har-
monic Mean across 5 runs, and use the following standard
formula interval = z ×

√
(H ∗ (1−H))/n, where H is the

Harmonic mean, n is the sample size (of the test set), and
z is the number of standard deviations from the Gaussian
distribution. Commonly used number of standard deviations
from the Gaussian distribution and their corresponding signif-
icance level (z) are: 1.64 (90%), 1.96 (95%), 2.33 (98%), 2.58
(99%). We also show results when using different clustering
methods such as DeepCluster and k-means instead of SwAV,
while using our feature generation method. The results are
inferior to our proposed method thus demonstrating the fact
that SwAV gives better representations of the cluster centroids.

E. Ablation Studies For Medical Images
Table III shows results for the following ablation studies:
1) SCGZSLwLSSL1

- SCGZSL without the loss term
LSSL1 (Eqn.5) for obtaining the anchor vectors.

2) SCGZSLwLSSL2
- SCGZSL without the loss term

LSSL2 (Eqn.6) to get anchor vectors.
3) SCGZSLwLCD

- SCGZSL without the loss term LCD

(Eqn.7) to get anchor vectors.
4) SCGZSLwLCent

- SCGZSL without the loss term LCent

(Eqn.8) to get anchor vectors.
5) SCGZSLL - Using only the baseline loss term L (zs, zt)

(Eqn.3) for clustering all seen and unseen classes to-
gether, and no LSSL3 for feature synthesis.

6) SCGZSLwLSSL3
- SCGZSL without the loss term

LSSL3 (Eqn.11) for training the feature synthesis net-
work.

7) SCGZSL−onlyLSSL3- SCGZSL using only LSSL3 for
feature synthesis.

The baseline method, SCGZSLL (last row of Table III),
does not use any form of self supervision and has lowest
H values. These values are very low compared to SUP in
Table I. As we add more information through the different loss
terms we observe a progressive improvement in performance.

The first five ablation studies investigate the effect of
our modified clustering approach on the final classification
results. Their significant performance degradation compared
to SCGZSL indicates the importance of our novel SSL
(LSSL1,LSSL2) and saliency based terms (LCD,LCent))
in obtaining accurate anchor vectors. Recall that our novel
loss terms in the clustering stage can be categorized as SSL
loss terms (LSSL1,LSSL2) and saliency based attention loss
terms (LCD,LCent). The numbers in Table III indicate that
saliency and SSL terms have a similar contribution to the final
model performance. Their combined contribution makes SC-
GZSL perform much better than compared methods although
individually they perform slightly worse than baseline models.

Compared to SCGZSL, we observe that excluding LSSL3

(SCGZSLwLSSL3
) leads to significant reduction of H (more

than 3.5%) across all datasets. This indicates that LSSL3

makes important contributions to our method’s performance.
This is reasonable since the feature synthesis is the most
important step in GZSL, although it is supported by accurate
representation of anchor vectors. The use of anchor vectors
makes it easier to synthesize features of unseen classes.

The influence of LSSL1,LSSL2 is quantitatively sim-
ilar as shown by similar H values of SCGZSLwLSSL1

,
SCGZSLwLSSL2

across all datasets. However their difference
in H values compared to SCGZSL is nearly 2.4% which is
significant (p = 0.01). Thus the use of self supervision is an
important factor in obtaining accurate anchor vectors (clus-
ter centroids). Although the baseline clustering mechanism,
SwAV, uses self supervision in the form of contrastive loss,
including LSSL1 and LSSL2 sigificantly improves cluster-
ing accuracy. Excluding both LSSL1,LSSL2 and using the
baseline SwAV (‘only wLSSL3’) gives significantly reduced
H values for the different datasets despite using LSSL3 for
feature synthesis. This clearly indicates the importance of
having accurate anchor vectors for our method. SCGZSLL

can be considered as the most basic method without using any
of our proposed novel loss terms, and unsurprisingly gives the
worst results.

F. Hyperparameter Selection
To find the optimal set of parameters we tried different

approaches such as exhaustive grid search, and random search.
While they converge to the optimal values, we make use of
information from prior work and adopt the following strategy.
For all the competing synthesis methods we start with the
original values provided by the authors and vary them in range
x ± 0.5x in steps of x/10, where x is the initial value. The
best results are usually obtained using author provided values
for each method. Note that this approach is efficient due to
initial parameter values provided in the original works. To
tune the values from scratch we recommend using a grid
search approach. Figure 3 (a) shows the harmonic mean
values for the NIH Chest X-ray dataset for different values
of hyperparameters λCL, λ1, λ2, Figure 3 (b) shows plots for
λCD, λCent, λ3, while Figure 3 (c) shows the corresponding
plots for different values of σ1, σ2. The λ’s were varied
between [0.4 − 1.5] in steps of 0.05 and the performance on
a separate test set of 10, 000 images was monitored.

We start with the base cost function of Eqn. 10, and first
select the optimum value of λ1. λ1 value is fixed and we
then determine optimal λ2, and subsequently λCD and λCent
by fixing the previous parameters. Then the optimal λCL is
determined with fixed previous parameters and finally optimal
λ3 is determined. The order in which the parameters were
set is important and we find the above order as giving the
best results. Similarly the value of σ’s were varied between
[0.1, 0.5] in steps of 0.05, and the resulting classification
accuracy of the X-ray images was determined. i.e., whether
they were assigned to the correct cluster (class).

We show in Figure 4 plots for hyperparameters when they
are optimized in a different order. The final AUC values are
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Multiple Medical Image Datasets
Method CAMELYON17 NIH X-ray CheXpert Kaggle DR Gleason

S U H S U H S U H S U H S U H
f-VAEGAN [67] 90.2 88.2 89.2 82.9 80.0 81.4 88.5 87.6 88.0 92.8 90.2 91.5 88.2 85.1 86.6

GDAN [25] 91.1 89.1 90.1 83.8 80.9 82.3 89.2 88.0 88.6 94.2 91.0 92.6 88.8 86 87.4
OCD [30] 91.5 89.3 90.4 84.7 81.3 83.0 89.9 88.1 89.0 94.8 91.3 93.0 89.2 86.9 88

SDGN [63] 92.1 89.5 90.8 84.4 81.1 82.7 90.2 88.2 89.2 95.0 91.9 93.4 90.0 87.8 88.9
SCGZSLGC 93.7 92.1 92.9 87.2 85.1 86.1 91.8 90.9 91.3 96.1 94.2 95.1 92.1 91.1 91.6

SUP 93.7 93.5 93.6 87.4 86.9 87.1 92.1 92.5 92.3 96.4 96.1 96.2 92.4 92.2 92.3
Deep-Cluster 91.6 89.1 90.3 83.9 80.7 82.2 90.7 88.9 89.8 95.1 91.7 93.3 89.8 87.9 88.8

K-Means 90.6 88.7 89.6 83.4 80.7 82.0 88.9 88.2 88.5 92.9 90.6 91.7 88.4 85.7 87.0

TABLE I: GZSL Results For Medical Images: Average per-class classification accuracy (%) and harmonic mean accuracy of
generalized zero-shot learning when test samples are from seen (Setting S) or unseen (Setting U ) classes. Results demonstrate
the superior performance of our proposed method.

CAM17 NIH CheXpert Kaggle Gleason
[67] 89.2±4.1 81.4±5.4 88.0±3.9 91.5±3.3 86.6±4.1
[25] 90.1±3.4 82.3±4.1 88.6±3.7 92.6±2.8 87.4±4.3
[30] 90.4±3.1 83.0±4.3 89.0±4.1 93.0±3.6 88±4.3
[63] 90.8±3.7 82.7±4.8 89.2±3.9 93.4±2.7 88.9±

SCGC 92.9±3.3 86.1±4.8 91.3±3.6 95.1±2.2 91.6±3.4
SUP 93.6±2.3 87.1±4.5 92.3±3.6 96.2±2 92.3±3.7

TABLE II: 95% Confidence Intervals For Classification perfor-
mance. Reported metrics are for the Harmonic Mean. Due to
space constraints we shorten method notations - SC denotes
SCGZSL. Our proposed method and its derivatives show less
variation in the confidence intervals.

lower than the optimal case and hence supports our observation
that is important to optimize the parameters in the right order.

G. Experiments for Multi-Label Classification

The results reported so far were for experiments conducted
in a single label setting, i.e., we assume that all images have
only a single disease label, and if our model predicts any
one of the multiple labels then we consider it an accurate
detection. However the multi-label scenario is also prevalent
for many cases, particularly chest X-ray images. The vectors
q in the SwAV method is equivalent to a soft assignment of
image class. The synthetic features are compared with the
corresponding q instead of the centroid vector and we rewrite
Eqn. 11 as

LSSL3 = 1− CoSim(x̃, qy) (16)

Here we enforce that the synthetic feature be semantically
similar to the soft class assignment vector. We then use the
generated samples to train a classifier network and use it for
further analysis. We divide the images into seen and unseen
classes. All the shared labels of an image are part of either
the seen or unseen class which ensures negligible label noise.

Our results for chest X-ray images are summarized in
Table IV. Although the two sets of results in Tables IV,I
are not directly comparable because of the different ground
truth labels in single and multilabel settings, it is worth
noting that multilabel classification tasks usually perform

better than single label classification as the joint learning of
multiple disease characteristics improves overall performance.
However, the results are inferior compared to the original
approach thus suggesting that the clustering based approach
may not be optimal for multi-label classification and requires
further investigation. Note that our approach is not directly
comparable with the multi-label GZSL approach of [23] which
uses semantic embeddings generated by BioBert, and requires
a different approach to handle the multi-label setting.

H. Enhanced Interpretability Saliency Maps
Figure 5 (a) shows the expert delineated regions for pleural

effusion (red outline) and atelectasis (blue outline). Saliency
maps are shown for GradCAM (Fig. 5 (b)), our proposed
modified method (Fig. 5 (c)), without LCent (Fig. 5 (d)), and
without LCD (Fig. 5 (e)). The GradCAM saliency maps in
this particular example are very similar for the two disease
classes and widely dispersed without much distinction between
the two classes. On the other hand the maps generated by our
method are much closer to the manual annotations and shows
distinct regions for the two classes. Excluding LCent leads to
inaccurate localization of the diseased region while excluding
LCD results in more dispersed salient regions, alluding to
potential shortcut learning.

I. Effect of Number of Synthetic Samples:
Figure 6 shows, for the NIH chest X-ray and CAME-

LYON17 dataset, the effect of adding synthetic samples on
AccS , AccU as a function of dataset augmentation factor.
Increasing synthesized examples increases AccU at a high rate
while reducing AccS , although at a lower rate. The overall
H value keep increasing. Adding synthetic samples improves
discriminative power of classifiers and reduces bias towards
seen classes.

J. Relationship Between Saliency and Image Features
Recall that in Eqn. 8 we enforce the constraint that cluster-

ing of the saliency features should map the clusters in such
a way that they are semantically similar to the clusters in the
image feature space. The cosine similarity between image-
based feature cluster centroids and saliency-based feature
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Multiple Medical Image Datasets
Method CAMELYON17 NIH X-ray CheXpert Kaggle DR Gleason

S U H S U H S U H S U H S U H
SCGZSL 93.5 91.7 92.6 87.2 85.1 86.1 91.8 90.9 91.3 96.1 94.2 95.1 92.1 91.1 91.6
wLSSL1

90.2 88.1 89.1 83.8 81.9 82.8 88.6 86.3 87.4 91.1 88.7 89.9 89.5 86.1 87.8
wLSSL2

90.1 87.3 88.7 83.4 82.0 82.7 88.2 85.3 86.7 91.1 87.6 89.3 88.5 85.8 87.1
wLCD

91.2 88.7 89.9 84.5 82.1 83.3 89.1 86.9 88.0 92.2 89.6 90.9 90.3 86.9 88.6
wLCent

90.8 88.1 89.4 84.0 82.2 83.1 88.8 86.2 87.5 91.8 88.2 90.0 89.2 86 87.6
wLSSL3

90.0 87.0 88.5 83.2 81.0 82.1 87.6 85.1 86.3 90.1 86.7 88.4 88.4 85.5 86.9
only LSSL3 89.3 86.4 87.8 82.6 80.7 81.6 87.0 84.5 85.7 88.9 85.9 87.4 87.7 84.9 86.3

L 87.2 84.1 85.6 80.7 79.1 79.7 84.6 82.7 83.6 86.5 83.7 85.1 86.1 82.8 84.4

TABLE III: Ablation Results For Medical Images: Average per-class classification accuracy (%) and harmonic mean accuracy
of generalized zero-shot learning when test samples are from seen (Setting S) or unseen (Setting U ) classes.

Method NIH CheXpert
S U H S U H

SCGZSL 85.8 84.2 85.0 90.9 90.0 90.4
SUP 87.4 86.9 87.1 92.1 92.5 92.3

TABLE IV: GZSL Results for multi-label scenario. Results
are shown for two chest X-ray datasets, and the numbers
indicate slight performance degradation over results reported
in Table I.

cluster centroids of the same class are made as high as
possible.

Figure 7 shows clustering results under different conditions
for the Gleason 2019 challenge dataset that has 5 classes.
Figure 7 (a) shows clustering output when using the labels
of all classes while Figure 7 (b) shows the clustering output
using our proposed modified SwAV approach with 3 seen
and 2 unseen classes, which is very similar to the output
of Figure 7 (a). Figures 7 (c)-(f) show clustering outputs
when excluding, respectively, LSSL1,LSSL2,LCent,LCD (
Equations 5,6,8,7). We observe that the clustering outputs
degrade significantly when excluding the different terms. This
establishes the important contributions of each of the cluster-
ing loss terms.

K. Realism of Synthetic Features

In order to evaluate the realism of synthetic features we
let trained ophthalmologists analyze images corresponding to
the features. First we train an auto encoder to reconstruct a
given input fundus image. Thereafter, given a feature vector
the decoder part of the autoencoder can reconstruct the original
image. Using these reconstructed images we let two trained
ophthalmologists examine them and rate whether they consider
them realistic or not.

Two trained ophthalmologists having 12 and 14 years ex-
perience in examining retinal fundus images for abnormalities
assessed realism of generated images. We present them with
a common set of 500 synthetic images obtained from the
features generated by our method and ask them to classify
each as realistic or not. The evaluation sessions were con-
ducted separately with each ophthalmologist blinded to other’s
answers.

Agreement Both Atleast 1 No
Statistics Experts Expert Expert
SCZSL 88.0 (440) 92.6 (463) 7.4 (37)

SCGZSLFew 84.8 (424) 88.2 (441) 11.8 (59)
SDGN [63] 83.2 (416) 85.4 (427) 14.6 (73)
OCD [30] 82.2 (411) 84.2 (421) 15.8 (79)

GDAN [25] 80.4 (402) 82.4 (412) 17.6 (88)
f-VAEGAN [67] 78.2 (391) 81.4 (407) 18.6 (93)

TABLE V: Agreement statistics for different image genera-
tion methods amongst 2 ophthalmologists. Numbers in bold
indicate agreement percentage while numbers within brackets
indicate actual numbers out of 500 samples.

Results for SCGZSL show one ophthalmologist (OPT 1)
identified 451/500 (90.2%) images as realistic while OPT 2
identified 452 (90.4%) generated images as realistic. Both
of them had a high agreement with 440 common images
(88.0% -“Both Experts” in Table V) identified as realistic.
Considering both OPT 1 and PAT 2 feedback, a total
of 463 (92.6%) unique images were identified as realistic
(“Atleast 1 Expert” in Table V). Subsequently, 37/500
(7.4%) of the images were not identified as realistic by
any of the experts (“No Expert” in TableV). Agreement
statistics for other methods are summarized in Table V. The
highest agreement between two ophthalmologists is obtained
for images generated by our method. For all the other methods
their difference from SCZSL is significant.

L. Additional Results For Diabetic Retinopathy

Table VI shows detailed results for diabetic retinopathy
when the unseen class is a combination of different severity
grades. The results indicate that it is easier to classify the
least severe and most severe samples. The other labels are
more challenging because of their being close on the severity
scale which results in shared characteristics. This requires
further investigation since 1) a reliable method should not
be biased towards specific classes, and 2) the intermediate
severity grades occur more frequently than the high severity
cases and necessitate accurate detection. In future work we
aim to explore methods to overcome this limitation.
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(a)

(b)

(c)

Fig. 3: Hyperparameter Plots showing the value of H and
classification accuracy for different values of;(a)-(b) λ; (c) σ.
The observed trends justify our final choice of the values.

M. Visualization of Synthetic Images
In this section we visualize some of the synthetic images

obtained using our method. Note that we do not generate
synthetic images but the corresponding features. A variational
auto encoder is trained on the training images to reconstruct
the original images. After generating the synthetic features we
use the decoder of the VAE to reconstruct the image.

Figure 8 (a) shows examples of reconstructed X-ray images
and the corresponding disease region (blue contour) identified
by an expert. Figures 8 (b,c) shows, respectively, saliency
maps obtained by GradCam and our proposed method on
the reconstructed image. Results obtained by our method are
closer to the ground truth than GradCAM thus highlighting its
effectiveness

V. DISCUSSION

Importance of Self Supervised Learning: The baseline
clustering method, i.e. SwAV, is a self supervised approach
using contrastive loss. However it needs to be modified since

(a)

(b)

Fig. 4: Hyperparameter Plots showing the value of H and
classification accuracy for different values of;(a)-(b) λ. The
results are for a different order compared to the optimal setup

Kaggle DR Challenge
seen/unseen S U H seen/unseen S U H

1,2/3,4 93.9 93.1 93.5 2,3,4/1 96.2 94.9 95.6
1,3/2,4 93.4 92.8 93.1 2,3/1,4 96.2 94.2 95.2
1,4/2,3 95.2 93.8 94.5 1,2,3/4 96.1 94.5 95.3

TABLE VI: Detailed Classification Results for Diabetic
Retinopathy.

we need to separate out the seen and unseen classes. The
cluster centroids act as representative vectors of the particular
class and hence need to be accurate. Hence we include two
additional self supervised loss terms in the clustering stage
that enforce consistency amongst the seen class centroids
and distinctiveness compared to unseen class centroids. As
experimental results prove, the additional constraints improve
clustering performance, which in turn improves GZSL classi-
fication.

Not Relying on Class Attribute Vectors: As mentioned
previously, natural images have class attribute vectors of seen
and unseen classes which acts as the auxiliary information
for generating features of unseen classes. In the absence
of such information for medical images we use the cluster
centroids as anchors and representatives of each class. Our
method’s performance on natural image datasets is impressive
as it outperforms the state of the art methods on all datasets.
Through our results we demonstrate that GZSL for medical
images is possible without having to rely on class attribute
vectors that are obtained after painstaking effort and uses
valuable time of clinicians.
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(a) (b) (c) (d) (e)

Fig. 5: Comparison with Radiologist’s Saliency Maps.(a) Original image with expert-annotated outlines of diagnosed conditions.
Saliency Maps for different methods: (b) Original GradCAM; (c) Our proposed method; (d) Our method without LCent; (e)
Our method without LCD. Top row: Pleural effusion (red contour); Bottom row: Atelectasis (blue contour).

(a)

(b)

Fig. 6: Value of accuracy and H when adding synthetic
samples to the dataset: (a) NIH dataset; (b) CAMELYON17
dataset.

A common scenario for disease cases is the evolution
of disease characteristics (e.g., discovery of newer variants)
which requires updating of symptoms and characteristics. Thus
we need a system that can adapt with the evolving disease
characteristics. Our proposed approach is better suited in
this scenario as it does not require painstaking definition of
attribute vectors.

Importance of Saliency: We use saliency maps as a way

to integrate attention input into the clustering step. Saliency
maps improve clustering performance in addition to the self
supervised losses. This is explained by the fact that saliency
maps highlight a focused region relevant to the task in hand
and hence provide better quality information than image
features alone.

Realism of Synthetic Images: We engaged experienced
clinicians to examine generated images (obtained from the
synthetic features), and they determined that a high percentage
of generated images are realistic (refer Supplementary mate-
rial). This shows that our method generates realistic features
and does not suffer from unconstrained feature generation
wherein the features come from arbitrary distributions. Thus
our approach of including self supervised information in
the feature generation step actually improves the quality of
generated features.

Limitations: While our method performs well on multiple
medical imaging datasets it also has some limitations. 1)
Our approach cannot be adapted to an infinite number of
unseen classes since we assume that the number of seen and
unseen classes are known. This assumption is valid since it
is expected that clinicians have a good idea of what they
expect to encounter. 2) Relying solely on image features can
affect robustness when the features are not easily separated. In
such a scenario it is helpful to have an additional information
(e.g. semantic embeddings). Recent work [23] have used
BioBert [34] to generate semantic embeddings (similar to class
attribute vectors) from images and this approach needs to be
further investigated for generalizability. 3) As demonstrated
by the results with retinal images (Section IV-L) our method
shows a slight performance degradation for the intermediate
severity grades which is a matter of concern that requires
further exploration to learn better image features and have
nearly equal performance across all disease labels.

Multi-Label Classification: While we adapt our method to
multi-label classification we observe performance degradation.

Authorized licensed use limited to: University Bern. Downloaded on April 07,2022 at 13:16:46 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2022.3163232, IEEE
Transactions on Medical Imaging

MAHAPATRA et al.: SELF-SUPERVISED GENERALIZED ZERO SHOT LEARNING 13

(a) (b) (c) (d) (e) (f)

Fig. 7: Clustering visualizations For Gleason 2019 Dataset: (a) For all classes from actual dataset; b) Using our proposed
clustering approach; Excluding (c) LSSL1; (d) LSSL2; (e) LCent; (f) LCD.

(a) (b) (c)

Fig. 8: (a) Synthetic image with annotated disease region;
Saliency map obtained using (b) GradCaM; (c) Our proposed
modified approach using additional loss terms.

This could be attributed to the fact that the clustering does not
explicitly account for multi-label scenarios and hence leads to
sub-par performance. However explicitly modeling the multi-
label influence through cross-label interactions could further
improve the performance.

Workflow Design: Since we do not have access to class
attribute vectors of the medical images we employ multiple
stages of clustering and self supervised learning to train the
feature synthesis module. Wu et. al. [63] also use self super-
vised learning for feature synthesis. However our workflow is
simpler because we use a single generator while they used 2
generators for seen and unseen classes.

VI. CONCLUSION

We propose a GZSL approach for medical images without
relying on class attribute vectors. Our novel method can
accurately synthesize feature vectors of unseen classes by
employing self supervised learning at different stages such as
anchor vector selection, and training a feature generator. We
also propose a novel approach to generate enhanced GradCAM
saliency maps and integrate attention focused information
from them for clustering. Using self supervision helps us
learn feature of unseen classes from the seen classes. The
distribution of synthetic features generated by our method
are close to the actual distribution, while removing the self-
supervised and saliency based terms results in unrealistic dis-

tributions. Experimental results show our method outperforms
other GZSL approaches in literature, and is consistently better
across multiple public datasets.

Our approach is useful in scenarios where the number of
disease classes are known but labeled samples of all classes
cannot be accessed due to infrequent occurrence of such cases
or lack of expert clinicians to annotate complex cases. A
specific example is Gleason grading where the number of
Gleason grades is well known. While fully supervised settings
still provide the best performance they are dependent upon
sufficient labeled samples. Hence GZSL can be relevant to
address the low data scenarios.

In future work we aim to explore the use of BioBert in
generating semantic embeddings for different disease classes
and its robustness for different medical imaging datasets for
the purpose of GZSL. We expect that the generated semantic
embeddings will reduce our method’s complexity. We also
aim to make our method much more suitable for multi-label
classification settings.
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