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Abstract. Robustness of medical image classification models is limited
by its exposure to the candidate disease classes. Generalized zero shot
learning (GZSL) aims at correctly predicting seen and unseen classes and
most current GZSL approaches have focused on the single label case. It
is common for chest x-rays to be labelled with multiple disease classes.
We propose a novel multi-label GZSL approach using: 1) class specific
feature disentanglement and 2) semantic relationship between disease
labels distilled from BERT models pre-trained on biomedical literature.
We learn a dictionary from distilled text embeddings, and leverage them
to synthesize feature vectors that are representative of multi-label sam-
ples. Compared to existing methods, our approach does not require class
attribute vectors, which are an essential part of GZSL methods for nat-
ural images but are not available for medical images. Our approach out-
performs state of the art GZSL methods for chest xray images.

Keywords: Multi-label · GZSL · Text Embeddings · chest x-rays ·
feature synthesis

1 Introduction

Deep learning methods provide state-of-the-art (SOTA) performance for a vari-
ety of medical image analysis tasks such as diabetic retinopathy grading [7], and
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chest X-ray diagnosis [10], to name a few. SOTA fully supervised methods have
access to all classes as part of the training data whereas most real world clinical
applications do not provide access to all classes which leads to unseen classes
being wrongly diagnosed as one of the seen classes. Zero-Shot Learning (ZSL)
aims to classify unseen test data by learning their plausible representations from
seen class features, and in Generalized Zero-Shot Learning (GZSL) the model
should accurately classify both seen and unseen classes during test time.

Previous works on GZSL in medical images have focused on the single class
scenario where an image is assigned a single disease class [18,21]. However, chest
X-ray images have multiple labels and single-label methods do not work well
in this setting. Hence we propose a multi-label GZSL approach that takes into
account the semantic relationship between the multiple disease labels and learns
a highly discriminative feature representation.

GZSL for natural images [6,12,14,22] have the advantage of providing
attribute vectors for all classes that enables a model to correlate between
attribute vectors and corresponding feature representations of the seen classes.
Defining unambiguous attribute vectors for medical images requires deep clin-
ical expertise and time. This is more challenging for the multi-label scenario,
where many disease conditions have similar appearances and textures. For exam-
ple, in lung X-ray diagnosis, many conditions frequently co-occur with labels
such as Atelectasis, Effusion, and Infiltration. An effective class attribute vec-
tor should be able to precisely identify individual labels and differentiate them
from other co-occurring disease labels, which is very challenging to define. To
overcome the above challenges, we make the following contributions:

1. We propose a novel feature disentanglement method where a given image
is decomposed into class-specific and class agnostic features. This enables
better feature learning of different classes and subsequently contributes to
better feature synthesis in the multi-label scenario.

2. We use text embedding similarities to learn the semantic relationships
between different labels. This contributes to more accurate learning of multi-
label interactions at a global scale and guide feature generation to synthesize
feature vectors that are realistic and preserve the multi-label relationship
between disease labels.

3. We solve the GZSL classification problem in terms of cluster assignment.
Class specific feature disentanglement performs better for multi-label classi-
fication [11] and we use this concept to synthesize unseen class features and
subsequently perform classification.

Prior Work: GZSL’s objective is to recognize images from known and unknown
classes. Many works have shown promising results using GANs [23,26], and Intra-
Class Compactness Enhancement [12]. Recent works on multi-label zero-shot
learning (ML-ZSL) use information propagation [14], attention mechanisms [9]
and co-occurrence statistics with weighted combinations of seen classes [19].
ZSL in medical image analysis is a much less explored topic with limited appli-
cations such as registration [13], segmentation [1], gleason grading [16] and arti-
fact reduction [4]. [21] used multi-modal images and medical reports for GZSL of
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Table 1. Cosine similarity of the labels’ BioBERT embeddings

Atl. Card. Cons. Edema Eff. Emph. Fibr. Hernia Inf. Mass No Find Nodule PT Pne. Pneu.

Atelectasis 1.00 0.84 0.93 0.92 0.66 0.99 0.77 0.99 0.93 0.93 0.49 0.70 0.79 0.99 0.89

Cardiomegaly 0.84 1.00 0.97 0.97 0.93 0.88 0.98 0.83 0.95 0.97 0.81 0.96 0.98 0.87 0.60

Consolidation 0.93 0.97 1.00 0.99 0.84 0.95 0.93 0.92 0.99 0.99 0.69 0.88 0.93 0.94 0.72

Edema 0.92 0.97 0.99 1.00 0.86 0.95 0.93 0.91 0.99 0.99 0.70 0.89 0.94 0.94 0.71

Effusion 0.66 0.93 0.84 0.86 1.00 0.71 0.96 0.65 0.84 0.85 0.91 0.98 0.95 0.70 0.40

Emphysema 0.99 0.88 0.95 0.95 0.71 1.00 0.82 0.99 0.95 0.95 0.54 0.75 0.83 0.99 0.86

Fibrosis 0.77 0.98 0.93 0.93 0.96 0.82 1.00 0.76 0.91 0.93 0.87 0.98 0.99 0.80 0.52

Hernia 0.99 0.83 0.92 0.91 0.65 0.99 0.76 1.00 0.92 0.91 0.48 0.70 0.78 0.99 0.91

Infiltration 0.93 0.95 0.99 0.99 0.84 0.95 0.91 0.92 1.00 0.99 0.68 0.87 0.92 0.95 0.73

Mass 0.93 0.97 0.99 0.99 0.85 0.95 0.93 0.91 0.99 1.00 0.70 0.88 0.94 0.95 0.72

No Finding 0.49 0.81 0.69 0.70 0.91 0.54 0.87 0.48 0.68 0.70 1.00 0.91 0.85 0.53 0.23

Nodule 0.70 0.96 0.88 0.89 0.98 0.75 0.98 0.70 0.87 0.88 0.91 1.00 0.97 0.74 0.45

Pleural Thickening 0.79 0.98 0.93 0.94 0.95 0.83 0.99 0.78 0.92 0.94 0.85 0.97 1.00 0.82 0.54

Pneumonia 0.99 0.87 0.94 0.94 0.70 0.99 0.80 0.99 0.95 0.95 0.53 0.74 0.82 1.00 0.87

Pneumothorax 0.89 0.60 0.72 0.71 0.40 0.86 0.52 0.91 0.73 0.72 0.23 0.45 0.54 0.87 1.00

chest xray (CXR) images while [17,18] used saliency maps and GANs for GZSL
using only CXRs.Recently, language models pre-trained on large corpora have
also been considered for GZSL of CXRs [8]. However all the above works operate
in the single label setting, while we solve the multi-label problem.

2 Method

Method Overview: Given training data with seen classes we: 1) create a dic-
tionary from the text embedddings; 2) disentangle the image into class specific
and class agnostic features; 3) use class specific features to generate features
of seen and unseen classes using the Mixup approach [28]; 4) for a given test
image apply feature disentanglement and feature similarity analysis to identify
the different class labels in the image.

Embeddings: We generate embeddings of image class labels using BioBERT
[15], a BERT [5]-like pre-trained model. BioBERT [15] is pre-trained on biomed-
ical literature, more specifically the model available from Huggingface1, which
is a base and cased model. We consider a pooled set that produces a single 768
dimension vector for a label. We then calculate the cosine similarity between
each of the labels and represent it as a matrix, which we refer to as DictText -
dictionary for text embeddings, shown in Table 1.

2.1 Feature Disentanglement

Our feature disentanglement method is inspired from [20] which decomposes
the feature space into shape and texture for domain adaptation applications.
We decompose the feature space of the seen class samples into ‘class-specific’

1 https://huggingface.co/dmis-lab/biobert-v1.1.

https://huggingface.co/dmis-lab/biobert-v1.1
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and ‘class-agnostic’ features. Class specific features encode information spe-
cific to the particular class, and have low similarity between different classes.
Class agnostic features have high similarity across all classes, and have minimal
semantic overlap with class specific features. The disentangled features allow for
greater accuracy in identifying the multiple labels in a sample. Figure 1 (a) shows
the architecture of our feature disentanglement network (FDN) consisting of L
encoder-decoder networks corresponding to the L classes in the training data.
The encoders and decoders (generators) are denoted, respectively, as El(·) and
Gl(·)). Similar to a classic autoencoder, the encoder, En, produces a latent code
zi for image xi ∼ p. Furthermore, we divide the latent code, zi, into two vec-
tors: class specific component, zspecli for class l, and a class agnostic component,
zagnl

i . This is achieved by having two heads instead of one (as in conventional
architectures). Both vectors are combined and fed to the decoder, Gn, which
reconstructs the original input. The disentanglement network is trained using
the following loss:

LDisent = LRec + λ1Lspec + λ2Lagn + λ3Lagn−spec (1)

Reconstruction Loss: LRec, is the commonly used image reconstruction loss:

LRec =
∑

l Exi∼pl

[∥
∥xl

i − Gl(El(xl
i))

∥
∥
]
. It is a sum of the reconstruction losses

from the class specific autoencoders. We train different autoencoders for images
of each class in order to obtain class specific features and refer to them as ‘Class-
specific autoencoders’.

Class Specific Loss: For given class l the class specific component zspecli will
have high similarity with samples from the same class and low similarity with
the zspecki of other classes k. These two conditions are incorporated as follows:

Lspec =
∑

i,j

⎛

⎝
∑

l

⎛

⎝
(
1 − 〈zspecli , zspeclj 〉) +

∑

k �=l

〈zspecli , zspeckj 〉
⎞

⎠

⎞

⎠ (2)

where 〈.〉 denotes cosine similarity. The sum is calculated for all classes indexed
by

∑
l and over all samples indexed by i, j.

Class Agnostic Loss: Class agnostic features of different classes have similar
semantic content and have high cosine similarity. Lagn is defined as

Lagn =
∑

i,j

∑

l

∑

k �=l

(
1 − 〈zagnl

i , zagnk

j 〉) (3)

We want class specific and class agnostic features of same-class samples to be
mutually complementary and have minimal overlap in semantic content, i.e.,

Lagn−spec =
∑

l

〈zagnl

i , zspeclj 〉 (4)

Since the above loss terms are minimized it helps us achieve our stated objectives.
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Fig. 1. (a) Architecture of class specific feature disentanglement network. Given train-
ing images from different classes of the same domain we disentangle features into class
specific and class agnostic using autoencoders. T-sne results comparison between origi-
nal image features and feature disentanglement output: (b) Original image features; (c)
Class specific features. The classes in the tsne plot correspond to Atelectasis, Consolida-
tion, Effusion, Infiltration and Nodule, as per the standard classes used for CheXpert.

Figure 1 (b) shows the t-sne plots of image features (taken from the fully
connected layer of a multi-label DenseNet-121 image classifier) while Fig. 1 (c)
shows the plot using class specific features. Plots of original features show over-
lapping clusters which makes it challenging to have good classification. Clusters
obtained using class specific features are well separated with minimal overlap
between different clusters. This clearly demonstrates the efficacy of our feature
disentanglement method. The features are taken from images belonging to 5
classes from the NIH dataset. We chose 5 classes to clearly demonstrate the
output and avoid cluttering.

Feature Generation Network: After disentangling the different seen class
samples into their class specific components we create a distribution of each
seen class feature. We generate synthetic class specific features of unseen classes
using the following approach inspired by Mixup [28]:

zspecU =
∑

l

Λlz
specS
l ; ŷ =

∑
yl (5)

where zspecU
k is the class specific synthetic vector for unseen classes k(�= l), zspecS

l

is a feature sampled from the distribution of seen class l, Λl is a random number
drawn from a beta distribution. ŷ is a one-hot encoded vector and is a sum of
the one-hot label vectors of individual classes. Hence we do not need a weight
when combining the label vectors. The weights Λl are such that

∑
l Λl = 1.

Generating unseen class features through Mixup without additional con-
straints can generate unrealistic features. We use the dictionary of text embed-
dings to guide the feature generation process. As synthetic features of the seen
and unseen classes are generated we cluster them using the online self supervised
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learning based SwAV method [3] and calculate the centroids of each cluster. The
semantic similarity of the centroid clusters should be such that their cosine sim-
ilarity values are close to those obtained in Table 1, i.e., we define a loss:

LML−Cluster =
1

N2

∑

i

∑

j

DictText(i, j) − CentAll(i, j) (6)

where CentAll refers to the changing matrix of cluster centroid similarities for
all seen and unseen classes. N is the total number of classes. The final loss term
for clustering all class samples is LClust = L(xs, xt) + λ4LML−Cluster where
L(xs, xt) is the SwAV loss function defined in [3]. We add only those synthetic
samples to classifier training data that reduce LClust. This formulation ensures
that the cluster output is well separated semantically and the cluster centroids
follow the semantic relationship between all classes in Table 1.

Training, Inference and Implementation: For a given test image we use
the pre-trained L class specific autoencoders to get the class specific features.
An input 256 × 256 image is passed through the Encoder having 3 convolution
layers (64, 32, 32 3 × 3 filters ) each followed by max pooling. The Decoder is
symmetric to the Encoder. zagn and zspec are 256-dimension vectors. We then
calculate the cosine similarity of the class specific features with the corresponding
class centroids. If the cosine similarity is above 0.5 then the sample is assigned
to the class. Following standard practice for GZSL, average class accuracies are
calculated for the seen (AccS) and unseen (AccU ) classes, and also the harmonic
mean H = 2×AccU×AccS

AccU+AccS
.

3 Experimental Results

Dataset Description. We demonstrate our method’s effectiveness on the fol-
lowing chest xray datasets for multi-label classification tasks: 1.NIH Chest
X-ray Dataset [24]: having 112, 120 expert-annotated frontal-view X-rays from
30, 805 unique patients and has 14 disease labels. Original images were resized
to 224 × 224. Hyperparameter values are λ1 = 1.1, λ2 = 0.7, λ3 = 0.9, λ4 = 1.2.
2. CheXpert Dataset [10]: consisting of 224, 316 chest radiographs of 65, 240
patients labeled for the presence of 14 common chest conditions. Original images
were resized to 224 × 224. Hyperparameter values are λ1 = 1.2, λ2 = 0.8, λ3 =
1.1, λ4 = 1.1. 3. PadChest Dataset [2]: consisting of 160, 868 from 67, 625
patients. Hyperparameter values are λ1 = 1.3, λ2 = 0.9, λ3 = 0.9, λ4 = 1.3. A
70/10/20 split at patient level was done to get training, validation and test sets
for both datasets.

Comparison Methods: We compare our method’s performance with multiple
GZSL methods - single label and multi-label techniques - employing different
feature generation approaches such as CVAE or GANs. Our method is denoted
as ML-GZSL (Multi Label GZSL). Our benchmark is a fully supervised learning
(FSL) based method of [27] which is the top ranked method for [10], where the
ranking is based on AUC. It builds upon a DenseNet-121 trained for multi-label
classification.
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3.1 Generalized Zero Shot Learning Results

Classification results for medical images in Table 2 show our proposed method
significantly outperforms all competing GZSL methods. Note that we use the
cluster centroids in place of attribute vectors for these feature synthesis methods.
This significant difference in performance can be explained by the fact that the
complex architectures that worked for natural images will not be equally effective
for medical images which have less information. Absence of attribute vectors for
medical images is another contributing factor. The class attributes provide a rich
source of information about natural images which can be leveraged using existing
architectures. Since those are not available for medical images these methods do
not perform equally well. Different combinations of 7 seen and unseen classes are
taken, and for each combination we run our model 5 times and the final reported
numbers are the average of different combinations.

Table 2. GZSL Results For chest xray Images in Multi-Label setting: Average
per-class classification accuracy (%) and harmonic mean accuracy (H) of generalized
zero-shot learning when test samples are from seen or unseen classes. Results demon-
strate the superior performance of our proposed method.

Method NIH X-ray CheXpert PadChest

S U H p S U H p S U H p

Single Label GZSL Methods

f-VAEGAN [26] 82.9 80.0 81.4 0.002 88.5 87.6 88.0 0.001 81.0 78.4 79.7 0.001

SDGN [25] 84.4 81.1 82.7 0.003 89.8 88.3 89.0 0.003 82.3 80.0 81.1 0.004

Feng [6] 84.7 81.4 83.0 0.0012 90.2 88.6 89.4 0.0017 82.5 80.2 81.3 0.0021

Kong [12] 84.8 81.2 82.9 0.0031 90.0 88.7 89.3 0.0034 82.7 80.5 81.6 0.0029

Su [22] 84.5 81.4 82.9 0.004 90.3 88.6 89.4 0.0045 82.3 79.8 81.03 0.0041

Multi Label GZSL Methods

Hayat [8] 79.1 69.2 73.8 0.005 81.2 79.8 80.5 0.0056 77.3 68.1 72.4 0.006

Lee [14] 85.1 81.3 83.1 0.008 87.4 85.7 86.5 0.0075 82.9 78.4 80.6 0.008

Huynh [9] 84.7 80.8 82.7 0.0065 86.9 85.1 86.0 0.0071 82.5 77.3 79.8 0.0073

Proposed Method And Benchmarks

ML-GZSL 86.2 85.0 85.6 – 90.8 90.2 90.5 – 88.2 86.1 87.1 –

FSL(Multi Label) 86.0 85.1 85.5 0.061 90.8 90.5 90.6 0.068 88.4 86.5 87.4 0.058

Mahapatra [18] 84.3 83.2 83.7 0.014 88.9 88.5 88.7 0.01 86.2 84.1 85.1 0.02

ML-GZSL’s performance is almost equal to that of the benchmark fully super-
vised method FSL. Although GZSL methods generally perform inferior to FSL
methods, our use of class specific features significantly improves performance.
Additionally, the use of semantic relation between text embeddings significantly
improves the performance due to better feature synthesis. The average accu-
racy is obtained by first calculating True Positive, False Positive, True Negative,
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False Negative values and using these values to get the global accuracy. Further-
more the AUC(and F1) values for CheXpert data are as follows: FSL-93.0(91.7),
ML-GZSL- 92.8(91.6), [18]-91.9(90.0), [8]-84.3(82.4).

3.2 Ablation Studies

Table 3 shows results for ablation studies. We exclude each of the three loss terms
related to feature disentanglement - Lagn,Lspec and Lagn−spec- and report the
results as ML-GZSLwLagn

, ML-GZSLwLspec
, and ML-GZSLwLagn−spec

. We also
compare with the results of using image features obtained from a CNN based
feature extractor (ResNet50 trained on Imagenet), which we denote as ‘pre-
train’. We observe that the class specific features has the greatest influence on
the results and excluding it, ML-GZSLwLspec

, results in significant performance
degradation compared to ML-GZSL. ML-GZSLwLagn−spec

and ML-GZSLwLagn

also show significantly lower performance. These results highlight the importance
of the class specific features and at the same time illustrate class agnostic features
have an important influence on the method’s performance.

We also investigate the influence of LML−Cluster (Eq. 6) in the clustering
process. The numbers in Table 3 show that ML-GZSLwLML−Cluster

(which is
essentially the original SwAV algorithm) performs much worse. This proves the
significant contribution of the text embedding dictionary in our multi-label GZSL
framework.

Table 3. Ablation Results: Average per-class classification accuracy (%) and har-
monic mean accuracy (H) of generalized zero-shot learning when test samples are from
seen (Setting S) or unseen (Setting U) classes.

Method NIH X-ray CheXpert PadChest

S U H p S U H p S U H p

Our Proposed Method

ML-GZSL 86.2 85.0 85.6 - 90.8 90.2 90.5 - 88.2 86.1 87.1 -

Feature Disentanglement Effects

wLagn−spec 83.8 81.9 82.8 0.012 88.6 86.3 87.4 0.009 85.5 82.0 83.7 0.014

pre-train 83.4 82.0 82.7 0.017 88.2 85.3 86.7 0.009 85.1 81.7 83.4 0.011

wLagn 84.5 82.1 83.3 0.008 89.1 86.9 88.0 0.0094 86.5 83.4 84.9 0.011

wLspec 84.0 82.2 83.1 0.02 88.8 86.2 87.5 0.018 86.1 83.0 84.5 0.014

Effect of Text Dictionary

wLML−Cluster 82.6 80.7 81.6 0.009 87.0 84.5 85.7 0.011 84.2 80.8 82.5 0.015

Hyperparameter Selection: The λ’s were varied between [0.4−1.5] in steps of
0.05 and the performance on a separate test set of 10, 000 images were monitored.
We optimize Eq. 1 by setting λ2 = λ3 = λ4 = 1, and select the optimum value
of λ1. After fixing λ1 we determine optimal λ2, and subsequently λ3, λ4.
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Realism of Synthetic Features. We reconstruct the xray images from
the synthetic feature vectors using the feature disentanglement autoencoders’
decoder part. We select 1000 such synthetic images from 14 classes of the NIH
dataset and ask two trained radiologists, having 12 and 14 years experience in
examining chest xray images for abnormalities, to identify whether the images
are realistic or not. Each radiologist was blinded to the other’s answers.

Results for ML-GZSL show one radiologist (RAD 1) identified 912/1000
(91.2%) images as realistic while RAD 2 identified 919 (91.9%) generated images
as realistic. Both of them had a high agreement with 890 common images (89.0%)
identified as realistic. Considering both RAD 1 and RAD 2 feedback, a total
of 941 (94.1%) unique images were identified as realistic and 59/1000 (5.9%)
images were not identified as realistic by any of the experts. ML-GZSL showed
the highest agreement between RAD 1 and RAD 2.

4 Conclusion

Our experiments demonstrate that our approach of multi label GZSL is more
accurate than using conventional approaches that solve the single-label scenario.
We propose a novel feature disentanglement approach that obtains class specific
and class agnostic features from the training images. Additionally, the relation-
ship between text embeddings of disease labels is used to create a dictionary
that guides clustering and feature synthesis. Classification results on multiple
publicly available chest xray datasets demonstrate the improved performance
obtained by using class specific features. The synthetic features obtained by our
method are realistic since a major percentage of the corresponding reconstructed
images are validated as realistic by trained clinicians.
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