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A B S T R A C T

State-of-the-art deep learning models often fail to generalize in the presence of distribution shifts between
training (source) data and test (target) data. Domain adaptation methods are designed to address this issue
using labeled samples (supervised domain adaptation) or unlabeled samples (unsupervised domain adaptation).
Active learning is a method to select informative samples to obtain maximum performance from minimum
annotations. Selecting informative target domain samples can improve model performance and robustness,
and reduce data demands. This paper proposes a novel pipeline called ALFREDO (Active Learning with
FeatuRe disEntangelement and DOmain adaptation) that performs active learning under domain shift. We
propose a novel feature disentanglement approach to decompose image features into domain specific and
task specific components. Domain specific components refer to those features that provide source specific
information, e.g., scanners, vendors or hospitals. Task specific components are discriminative features for
classification, segmentation or other tasks. Thereafter we define multiple novel cost functions that identify
informative samples under domain shift. We test our proposed method for medical image classification using
one histopathology dataset and 𝑡𝑤𝑜 chest X-ray datasets. Experiments show our method achieves state-of-the-art
results compared to other domain adaptation methods, as well as state of the art active domain adaptation
methods.
1. Introduction

Deep neural networks (DNNs) demonstrate state-of-the-art (SOTA)
results for many medical image analysis applications. Although they ex-
cel at learning from large labeled datasets, it is challenging for DNNs to
generalize the learnt knowledge to new target domains (Saenko et al.,
2010; Torralba and Efros, 2011). This limits their real-world utility, as
it is impractical to collect large datasets for every novel application
with the aim of retraining the network. Although, in a hypothetical
situation, organizations may have a large budget for data annotation, it
is impractical to annotate every data point and include them as part of
the training set since annotating medical images requires high clinical
expertise. In a time-efficient active learning setup the goal would be to
automate the annotations as much as possible while reducing manual
annotations needed to improve the model. However, this does not
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eliminate the need for annotations in the target domains. Rather, a
more realistic paradigm is where radiologists will perform monitoring
and corrections of AI-based results, as opposed to annotating every case
without any assistance. This will significantly reduce annotations.

The annotation problem is further exacerbated when annotating
images from a different domain (or the target class). Considering a
supervised domain adaptation setting, all available samples from the
target class are not equally informative and annotating random samples
may result in a waste of time and effort. Under these circumstances,
it makes sense to select most informative target domain samples for
labeling as it can reduce annotation cost and training time, and also
improve efficiency of model training. Additionally, in an unsupervised
domain adaptation setting where sample annotation is not required,
informative sample selection identifies the most important samples
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which are used for model training leading to improved performance
compared to conventional approaches.

Active Learning (AL) methods enable an expert to select informative
samples and add them to a training set for incremental training (Li
and Guo, 2013). This allows a model to obtain high performance with
minimal labeled samples (i.e., high learning rates) and is particularly
suitable for medical image analysis tasks where AL methods must
adapt to varying conditions like device vendor, imaging protocol, ma-
chine learning model, etc. While conventional AL methods (Ash et al.,
2019; Ducoffe and Precioso, 2018; Sener and Savarese, 2018) have
extensively studied the problem of identifying informative instances
for labeling, they typically choose samples from the same domain and
hence do not account for domain shift. Thus conventional AL models
are not very effective for domain adaptation applications. In many
practical scenarios, models are trained on a source domain and de-
ployed in a different target domain. This can be a common occurrence
for medical image analysis applications where target domain data is
scarce, or as a result of different image capturing protocols, parameters,
devices, scanner manufacturers, etc. Domain shift is also observed when
images of the dataset are from multiple facilities. Consequently, domain
adaptation techniques have to be used for such scenarios (Ganin and
Lempitsky, 2015; Hoffman et al., 2018; Saenko et al., 2010).

Despite the existence of domain adaptation methods, the primary
challenge of obtaining labeled data is accessing domain experts and
annotating data in reasonable time. In this scenario it is appropriate
that we make optimal use of the experts’ time and use AL to obtain
maximal information from minimal annotations. Hence it is beneficial
to have a technique that can choose informative samples despite the
observed domain shift. This will lead to different trained models being
adapted for a wide variety of tasks.

In this work, we study the problem of active learning under such
a domain shift, called Active Domain Adaptation (Kirsch et al., 2019)
(ADA). Given (i) labeled data in a source domain, (ii) unlabeled data in
a target domain, and (iii) the ability to obtain labels for a fixed budget
of target instances, the goal of ADA is to select target instances for
labeling and learn a model with high accuracy on the target test set. We
specifically apply our method to medical imaging datasets since domain
shift is a common problem for medical image computing tasks.

2. Prior work

2.1. Domain adaptation in medical image analysis

Domain adaptation (DA) has attracted increasing attention of re-
searchers, and has emerged as an important research topic in machine
learning based medical image analysis (Ghafoorian et al., 2017; Raghu
et al., 2019; Kamnitsas et al., 2017b). In a practical use case, a reliable
DA model trained to, for instance, segment cardiac structures from
MR images can be also used on cardiac CT images (Zhuang and Shen,
2016). Another useful case of DA is stain normalization of histopathol-
ogy images where models trained with images from one hospital can
be used to analyze images from a different one (Bandi et al., 2019;
Mahapatra et al., 2022). In DA, it is assumed that the domain feature
spaces and tasks remain the same, i.e, the set of labels is the same
for source and target domain tasks, while the marginal distributions
(e.g., source of data collection or modality) are different.

DA can be categorized into different types based on clinical sce-
narios, constraints and algorithms. The survey paper of Guan and Liu
(2021) categorizes DA methods under 6 types. However, since our work
focuses on supervised and unsupervised DA, we briefly review related
works and refer the reader to Guan and Liu (2021) for more details.
In terms of target domain label availability, existing DA methods can
be divided into supervised DA (SDA), semi-supervised DA (sSDA), and
unsupervised DA (UDA). In SDA, a small number of labeled data in the
target domain are available for model training while sSDA has some
labeled data and lots of unlabeled target domain data. In UDA, only
2

unlabeled target data are available.
2.1.1. Supervised domain adaptation
One of the first SDA methods for medical images (Kumar et al.,

2017) used ResNet as the feature extractor and applied to mammogra-
phy images. They evaluate three shallow domain adaptation methods
and provide empirical results. Huang et al. (2017) propose to use LeNet-
5 to extract features of histological images from different domains
for epithelium-stroma classification, project them onto a subspace (via
PCA) and align them for adaptation to the target domain. Ghafoorian
et al. (2017) evaluate the impact of fine-tuning strategies on brain
lesion segmentation, by using CNN models pre-trained on brain MRI
scans. Their experimental results reveal that using only a small number
of target training examples for fine-tuning can improve the transferabil-
ity of models. They further evaluate the influence of the training set
size and different network architectures on the adaptation performance.
Based on similar findings, numerous methods have been proposed to
leverage CNNs that are well pre-trained on ImageNet to tackle medical
image analysis problems.

2.1.2. Unsupervised domain adaptation
UDA for medical image analysis has gained significance in recent

years since it does not require labeled target domain data. Prior works
in UDA focused on medical image classification (Ahn et al., 2020), ob-
ject localization, lesion segmentation (Heimann et al., 2013; Kamnitsas
et al., 2017a), and histopathology stain normalization (Chang et al.,
2021). Heimann et al. (2013) used GANs to increase the size of training
data and demonstrated improved localization in X-ray fluoroscopy
images. Likewise, Kamnitsas et al. (2017a) used GANs for improved
lesion segmentation in magnetic resonance imaging (MRI). Ahn et al.
(2020) use a hierarchical unsupervised feature extractor to reduce
reliance on annotated training data. Chang et al. (2021) propose a novel
stain mix-up for histopathology stain normalization and subsequent
UDA for classification. Graph networks for UDA (Ma et al., 2019; Wu
et al., 2020) have been used in medical imaging applications (Ahmedt-
Aristizabal et al., 2021) such as brain surface segmentation (Gopinath
et al., 2020) and brain image classification (Hong et al., 2019a,b). How-
ever, none of them explore DA from the active learning perspective,
i.e., they do not investigate if DA can be equally effective by identifying
informative samples from the target domain and minimizing the need
for annotated samples. Mahapatra and Ge (2020) achieve training data
independent image registration using generative adversarial networks
and domain adaptation.

Recent works on UDA for medical image analysis also include super
resolution of wireless capsule endoscopy images (Liu et al., 2023),
source-free approaches for segmentation using prototypes and con-
trastive learning (Yu et al., 2023), brain tumor segmentation (Alefsen
et al., 2023), spectral adversarial mixup for few shot UDA (Zhang et al.,
2023), anatomical landmark detection (Jin et al., 2023), and automated
quality assessment of transoesophageal echocardiography images (Xu
et al., 2023a). Xu et al. (2023b) propose a UDA framework based on
appearance and structure consistency for segmentation by constraining
the consistency before and after a frequency-based image transfor-
mation. Ghamsarian et al. (2023) propose a semi-supervised learning
strategy for domain adaptation termed transformation-invariant self-
training (TI-ST). The method assesses pixel-wise pseudo-labels’ reliabil-
ity and filters out unreliable detections during self-training. Lin et al.
(2023) propose a multi-target domain adaptation through implicit fea-
ture adaptation and prompt learning for medical image segmentation.

2.2. Active learning in medical image analysis

Informative sample selection techniques are key to active learn-
ing frameworks and an excellent survey of active learning related
to medical image analysis can be found in Budd et al. (2021) and
Wang et al. (2024) . Different sample selection approaches have been
investigated for deep learning based medical image analysis, including

sample entropy (Zhu and Bento, 2017), model uncertainty (Mahapatra
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et al., 2018; Gal et al., 2017), Fisher information (Sourati et al., 2019),
visual saliency (Mahapatra and Buhmann, 2016) and clustering-based
sample selection (Zheng et al., 2019). Wang et al. (2017a) use sample
entropy, and margin sampling to select informative samples while Zhou
et al. (2016) use GANs to synthesize samples close to the decision
boundary and annotate it by human experts. Mayer and Timofte (2018)
use GANs to generate high entropy samples, which are used as a proxy
to find the most similar samples from a pool of real annotated samples.

Yang et al. (2017) propose a two-step sample selection approach
based on uncertainty estimation and maximum set coverage similarity
metric. Test-time Monte-Carlo dropout (Gal et al., 2017) has been used
to estimate sample uncertainty, and consequently select the most infor-
mative ones for label annotation (Gal et al., 2017; Bozorgtabar et al.,
2019). The state-of-the-art in active learning is mostly dominated by
methods relying on uncertainty estimations. However, the reliability of
uncertainty estimations has been questioned for deep neural networks
used in computer vision and medical imaging applications due to model
calibration issues (Abdar et al., 2021; Jungo et al., 2020). Recent
work (Budd et al., 2021; Mahapatra et al., 2021) has highlighted the
importance of interpretability in active learning setups. Interpretability
has been shown to improve a AL method’s ability to select informative
samples leading to greater performance gain with fewer annotations
(Mahapatra et al., 2021, 2023).

2.3. Active domain adaptation

ADA can be cost-effective solution when the quantity or cost of
labeling in the target domain is prohibitive. Despite its practical utility,
ADA is challenging and has seen limited exploration since its intro-
duction (Chattopadhyay et al., 2013; Kirsch et al., 2019). Kirsch et al.
(2019) first applied ADA to sentiment classification from text data by
sampling instances based on model uncertainty and a learned domain
separator. Chattopadhyay et al. (2013) select target instances and learn
importance weights for source points through a convex optimization
problem. However no ADA methods have been proposed for medical
image analysis.

In a traditional AL setting informative sample selection does not
focus on addressing domain shift. Thus, AL methods based on uncer-
tainty or diversity sampling are less effective for ADA. Uncertainty
sampling selects instances that are highly uncertain under the model’s
beliefs (Gal et al., 2017), which under a domain shift leads to miscal-
ibration and selection of uninformative, outlier, or redundant samples
for expert labeling (Ovadia et al., 2019).

AL based on diversity sampling selects instances dissimilar to one
another (Gissin and Shalev-Shwartz, 2019; Sener and Savarese, 2018;
Sinha et al., 2019). In ADA this can lead to sampling uninformative
instances from regions of the feature space that are already well-
aligned across domains (Prabhu et al., 2021). While using uncertainty
or diversity sampling exclusively is suboptimal for ADA, their com-
bination can be very effective as shown by Su et al. (2020a). Ash
et al. (2019) perform clustering in a hallucinated ‘‘gradient embed-
ding’’ space, but rely on distance-based clustering in high-dimensional
spaces, which often leads to suboptimal results. Prabhu et al. (2021)
propose a label acquisition strategy, termed as Clustering Uncertainty-
weighted Embeddings (CLUE), for ADA that combines uncertainty and
diversity sampling without the need for complex gradient or domain
discriminator-based diversity measures.

2.4. Our contributions

While domain adaptation and active learning have been well studied
in medical image analysis, their combination has not been explored.
Our work is one of the first to look at active domain adaptation in
the medical image analysis setting. This paper makes the following
3

contributions:
1. We propose one of the first applications of active domain adap-
tation in medical image analysis, denoted as ALFREDO (Active
Learning with FeatuRe disEntangelement and DOmain adapta-
tion).

2. We propose a feature disentanglement approach that extracts
domain specific and task specific features from a given im-
age. Domain specific components refer to the source specific
part, e.g., scanners, vendors or hospitals from where the data
originates. Task specific components refer to classification, seg-
mentation or other tasks which are the focus of the method. The
combination of these features are used for active learning based
sample selection and classification.

3. Using the different feature components we propose novel met-
rics to quantify the informativeness of samples across different
domains. Thus we demonstrate that the novel feature disentan-
glement components are able to identify informative samples in
the presence of domain shift.

4. We evaluate our method’s effectiveness by using it for classi-
fication of 3 publicly available medical imaging datasets. We
also benchmark our method against multiple domain adaptation
and active domain adaptation methods used for computer vision
applications.

3. Method

We aim to tackle the problem of active domain adaptation and show
its applicability to both supervised domain adaptation (SDA) and unsu-
pervised domain adaptation (UDA). While active SDA (ASDA) requires
selecting the target samples to be labeled, in active UDA (AUDA) we
select the unlabeled target samples that will go into the pool for training
along with labeled samples from the source domain. Recently, UDA has
grown in prominence for the medical image analysis field because of
the large numbers of medical images being acquired, and the ensuing
difficulty in annotating them due to shortage of experts. Both ASDA and
AUDA are related tasks requiring the selection of informative samples,
and hence can be solved within a common framework. Although the
individual components of ADA – addressing domain shift and informa-
tive sample selection – have been explored in detail, their combination
presents a different challenge. In prior work much effort has gone
into exploring properties such as transferable diversity, uncertainty,
etc, wherein the common criteria for informative sample selection is
adapted to ensure it does equally well for samples from a new domain.
In our approach we propose to use feature disentanglement to extract
different types of features from the labeled source data and unlabeled
target data such that samples with the same label are projected to the
same region of the new feature space. They are used to devise a domain
agnostic sample informativeness metric.

Prior work on feature disentanglement for domain adaptation de-
compose the latent feature vector into domain specific and domain
agnostic features and model training requires aligning the domain
agnostic features. This helps to learn a set of features that are consis-
tent across different domains and ensures that the learned model has
similar performance for different datasets. Conventional approaches to
feature disentanglement is sub-optimal for ADA because : (1) the do-
main agnostic features are usually segmentation maps that encode the
structural information (Park et al., 2020). The structural information
provided by segmentation maps is constant across data from different
domains having a shared label space. However selecting informative
images from a different domain on the basis of structural segmentation
map information can be challenging due to different appearances and
field of views captured by the target domain images. (2) Domain
specific features usually encode information such as texture, inten-
sity distributions, etc. Domain specific features of one domain are
not generally useful in selecting informative samples from a different

domain.
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Fig. 1. Workflow of the proposed method. (a) Feature Disentanglement: Training data goes through an autoencoder to obtain different components 𝑧𝑑𝑜𝑚 , 𝑧𝑡𝑎𝑠𝑘 and they are used
to calculate different loss functions. After training is complete we get the domain and task specific features. (b) For informative sample selection we obtain disentangled feature
representations of the unlabeled data and calculate the informativeness score of each sample in the batch. Thereafter the most informative samples are labeled (for supervised
domain adaptation) added to the labeled samples to initiate the domain adaptation steps.
In our approach we use feature disentanglement to obtain a set
of features that are consistent across different domains, and at the
same time give high performance (e.g. classification accuracy) . Given
source and target domains 𝑆 and 𝑇 , we hypothesize that an ideal
domain agnostic feature is one which will give classification accuracy
on domain 𝑆 that is close to those obtained using the original images’
features. At the same time this feature should be similar for samples
having same labels from domains 𝑆, 𝑇 . The resulting feature space can
be used to train a classifier on domain 𝑆, and use principles of active
learning to select informative samples from domain 𝑇 by operating
on this new feature space. Such an approach allows conventional
active learning techniques to be used with minor modifications without
having to factor in transferrability.

In Active DA, the learning algorithm has access to labeled instances
from the source domain (𝑋𝑆 , 𝑌𝑆 ), unlabeled instances from the target
domain 𝑋𝑈𝑇 , and a budget 𝐵 which is much smaller than the amount
of unlabeled target data. The learning algorithm may query an oracle
to obtain labels for at most B instances from 𝑋𝑈𝑇 , and add them to
the set of labeled target instances 𝑋𝐿𝑇 . The entire target domain data
is 𝑋𝑇 = 𝑋𝐿𝑇

⋃

𝑋𝑈𝑇 . The task is to learn a function ℎ ∶ 𝑋 ⟶ 𝑌 (a
convolutional neural network (CNN) parameterized by 𝜃) that achieves
good predictive performance on the target domain. The samples 𝑥𝑆 ∈
𝑋𝑆 and 𝑥𝑇 ∈ 𝑋𝑇 are images, and labels 𝑦𝑆 ∈ 𝑌𝑆 , 𝑦𝑇 ∈ 𝑌𝑇 are categorical
variables 𝑦 ∈ 1, 2,… , 𝐶.

3.1. Feature disentanglement network

The primary challenge of domain shift is the inability of learned
source domain features to transfer to the target domain. As a result
we are unable to replicate the source domain performance on target
domain data. An often used approach is to map data from both domains
to a common feature space such that a model trained on one domain
can perform well on another domain. The MMD (maximum man dis-
crepancy) method (Bermudez-Chacon et al., 2018) was one of the first
to take advantage of such a scenario. However, MMD-like approaches
present the following challenges for active domain adaptation: (1) It
does not ensure that the new feature space provides optimum results for
the source domain data in its original feature space. (2) Due to the sub-
optimal nature of the feature space the informative samples selected
may not be ideal for active learning.

Fig. 1 shows the workflow of our proposed method. The feature
disentanglement network (FDN) (Fig. 2) consists of an autoencoder
each for source and target domains. The FDN consists of two encoders
4

Fig. 2. Architecture of feature disentanglement network. Given training images from
different classes of the same domain, we disentangle features into domain-specific and
task-specific features using autoencoders. The different feature components are used to
define the different loss terms.

(𝐸𝑆 (⋅), 𝐸𝑇 (⋅)) and two decoder networks (𝐺𝑆 (⋅), 𝐺𝑇 (⋅)), for the source
and target domains respectively. Similar to a classic autoencoder, each
encoder, 𝐸∙(⋅), produces a latent code 𝑧𝑖 for image 𝑥∙𝑖 ∼ 𝑝∙. Each
decoder, 𝐺∙(⋅), reconstructs the original image from 𝑧𝑖. Furthermore,
we divide the latent code, 𝑧𝑖, into two components: a domain specific
component, 𝑧𝑑𝑜𝑚, and a task specific component, 𝑧𝑡𝑎𝑠𝑘 by having two
heads for the latent code.. The disentanglement network is trained
using the following loss function:

L𝐷𝑖𝑠𝑒𝑛𝑡 = L𝑅𝑒𝑐 + 𝜆1L1 + 𝜆2L2 + 𝜆3L3 + 𝜆𝑏𝑎𝑠𝑒L𝑏𝑎𝑠𝑒 (1)

L𝑅𝑒𝑐 , is the commonly used image reconstruction loss and is defined
as:

L𝑅𝑒𝑐 = E𝑥𝑆𝑖 ∼𝑝𝑆

[

‖

‖

‖

𝑥𝑆𝑖 − 𝐺𝑆 (𝐸𝑆 (𝑥𝑆𝑖 ))
‖

‖

‖

]

+E𝑥𝑇𝑗 ∼𝑝𝑇

[

‖

‖

‖

𝑥𝑇𝑗 − 𝐺𝑇 (𝐸𝑇 (𝑥𝑇𝑗 ))
‖

‖

‖

]

. (2)

The input data consists of images from the source and target do-
mains (Fig. 1(a)). The disentangled features from both domains are
denoted as 𝑧𝑠𝑑𝑜𝑚, 𝑧

𝑠
𝑡𝑎𝑠𝑘 for the source domain and as 𝑧𝑡𝑑𝑜𝑚, 𝑧

𝑡
𝑡𝑎𝑠𝑘 for the

target domain. 𝑧𝑠𝑑𝑜𝑚, 𝑧
𝑠
𝑡𝑎𝑠𝑘 are then combined and input to the source

decoder 𝐺𝑆 to reconstruct the original source domain image, while
𝑧𝑡𝑑𝑜𝑚, 𝑧

𝑡
𝑡𝑎𝑠𝑘 are combined and given as input into the source decoder 𝐺𝑇

to reconstruct the original target domain image.
Since domain-specific features encode information unique to the

domain, they will be different for source and target domains. Hence, the
semantic similarity between 𝑧𝑡𝑑𝑜𝑚 and 𝑧𝑠𝑑𝑜𝑚 will be low. This is captured
using the following loss term:

𝑠 𝑡
L1 = ⟨𝑧𝑑𝑜𝑚, 𝑧𝑑𝑜𝑚⟩. (3)
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Where ⟨⋅⟩ denotes the cosine similarity of the two feature vectors.
Additionally, we expect task-specific features of the two domains to

have high similarity because they solve the same task of identifying the
common labels of different domain images. This is incorporated using
the following loss term

L2 = 1 − ⟨𝑧𝑠𝑡𝑎𝑠𝑘, 𝑧
𝑡
𝑡𝑎𝑠𝑘⟩ (4)

We want the two components of the features to be as dissimilar as
ossible in order to capture mutually complementary information, and
his is achieved using the following loss term

3 = ⟨𝑧𝑠𝑑𝑜𝑚, 𝑧
𝑠
𝑡𝑎𝑠𝑘⟩ + ⟨𝑧𝑡𝑑𝑜𝑚, 𝑧

𝑡
𝑡𝑎𝑠𝑘⟩ (5)

To ensure that performance is not affected when extracting task spe-
ific features we enforce their similarity with features extracted without
he task-specific constraint. While using the task specific features to
rain a classifier it should give performance levels similar to those
btained using the original image features. We first train a baseline
lassification model 𝑀𝑏𝑎𝑠𝑒 using the original image features of source
omain data (since labels are available only for the source domain
ata). For a given sample 𝑖 from the source domain, we pass it through
𝑏𝑎𝑠𝑒 to obtain a feature vector 𝑧𝑏𝑎𝑠𝑒. The task-specific component is

enoted as 𝑧𝑠,𝑖𝑡𝑎𝑠𝑘. Their cosine similarity should be high to ensure it
aptures highly relevant information. The corresponding loss term is

𝑏𝑎𝑠𝑒 = 1 − ⟨𝑧𝑠,𝑖𝑡𝑎𝑠𝑘, 𝑧
𝑏𝑎𝑠𝑒

⟩ (6)

Note that the feature vector 𝑧𝑏𝑎𝑠𝑒 is obtained from a pre-trained
classifier and can be considered as the optimal feature vector (depend-
ing upon the chosen classifier model 𝑀𝑏𝑎𝑠𝑒) whereas the task specific
eature vector 𝑧𝑠,𝑖𝑡𝑎𝑠𝑘 is obtained as part of the training process. Our
bjective is to ensure that 𝑧𝑠,𝑖𝑡𝑎𝑠𝑘 is very close to 𝑧𝑏𝑎𝑠𝑒 in terms of semantic

similarity. L𝑏𝑎𝑠𝑒 is named as such to denote its comparison with 𝑀𝑏𝑎𝑠𝑒.
We use a DenseNet-121 as 𝑀𝑏𝑎𝑠𝑒.

3.2. Informative sample selection

Having trained a feature disentanglement network and after obtain-
ing the different sets of features, we train two classifiers, 𝑀𝑠𝑜𝑢𝑟𝑐𝑒

𝑡𝑎𝑠𝑘 on
𝑠
𝑡𝑎𝑠𝑘, and 𝑀𝑠𝑜𝑢𝑟𝑐𝑒

𝑑𝑜𝑚 on 𝑧𝑠𝑑𝑜𝑚. The source domain features 𝑧𝑠𝑡𝑎𝑠𝑘 have high
imilarity with the corresponding target domain task specific feature
et 𝑧𝑡𝑡𝑎𝑠𝑘. As a result this ensures that the classifier 𝑀𝑠𝑜𝑢𝑟𝑐𝑒

𝑡𝑎𝑠𝑘 trained with
ource domain features 𝑧𝑠𝑡𝑎𝑠𝑘 can be used with 𝑧𝑡𝑡𝑎𝑠𝑘 to obtain similar
erformance levels, and make it easier to identify informative samples.
e define multiple score functions to quantify the informativeness

ased on multiple criteria and the final informativeness score of a
ample is the combination of these scores.

We use the following criteria to choose informative samples: (1)
ncertainty: We take model 𝑀𝑠𝑜𝑢𝑟𝑐𝑒

𝑡𝑎𝑠𝑘 trained on the source domain
eatures and use it to calculate the uncertainty of the target domain
amples using the task specific features 𝑧𝑡𝑡𝑎𝑠𝑘. Since the source domain
nd target domain features are similar, the model 𝑀𝑠𝑜𝑢𝑟𝑐𝑒

𝑡𝑎𝑠𝑘 can reliably
etermine the most uncertain samples. To measure informativeness we
se predictive entropy H (𝑌 |𝑥) (Wang and Shang, 2014) which for

C-way classification, is defined as:

𝑄𝑈𝑛𝑐 = H (𝑌 |𝑥) = −
𝐶
∑

𝑐=1
𝑝𝜃(𝑌 = 𝑐|𝑥) log 𝑝𝜃(𝑌 = 𝑐|𝑥) (7)

(2) Domainness: determines whether a sample is from the same do-
main as a reference sample (e.g., source domain) or belongs to a
different domain. Recent active learning or ADA methods (Huang et al.,
2018; Su et al., 2020b) consider samples with higher distinctiveness
from source domain samples as informative since they capture the
unique characteristics in the target domain. However, outliers exist in
the target domain, which are not informative for target classification.
In the original feature space with domain shift, both normal target
5

samples, different from the source domain, and target outliers are far
from the source domain and there is no clear way to exclude outliers.

For a given target domain sample we obtain its disentangled feature
representations 𝑧𝑡𝑡𝑎𝑠𝑘, 𝑧

𝑡
𝑑𝑜𝑚. The domain specific features 𝑧𝑡𝑑𝑜𝑚 are com-

pared with the domain specific features of source domain data 𝑧𝑠𝑑𝑜𝑚 of
each label. If the cosine similarity is below a threshold then the sample
is determined as different from the source domain data, and hence not
considered for labeling. Fu et al. (2021) show that very low similarity
scores between source and target domain samples denotes outliers. On
the other hand high similarity scores indicate uninformative samples
since the target domain sample has already been included within the
training set. Hence we consider a lower threshold 𝜂1 for the cosine
similarity below which the sample is considered an outlier and an upper
threshold 𝜂2 above which the sample is considered as uninformative.
Thus we define a score

𝑄𝑑𝑜𝑚 =

⎧

⎪

⎨

⎪

⎩

0 if ⟨𝑧𝑠𝑑𝑜𝑚, 𝑧
𝑡
𝑑𝑜𝑚⟩ < 𝜂1

⟨𝑧𝑠𝑑𝑜𝑚, 𝑧
𝑡
𝑑𝑜𝑚⟩ if 𝜂1 ≤ ⟨𝑧𝑠𝑑𝑜𝑚, 𝑧

𝑡
𝑑𝑜𝑚⟩ ≤ 𝜂2

0 if ⟨𝑧𝑠𝑑𝑜𝑚, 𝑧
𝑡
𝑑𝑜𝑚⟩ > 𝜂2

(8)

To set the thresholds 𝜂1 and 𝜂2 we plot a distribution of the cosine
similarity values and 𝜂1 equals the 30th percentile value while 𝜂2
corresponds to the 75th percentile.

(3) Density: determines whether a sample represents other samples
which are similar in the feature space. One way to reduce the number
of annotations is to choose samples which are representative of many
other samples. If a sample lies in a dense region of the feature space
then it is representative of many other samples. We cluster the target
domain samples into 𝑁 clusters using the task specific features 𝑧𝑡𝑡𝑎𝑠𝑘
where 𝑁 is the number of classes of the source domain data. For each
sample we calculate the feature similarity with respect to other samples
in the batch, and take the average similarity over the top 𝐾 closest
samples. A higher average feature similarity indicates that the sample
is more similar to other samples and is in a dense region of the feature
space. By obtaining the label of one such sample we, in effect, obtain
the labels of more samples. Thus we define a density score as this
average feature similarity:

𝑄𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
1
𝐾

∑

𝑘=1,…,𝐾
⟨𝑧𝑖𝑡𝑎𝑠𝑘, 𝑧

𝑘
𝑡𝑎𝑠𝑘⟩ (9)

n our experiments we set 𝐾 = 20.
(4) Novelty: This criterion checks whether the target sample being

elected for labeling is similar or different to previously selected target
amples. The similarity with respect to previously selected samples
an be quantified in different ways - e.g., distance in feature space,
r location of cluster, etc. However we find that the similarity of
he samples based on 𝑧𝑡𝑎𝑠𝑘 is the best criteria. For a given pair of
eature vectors their similarity depends a lot on the task in hand. If
he downstream task changes then their similarity will also change.
ence for a given target domain sample 𝑖 with feature vector 𝑧𝑖𝑡𝑎𝑠𝑘 we
alculate its cosine similarity with previously annotated samples 𝑧𝑗𝑡𝑎𝑠𝑘.
f the similarity is high then the informativeness score of sample 𝑖 is
ow and vice-versa. Thus we define a ‘‘novelty-score’’ as

𝑛𝑜𝑣𝑒𝑙 =
∑

𝑗
1 − ⟨𝑧𝑖𝑡𝑎𝑠𝑘, 𝑧

𝑗
𝑡𝑎𝑠𝑘⟩ (10)

The cosine similarities of 𝑖 with other previously annotated samples
𝑗 are summed to get the ‘‘novelty-score’’. The final informativeness
score of a sample is the sum of all the above scores and is defined as

𝑄𝐼𝑛𝑓 = 𝜆𝑈𝑛𝑐𝑄𝑈𝑛𝑐 + 𝜆𝐷𝑜𝑚𝑄𝐷𝑜𝑚 + 𝜆𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑄𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + 𝜆𝑁𝑜𝑣𝑒𝑙𝑄𝑁𝑜𝑣𝑒𝑙 (11)

Higher values of 𝑄𝐼𝑛𝑓 indicates greater informativeness. The top
𝑁 informative samples are selected in every batch and added to the
training set, and the classifier is updated. Informative sample selection
continues till there is no further change in the performance of a sepa-
rate validation set. The different stages of our method is summarized
in Algorithm 1.
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Algorithm 1 ALFREDO
Require: Pretrained model 𝑀0, Feature Disentanglement Network

𝐹𝐷𝑁(⋅), I𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝐴𝑈𝐶𝑡𝑎𝑟𝑔𝑒𝑡
1: 𝑀 ← 𝑀0 (trained using 2% training data)
2: repeat
3: I𝑖𝑛 ← {𝐼𝑖𝑛} ⊳ define set of input testing images
4: S𝑖𝑛 ← {𝐹𝐷𝑁(I𝑖𝑛,𝑀)} ⊳ disentangled features given input set

and FDN
5: {𝑠𝑐𝑜𝑟𝑒𝑠}𝑖𝑛 ← 𝑄𝑖𝑛𝑓 (FDN𝑖𝑛) ⊳ calculate informativeness scores

using FDN outputs
6: I𝑠𝑜𝑟𝑡 ← 𝑠𝑜𝑟𝑡(I𝑖𝑛, {𝑠𝑐𝑜𝑟𝑒𝑠}𝑖𝑛) ⊳ sort I𝑖𝑛 in decreasing order by

scores
7: I𝑡𝑟𝑎𝑖𝑛 ← I𝑠𝑜𝑟𝑡{𝑖 = 1, ..., 𝑡𝑜𝑝_𝑛} ⊳ select top-n ranked samples
8: L𝑡𝑟𝑎𝑖𝑛 ← 𝑒𝑥𝑝𝑒𝑟𝑡_𝑞𝑢𝑒𝑟𝑦(I𝑡𝑟𝑎𝑖𝑛) ⊳ label querying of selected samples
9: 𝑀𝑛𝑒𝑤 ← 𝑡𝑟𝑎𝑖𝑛(𝑀, I𝑡𝑟𝑎𝑖𝑛,L𝑡𝑟𝑎𝑖𝑛) ⊳ train new model
0: until 𝐴𝑈𝐶(𝑀𝑛𝑒𝑤, I𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛) ≥ 𝐴𝑈𝐶𝑡𝑎𝑟𝑔𝑒𝑡 ⊳ Repeat until target AUC

is attained or 𝐴𝑈𝐶(𝑀𝑛𝑒𝑤, I𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛) does not change
1: return 𝑀𝑛𝑒𝑤

4. Experimental results

4.1. Baseline methods

We compare our proposed method,denoted as ALFREDO (Active
Learning with FeatuRe disEntangelement and DOmain adaptation),
against several state-of-the art methods for Active DA and Active Learn-
ing such as:

1. AADA: Active Adversarial Domain Adaptation (AADA) (Su et al.,
2020a) which performs alternate rounds of active sampling and
adversarial domain adaptation via Domain-Adversarial Training
of Neural Networks (DANN) (Ganin et al., 2016a).

2. Entropy based Uncertainty approach (Unc) (Wang and Shang,
2014): Selects instances for which the model has highest predic-
tive entropy.

3. Batch Active learning by Diverse Gradient Embeddings (BADGE)
(Ash et al., 2019): BADGE proposes a state-of-the-art active
learning strategy that constructs diverse batches by running
KMeans++ on ‘‘gradient embeddings’’ that incorporate model
uncertainty and diversity.

4. The CLUE (Clustering Uncertainty-weighted Embeddings)
method of Prabhu et al. (2021) - that performs uncertainty-
weighted clustering to identify target instances for labeling that
are both uncertain under the model and diverse in feature space.

5. (Fu et al., 2021)’s method using transferable uncertainty by
combining transferable committee, transferable uncertainty, and
transferable domainness.

6. The transformation invariant approach of Ghamsarian et al.
(2023) that uses self training for UDA.

4.2. Experimental settings

Since our goal is to demonstrate the effectiveness of our active
learning method under domain shift and not to propose a new domain
adaptation method, we show results of our method integrated with
existing SOTA methods for SDA and UDA. Our end task is to per-
form classification through active domain adaptation. Given a source
domain dataset we train our feature disentanglement method on it.
With the provided target domain dataset we use the pre-trained feature
disentanglement network to obtain 𝑧𝑡𝑡𝑎𝑠𝑘 and 𝑧𝑡𝑑𝑜𝑚. We then select most
informative samples from the target domain and add to the training set
which initially consists of only the source domain samples. After each
addition the classifier is updated and evaluated on a separate test set
6

from the target domain. t
Annotating samples from the target domain is a classic case of
supervised domain adaptation. In the unsupervised setting there are
no samples to label. Labeled source domain data and unlabeled target
domain data are trained together to minimize the discrepancy in some
feature space. We adapt our active domain adaptation method such
that instead of using the entire unlabeled dataset, we select informative
samples from target domain to use for training the classifier. We adopt
the following experimental setup:

1. Train a benchmark method using a network trained in a fully-
supervised manner on the training set from the same domain,
i.e., training, validation and test data are from the same hos-
pital/dataset. This setting gives the upper-bound performance
expectation for a SDA model, and this upper bound depends
upon the used network architecture. We refer to this benchmark
as FSL−𝑆𝐷 (fully supervised learning based method on same
domain data).

2. We also train a SOTA domain adaptation method (either su-
pervised DA or unsupervised DA) using the available source
and target domain data. Here the entire dataset is used and
there is no informative sample selection. We refer to this as
the SDA𝑆𝑂𝑇𝐴 (SOTA supervised domain adaptation) or UDA𝑆𝑂𝑇𝐴
(SOTA unsupervised domain adaptation) methods. Note that for
UDA we do not label the samples but add them to the training
set.

3. In all cases we find that the SDA𝑆𝑂𝑇𝐴 is obtained by taking the
FSL−𝑆𝐷 network architecture of the source data and finetuning
the last layers using the labeled samples of the target domain
data.

4. We use our active domain adaptation method, ALFREDO, to
select informative samples and incrementally add to the training
set. We investigate the effectiveness of our active learning based
methods in selecting the best possible set of samples for labeling,
and explore their degree of success in reducing the required
number of annotated samples. As we add samples to the training
set we report the test accuracy for every 10% increase of the
training set.

5. For the UDA setting informative samples are selected by first dis-
entangling the features and then choosing the most informative
samples. We argue that informative sample selection is impor-
tant in the UDA setting in order to reduce the data annotation
requirements and improve model robustness by feeding it high
quality data for training. Active learning works clearly establish
that using high quality data for training leads to better perfor-
mance with fewer labeled samples. We test the hypothesis that
use of informative samples will lead to better UDA performance,
which is supported by the results showed in later sections.

6. We also report the performance of other active learning meth-
ods, including domain adaptation based and conventional meth-
ods that do not address the domain shift.

4.3. Results on histopathology datasets

Dataset Description: We use the CAMELYON17 dataset (Bandi
et al., 2019) to evaluate the performance of the proposed method
on tumor/normal classification. In this dataset, a total of 500 𝐻&𝐸
stained WSIs are collected from five medical centers (denoted as
𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5 respectively). A total of 50 of these WSIs include
esion-level annotations. All positive and negative WSIs are randomly
plit into training/validation/test sets and provided by the organizers
n a 50∕30∕20% split for the individual medical centers to obtain
he following split: 𝐶1:37/22/15, 𝐶2: 34/20/14, 𝐶3: 43/24/18, 𝐶4:
5/20/15, 𝐶5: 36/20/15. 256 × 256 image patches are extracted from
he annotated tumors for positive patches and from tissue regions of

SIs without tumors for negative patches.
Since the images have been taken from different medical centers

heir appearance varies despite sharing the same disease labels. This



Medical Image Analysis 97 (2024) 103261D. Mahapatra et al.

d

Table 1
Classification results in terms of AUC measures for different domain adaptation methods on the CAMELYON17 dataset. Note: FSL−𝑆𝐷 is a fully-supervised
model trained on target domain data.

No ADA MMD CycleGAN Chang et al. (2021) FSL−𝑆𝐷 SDA𝑆𝑂𝑇𝐴
(UDA𝑆𝑂𝑇𝐴)

𝐶1 0.8068 0.8742 0.9010 0.964 0.976 0.969
𝐶2 0.7203 0.6926 0.7173 0.933 0.957 0.941
𝐶3 0.7027 0.8711 0.8914 0.931 0.95 0.938
𝐶4 0.8289 0.8578 0.8811 0.95 0.971 0.957
𝐶5 0.8203 0.7854 0.8102 0.927 0.942 0.933
𝐴𝑣𝑔. 0.7758 0.8162 0.8402 0.941 0.959 0.948
Table 2
Active domain adaptation results for Camelyon17 dataset. AUC values for different baselines and proposed approach along with ablation studies.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% p-

FSL-SD 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959 <0.001
Random 0.693 0.71 0.75 0.794 0.821 0.858 0.891 0.914 0.928 0.938 <0.001
Unc 0.706 0.733 0.772 0.812 0.845 0.891 0.922 0.931 0.939 0.943 <0.001
AADA 0.712 0.742 0.791 0.841 0.872 0.903 0.924 0.939 0.945 0.948 0.001
BADGE 0.707 0.728 0.768 0.803 0.847 0.885 0.903 0.924 0.932 0.940 0.005
CLUE 0.715 0.746 0.786 0.839 0.878 0.911 0.921 0.934 0.941 0.947 0.007
Fu et al. (2021) 0.714 0.739 0.775 0.813 0.849 0.883 0.914 0.925 0.935 0.944 0.001
Ghamsarian et al. (2023) 0.721 0.754 0.793 0.825 0.858 0.889 0.914 0.929 0.941 0.95 0.02
ALFREDO𝐴𝑆𝐷𝐴 0.73 0.775 0.801 0.831 0.872 0.895 0.927 0.937 0.946 0.964 0.04
ALFREDO𝐴𝑈𝐷𝐴 0.721 0.762 0.793 0.828 0.863 0.893 0.915 0.927 0.941 0.952 –

Ablation studies

ALFREDO𝑁𝑜−𝐹𝑒𝑎𝑡𝐷𝑖𝑠𝑒𝑛𝑡 0.711 0.737 0.777 0.815 0.85 0.895 0.924 0.934 0.941 0.945 <0.001

Feature disentanglement

AUDA𝑤𝑜L1
0.702 0.734 0.772 0.842 0.872 0.885 0.896 0.902 0.911 0.921 0.001

AUDA𝑤𝑜L2
0.711 0.729 0.765 0.802 0.854 0.867 0.881 0.898 0.914 0.928 0.005

AUDA𝑤𝑜L3
0.692 0.724 0.768 0.813 0.843 0.869 0.884 0.896 0.901 0.914 0.0009

AUDA𝑤𝑜L𝑏𝑎𝑠𝑒
0.671 0.703 0.734 0.771 0.81 0.848 0.866 0.881 0.895 0.908 0.0008

Informative sample selection

AUDA𝑤𝑜𝑄𝑈𝑛𝑐
0.705 0.74 0.778 0.852 0.881 0.898 0.906 0.913 0.924 0.932 0.001

AUDA𝑤𝑜𝑄𝑑𝑜𝑚
0.691 0.724 0.761 0.812 0.857 0.884 0.898 0.904 0.916 0.923 0.001

AUDA𝑤𝑜𝑄𝑑𝑒𝑛𝑠𝑖𝑡𝑦
0.693 0.719 0.753 0.788 0.814 0.861 0.878 0.896 0.908 0.919 0.0001

AUDA𝑤𝑜𝑄𝑛𝑜𝑣𝑒𝑙
0.682 0.711 0.746 0.779 0.817 0.856 0.869 0.882 0.897 0.912 0.0001
N
2
u
t
2
o
u

is due to slightly different protocols of 𝐻&𝐸 staining. Stain normal-
ization has been a widely explored topic which aims to standardize
the appearance of images across all centers, which is equivalent to
domain adaptation. Recent approaches to stain normalization/domain
adaptation favor use of GANs and other deep learning methods. We
compare our approach to recent approaches and also with Chang
et al. (2021) which explicitly performs UDA using MixUp. The method
by Chang et al. (2021) is denoted as UDA𝑆𝑂𝑇𝐴

To evaluate our method’s performance: (1) We use 𝐶1 as the source
ataset and train a ResNet-101 classifier (He et al., 2016) (ResNet𝐶1).

Each remaining dataset from the other centers are, separately, taken as
the target dataset. We select informative samples add them to training
set and update ResNet𝐶1. As a baseline, we perform the experiment
without domain adaptation denoted as No-ADA where ResNet𝐶1 is
used to classify images from other centers. We report results for a
network trained in a fully-supervised manner on the training set from
the same domain (FSL−𝑆𝐷) to give an upper-bound expectation, where
a ResNet-101 is trained on the training images and used to classify
test images, all from the same hospital. All the above experiments are
repeated using each of 𝐶2, 𝐶3, 𝐶4, 𝐶5 as the source dataset.

We report in Table 1 a center wise and also an average per-
formance for different UDA methods. The results in Table 1 show
that UDA methods are better than conventional stain normalization
approaches as evidenced by the superior performance of Chang et al.
(2021). In Table 2 we report performance of different active domain
adaptation methods. The results are compared against the average
numbers for all 5 centers. Our ALFREDO approach when applied to su-
7

pervised domain adaptation (ALFREDO𝐴𝑆𝐷𝐴) outperforms the FSL-SD
approach while our method’s unsupervised domain adaptation ap-
proach, ALFREDO𝐴𝑈𝐷𝐴, approaches the same performance of FSL−𝑆𝐷,
the theoretical maximum performance. Since the FSL−𝑆𝐷 approach is
already at a high performance level our ALFREDO𝐴𝑆𝐷𝐴 outperforms it
at closer to 95% of labeled data.

The different ablation studies show the importance of different
components of our method. The L𝑏𝑎𝑠𝑒 term has the single biggest
contribution in the performance of our feature disentanglement step
justifying our approach to distil knowledge from a fully supervised
classifier. Other components have significant roles to play. Similarly,
for the informative sample selection components, 𝑄𝑛𝑜𝑣𝑒𝑙 has the single
most important contribution followed by significant contributions of
other components.

4.4. Results on chest Xray dataset

Dataset Description: We use the following chest Xray datasets:
IH Chest Xray Dataset: The NIH ChestXray14 dataset (Wang et al.,
017b) has 112,120 expert-annotated frontal-view X-rays from 30,805
nique patients and has 14 disease labels. Original images were resized
o 256 × 256. CheXpert Dataset: This dataset (Irvin et al., 2019) has
24,316 chest radiographs of 65,240 patients labeled for the presence
f 14 common chest conditions. The validation ground-truth is obtained
sing majority voting from annotations of 3 board-certified radiologists.

Original images were resized to 256 × 256. These two datasets have the
same set of disease labels.

We divide both datasets into train/validation/test splits on the
patient level at 70∕10∕20 ratio, such that images from one patient are

in only one of the splits. Then we train a DenseNet-121 (Rajpurkar
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Table 3
Classification results on the CheXpert dataset’s test split using NIH data as the source domain. Note: FSL−𝑆𝐷 is a fully-supervised model trained on target domain data.

Atel. Card. Eff. Infil. Mass Nodule Pneu. Pneumot. Consol. Edema Emphy. Fibr. PT. Hernia Mean

No DA 0.697 0.814 0.761 0.652 0.739 0.694 0.703 0.781 0.704 0.792 0.815 0.719 0.728 0.811 0.752
MMD 0.741 0.851 0.801 0.699 0.785 0.738 0.748 0.807 0.724 0.816 0.831 0.745 0.754 0.846 0.769
CycleGANs 0.765 0.874 0.824 0.736 0.817 0.758 0.769 0.832 0.742 0.838 0.865 0.762 0.773 0.864 0.781
DANN 0.792 0.902 0.851 0.761 0.849 0.791 0.802 0.869 0.783 0.862 0.894 0.797 0.804 0.892 0.837
FSL−𝑆𝐷 0.849 0.954 0.903 0.814 0.907 0.825 0.844 0.928 0.835 0.928 0.951 0.847 0.842 0.941 0.831
SDA𝑆𝑂𝑇𝐴 0.854 0.965 0.914 0.824 0.918 0.835 0.856 0.937 0.845 0.936 0.963 0.861 0.852 0.952 0.882
GCN2 (UDA𝑆𝑂𝑇𝐴) 0.809 0.919 0.870 0.765 0.871 0.807 0.810 0.882 0.792 0.883 0.921 0.817 0.812 0.914 0.848
Table 4
For NIH data as the source domain. AUC values for different baselines and proposed approach along with ablation studies. We focus on Infiltration condition.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% p-

FSL-SD 0.814 0.814 0.814 0.814 0.814 0.814 0.814 0.814 0.814 0.814 <0.001
Random 0.639 0.671 0.709 0.741 0.775 0.784 0.797 0.810 0.818 0.821 <0.001
Unc 0.648 0.687 0.725 0.763 0.797 0.809 0.819 0.835 0.842 0.851 <0.001
AADA 0.655 0.694 0.735 0.773 0.808 0.829 0.845 0.858 0.876 0.88 <0.001
BADGE 0.643 0.678 0.716 0.757 0.789 0.81 0.824 0.843 0.849 0.858 0.005
CLUE 0.648 0.688 0.729 0.763 0.793 0.815 0.837 0.849 0.863 0.869 0.007
Fu et al. (2021) 0.652 0.689 0.732 0.775 0.805 0.827 0.845 0.855 0.872 0.879 0.001
Ghamsarian et al. (2023) 0.656 0.688 0.732 0.779 0.810 0.823 0.843 0.861 0.869 0.881 0.02
ALFREDO𝐴𝑆𝐷𝐴 0.669 0.702 0.743 0.787 0.825 0.851 0.872 0.889 0.899 0.914 0.039
ALFREDO𝐴𝑈𝐷𝐴 0.661 0.694 0.735 0.777 0.818 0.837 0.861 0.873 0.883 0.898 –

Ablation studies

ALFREDO𝑁𝑜−𝐹𝑒𝑎𝑡𝐷𝑖𝑠𝑒𝑛𝑡 0.649 0.689 0.728 0.767 0.799 0.811 0.821 0.836 0.843 0.853 <0.001

Feature disentanglement

AUDA𝑤𝑜L1
0.615 0.639 0.687 0.719 0.781 0.809 0.819 0.832 0.843 0.851 0.01

AUDA𝑤𝑜L2
0.621 0.649 0.698 0.725 0.788 0.816 0.824 0.836 0.849 0.859 0.02

AUDA𝑤𝑜L3
0.606 0.637 0.678 0.707 0.772 0.796 0.808 0.819 0.828 0.841 0.009

AUDA𝑤𝑜L𝑏𝑎𝑠𝑒
0.604 0.629 0.664 0.685 0.731 0.77 0.785 0.806 0.818 0.829 0.008

Informative sample selection

AUDA𝑤𝑜𝑄𝑈𝑛𝑐
0.625 0.657 0.699 0.729 0.795 0.821 0.832 0.839 0.852 0.866 0.01

AUDA𝑤𝑜𝑄𝑑𝑜𝑚
0.618 0.635 0.689 0.714 0.778 0.813 0.821 0.828 0.841 0.851 0.008

AUDA𝑤𝑜𝑄𝑑𝑒𝑛𝑠𝑖𝑡𝑦
0.610 0.631 0.685 0.717 0.77 0.805 0.812 0.822 0.831 0.846 0.009

AUDA𝑤𝑜𝑄𝑛𝑜𝑣𝑒𝑙
0.600 0.624 0.682 0.710 0.767 0.801 0.809 0.818 0.829 0.842 0.004
Table 5
Classification results on the NIH Xray dataset’s test split using CheXpert data as the source domain. Note: 𝐹𝑆𝐿 − 𝑆𝐷 is a fully-supervised model trained on target domain data.

Atel. Card. Eff. Infil. Mass Nodule Pneu. Pneumot. Consol. Edema Emphy. Fibr. PT Hernia Mean

No DA 0.718 0.823 0.744 0.730 0.739 0.694 0.683 0.771 0.712 0.783 0.803 0.711 0.710 0.785 0.752
MMD 0.734 0.846 0.762 0.741 0.785 0.738 0.709 0.793 0.731 0.801 0.821 0.726 0.721 0.816 0.769
CycleGANs 0.751 0.861 0.785 0.761 0.817 0.758 0.726 0.814 0.746 0.818 0.837 0.741 0.737 0.836 0.778
DANN 0.773 0.882 0.819 0.785 0.837 0.791 0.759 0.838 0.770 0.836 0.863 0.766 0.762 0.861 0.811
FSL−𝑆𝐷 0.814 0.929 0.863 0.821 0.869 0.825 0.798 0.863 0.805 0.872 0.904 0.802 0.798 0.892 0.856
SDA𝑆𝑂𝑇𝐴 0.801 0.913 0.844 0.807 0.851 0.809 0.779 0.848 0.790 0.849 0.891 0.789 0.781 0.873 0.829
UDA𝑆𝑂𝑇𝐴 0.786 0.906 0.833 0.789 0.831 0.802 0.763 0.835 0.774 0.837 0.868 0.768 0.763 0.860 0.781
et al., 2017) classifier on one dataset (e.g. NIH’s train split). Here
the NIH dataset serves as the source data and CheXpert is the target
dataset. We then apply the trained model on the training split of the
NIH dataset and tested on the test split of the same domain, the results
are denoted as 𝐹𝑆𝐿 − 𝑆𝑎𝑚𝑒. When we apply this model to the test
plit of the CheXpert data without domain adaptation, the results are
eported under No-𝑈𝐷𝐴.

Tables 3 and 5 show classification results for different DA tech-
iques where, respectively, the NIH and CheXpert dataset were the
ource domain and the performance metrics are for, respectively, CheX-
ert and NIH dataset’s test split (the target domain). We observe that
DA methods perform worse than FSL−𝑆𝐷. This is expected since it

is very challenging to perfectly account for domain shift. However all
UDA methods perform better than fully supervised methods trained
on one domain and applied on another without domain adaptation.
The DANN architecture (Ganin et al., 2016b) outperforms MMD and
cycleGANs, and is on par with graph convolutional methods GCAN (Ma
et al., 2019) and GCN2 (Hong et al., 2019b). However ALFREDO
outperforms all compared methods which can be attributed to the
combination of active learning and domain adaptation.
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4.5. Ablation studies

We also show in different tables the results for ablation studies
where different components of ALFREDO are excluded and the corre-
sponding performance numbers are calculated. We show results for the
following methods:

1. AUDA𝑤𝑜L1
: Our proposed method used for AUDA without the

loss term L1 in Eq. (3)
2. AUDA𝑤𝑜L2

: AUDA without the loss term L2 in Eq. (4)
3. AUDA𝑤𝑜L3

: AUDA without the loss term L3 in Eq. (5)
4. AUDA𝑤𝑜L𝑏𝑎𝑠𝑒

: AUDA without the loss term L𝑏𝑎𝑠𝑒 in Eq. (6)
5. AUDA𝑤𝑜𝑄𝑈𝑛𝑐

: AUDA without the informativeness term Q𝑈𝑛𝑐 in
Eq. (7)

6. AUDA𝑤𝑜𝑄𝑑𝑜𝑚
: AUDA without the domainness term Q𝑑𝑜𝑚 in Eq. (8)

7. AUDA𝑤𝑜𝑄𝑑𝑒𝑛𝑠𝑖𝑡𝑦
: AUDA without the density term Q𝑑𝑒𝑛𝑠𝑖𝑡𝑦 in Eq. (9)

8. AUDA𝑤𝑜𝑄𝑛𝑜𝑣𝑒𝑙
: AUDA without the novelty term Q𝑛𝑜𝑣𝑙 in Eq. (10)

AUDA indicates that we show the results for ALFREDO applied to active
unsupervised domain adaptation.
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Table 6
For CheXpert data as the source domain. AUC values for different baselines and proposed approach along with ablation studies. We focus on Infiltration condition.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% p-

FSL-SD 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821 <0.001
Random 0.632 0.663 0.702 0.736 0.768 0.775 0.792 0.803 0.811 0.814 <0.001
Unc 0.641 0.678 0.719 0.757 0.789 0.801 0.812 0.825 0.836 0.843 <0.001
AADA 0.649 0.686 0.728 0.768 0.80 0.821 0.837 0.851 0.867 0.873 <0.001
BADGE 0.638 0.672 0.714 0.751 0.785 0.804 0.817 0.834 0.843 0.851 0.005
CLUE 0.641 0.68 0.721 0.761 0.789 0.812 0.830 0.843 0.859 0.862 0.007
Fu et al. (2021) 0.649 0.686 0.728 0.768 0.80 0.821 0.837 0.851 0.867 0.873 0.001
Ghamsarian et al. (2023) 0.651 0.683 0.725 0.773 0.802 0.818 0.835 0.857 0.866 0.877 0.02
ALFREDO𝐴𝑆𝐷𝐴 0.661 0.696 0.737 0.78 0.817 0.843 0.865 0.881 0.891 0.907 0.039
ALFREDO𝐴𝑈𝐷𝐴 0.657 0.689 0.730 0.772 0.811 0.829 0.855 0.869 0.878 0.892 –

Ablation studies

ALFREDO𝑁𝑜−𝐹𝑒𝑎𝑡𝐷𝑖𝑠𝑒𝑛𝑡 0.645 0.682 0.721 0.758 0.792 0.804 0.814 0.828 0.839 0.845 <0.001

Feature disentanglement

AUDA𝑤𝑜L1
0.611 0.634 0.681 0.714 0.775 0.803 0.814 0.828 0.838 0.847 0.01

AUDA𝑤𝑜L2
0.618 0.645 0.692 0.721 0.784 0.811 0.82 0.831 0.844 0.853 0.02

AUDA𝑤𝑜L3
0.603 0.632 0.673 0.702 0.767 0.791 0.804 0.814 0.822 0.835 0.009

AUDA𝑤𝑜L𝑏𝑎𝑠𝑒
0.601 0.628 0.662 0.683 0.735 0.772 0.789 0.801 0.813 0.826 0.008

Informative sample selection

AUDA𝑤𝑜𝑄𝑈𝑛𝑐
0.621 0.654 0.695 0.725 0.792 0.819 0.826 0.836 0.849 0.861 0.01

AUDA𝑤𝑜𝑄𝑑𝑜𝑚
0.612 0.633 0.685 0.711 0.772 0.809 0.816 0.825 0.837 0.849 0.008

AUDA𝑤𝑜𝑄𝑑𝑒𝑛𝑠𝑖𝑡𝑦
0.605 0.628 0.681 0.712 0.767 0.801 0.809 0.818 0.828 0.841 0.009

AUDA𝑤𝑜𝑄𝑛𝑜𝑣𝑒𝑙
0.595 0.621 0.677 0.706 0.762 0.795 0.801 0.813 0.824 0.836 0.004
Fig. 3. T-sne results comparison between original image features and feature disentanglement output of source domain features. (a) Original image features; (b) Task specific
features; (c) Domain specific features. Each color in the cluster refers to different classes.
Similar to the results for histopathology images the results for xray
images show a similar trend regarding the contribution of different
components of feature disentanglement and informative sample selec-
tion. L𝑏𝑎𝑠𝑒 has the single biggest contribution in the performance of
feature disentanglement justifying our approach to distil knowledge
from a fully supervised classifier. Of the other three disentanglement
components L3 has the second most important contribution. We hy-
pothesize that this could be due to the fact that L3 enforces the task
specific and domain specific components to be complementary to each
other, and thus assimilate more information. In comparison, L1,L2
have similar contributions due to their focus on getting the domain
specific and task specific features.

Similarly, for the informative sample selection components, 𝑄𝑛𝑜𝑣𝑒𝑙
has the single most important contribution followed by significant
contributions of other components. 𝑄𝑈𝑛𝑐 is based on conventional label
uncertainty, and is a widely used method for determining sample infor-
mativeness. The domainness (𝑄𝐷𝑜𝑚) and density (𝑄𝐷𝑒𝑛𝑠𝑖𝑡𝑦) components
by themselves have similar contributions. All four terms combined
contribute to the better performance of our method.

In another set of experiments, to check the effect of feature dis-
entanglement we conduct experiments directly on the image features
without resorting to feature disentanglement and denote this method
as ALFREDO𝑁𝑜−𝐹𝑒𝑎𝑡𝐷𝑖𝑠𝑒𝑛𝑡 in Tables 2, 4, 6. This reduces the method to
being an informative sample selection method without taking into ac-
count the domain shift. Consequently, we calculate 𝑄𝑈𝑛𝑐 , 𝑄𝑑𝑜𝑚, 𝑄𝑑𝑒𝑛𝑠𝑖𝑡𝑦
and 𝑄𝑛𝑜𝑣𝑒𝑙 using the image features. The results are shown in each of
the tables, and are slightly better than using only uncertainty (‘‘𝑈𝑛𝑐’’).
This is explained by the fact that we use some additional information
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with uncertainty. However, due to the fact that the domain shift is not
considered, the results are much worse than the full ALFREDO method.

4.6. T-SNE visualizations

Fig. 3(a) shows the t-sne plots of image features (taken from the
fully connected layer of a DenseNet-121 trained for image classifica-
tion) while Fig. 3(b) shows the plot using the task-specific features. The
plots of the original features shows different image class clusters that
overlap and that makes it challenging to have good classification. On
the other hand, the clusters obtained using the task-specific features
are well separated and there is less overlap between different clusters.
Fig. 3(c) shows the output of using domain specific features where a
significant overlap is observed among classes. This is due to the fact
that domain specific features of samples from different classes (but
of the same domain are very similar). This clearly demonstrates the
efficacy of our feature disentanglement method, i.e., the task-specific
and domain specific features fulfill their desired objectives. In the
example in Fig. 3, the features are taken from images belonging to
5 classes (Atelectasis, Consolidation, Effusion, Infiltration and Nodule)
from the NIH dataset.

4.7. Robustness and generalization

To test the robustness of the proposed approach, we added simu-
lated gaussian noise of 𝜇 = 0 and different 𝜎 ∈ {0.005, 0.01, 0.015, 0.05,
0.1} and run our UDA pipeline. Fig. 4 shows the AUC values for the
baseline performance of UDA and different 𝜎. The results are close to
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Table 7
Values of hyperparameters for different datasets used in our experiments.

Feature disentanglement Informativeness 𝑄𝑑𝑜𝑚 thresholds (Eq. (8))

𝜆1 𝜆2 𝜆3 𝜆𝑏𝑎𝑠𝑒 𝜆𝑈𝑛𝑐 𝜆𝐷𝑜𝑚 𝜆𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝜆𝑁𝑜𝑣𝑒𝑙 𝜂1 𝜂2
NIH 0.85 1.1 0.95 1.2 1.1 0.9 1.05 1.25 0.24 0.78
CheXpert 0.95 1.0 1.1 1.0 1.2 1.1 0.95 1.0 0.29 0.8
Camelyon17 0.8 1.05 0.85 0.95 0.9 0.75 1.0 1.0 0.21 0.82
Fig. 4. AUC measures for different features for added Gaussian noise of 𝜇 = 0 and
different 𝜎.

UDA for 𝜎 = 0.005, 0.01, but start to degrade significantly for noise
levels above 𝜎 = 0.01, which we term as noise threshold. These results
demonstrate that our method is robust to a reasonable level of added
noise.

4.8. Hyperparameter settings

For our method we have two sets of hyperparameter values: for the
feature disentanglement (Eq. (1)) and for informative sample selection
(Eq. (11)). To set the hyperparameters for feature disentanglement
we adopt the following steps using the NIH X-ray dataset. For 𝜆1 we
varied the values from [0, 1.3] in steps of 0.05, keeping 𝜆2 = 0.45, 𝜆3 =
0.5, 𝜆𝑏𝑎𝑠𝑒 = 0.6. The best results were obtained for 𝜆1 = 0.85, which was
our final value. Then we vary 𝜆2 in a similar range with constant values
of 𝜆1 = 0.85, 𝜆3 = 0.5, 𝜆𝑏𝑎𝑠𝑒 = 0.6 to get the best results for 𝜆2 = 1.1.
We repeat the above steps to get 𝜆3 = 0.95, 𝜆𝑏𝑎𝑠𝑒 = 1.2. We repeat the
entire sequence of steps for the parameters of Eq. (11) and finally set
𝜆𝑈𝑛𝑐 = 1.1, 𝜆𝐷𝑜𝑚 = 0.9, 𝜆𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 1.05, 𝜆𝑁𝑜𝑣𝑒𝑙 = 1.25. Table 7 provides
the values for each parameter for the different datasets that we used.

5. Discussion and conclusion

In this paper, we present a novel approach for active domain
adaptation that combines active learning and domain adaptation. The
key motivation in combining active learning with domain adaptation
is to reduce the annotation cost for supervised settings, and in the
case of unsupervised domain adaptation, reduce the number of samples
required for training an accurate system. Unlike most current works
that deal with domain adaptation and active learning separately we
combine both approaches and leverage their respective advantages. We
propose a novel feature disentanglement approach where an image’s
feature representation is separated into task specific and domain spe-
cific features. The task specific features of source and target domain
are projected to a common space such that a classifier trained on one
domain features can perform equally well on the other domain. The ad-
vantage of task specific features is active learning strategies can be used
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to select informative target domain samples using a classifier trained
on source domain samples. We propose a novel informativeness score
that selects informative samples based on the criteria of uncertainty,
domainness, density and novelty.

Our proposed method yields better results than SOTA methods for
active learning and domain adaptation. Subsequent ablation studies
also highlight the importance of each term in the loss function and
justifies their inclusion. In future work, we aim to test our model on
other medical image datasets. We also aim to test its robustness and
generalizability to different classification architectures.
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