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A B S T R A C T   

Deep learning methods provide state of the art performance for supervised learning based medical image 
analysis. However it is essential that trained models extract clinically relevant features for downstream tasks as, 
otherwise, shortcut learning and generalization issues can occur. Furthermore in the medical field, trustability 
and transparency of current deep learning systems is a much desired property. In this paper we propose an 
interpretability-guided inductive bias approach enforcing that learned features yield more distinctive and 
spatially consistent saliency maps for different class labels of trained models, leading to improved model per-
formance. We achieve our objectives by incorporating a class-distinctiveness loss and a spatial-consistency 
regularization loss term. Experimental results for medical image classification and segmentation tasks show 
our proposed approach outperforms conventional methods, while yielding saliency maps in higher agreement 
with clinical experts. Additionally, we show how information from unlabeled images can be used to further boost 
performance. In summary, the proposed approach is modular, applicable to existing network architectures used 
for medical imaging applications, and yields improved learning rates, model robustness, and model 
interpretability.   

1. Introduction 

Deep learning (DL) is highly effective in medical image analysis and 
has shown state-of-the-art performance on a wide variety of tasks such as 
disease classification, segmentation, localization, etc. Liu et al. (2019); 
Litjens et al. (2017); Aggarwal et al. (2021). One important factor in 
guaranteeing high performance of DL models is the availability of large 
curated datasets. For medical imaging applications, having access to 
large collections of imaging datasets is a true challenge due to diversity 
of protocols, vendors, inter-rater variability, data protection and het-
erogeneous data governance regulations, etc. In order to address this 
challenge, different approaches have been proposed, including methods 
such as data augmentation, active learning, semi-supervised learning, 
and self supervised learning. Common to all these approaches, it is 
essential that trained models extract clinically relevant features for the 
downstream tasks. This includes modelling and incorporating appro-
priate inductive biases (i.e., set of assumptions used by a learner to 
predict outputs) (Griffiths et al., 2010; Hessel et al., 2019; Goyal and 

Bengio, 2020) in order to avoid spurious correlations leading to shortcut 
learning (Geirhos et al., 2020). Shortcuts stem from spurious correla-
tions as deep features that perform well on standard benchmarks but fail 
to generalize in real world scenarios (e.g. (DeGrave et al., 2021)). A 
robust and effective inductive bias reduces shortcut learning by injecting 
knowledge about desired properties of a model and its outputs. This can 
be done at different levels by considering model architecture, training 
data selection, training cost functions, and model optimization, as 
described below. 

Recent works have used attention mechanisms aiming at an induc-
tive bias that employs channel-wise attention mechanisms such as 
Squeeze and Excitation networks (SENet) (Hu et al., 2018), or 
spatially-based global attention (Bello et al., 2019; Woo et al., 2018a). 
SENet learns channel-wise relationships and proposes a novel architec-
tural unit that adaptively recalibrates channel-wise feature responses by 
explicitly modelling interdependencies among channels. In (Bello et al., 
2019), the authors use self-attention for discriminative visual tasks as an 
alternative to convolutions, which have been very successful in medical 
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image applications. In this work, a novel two-dimensional relative 
self-attention mechanism is used that reliably replaces convolutions for 
image classification. In (Woo et al., 2018a), a Convolutional Block 
Attention Module (CBAM) for feed-forward convolutional neural net-
works was proposed. For an intermediate feature map, CBAM sequen-
tially infers attention maps along the channel and spatial dimensions 
separately. The attention maps are then multiplied to the input feature 
map for an adaptive feature refinement. Previous self-attention methods 
require modification of existing architectures to include additional 
attention layers (or build on fully attention models (Ramachandran 
et al., 2019)), consequently one cannot utilize existing pre-trained 
models that have been well studied and proven to be accurate for 
different tasks. Indeed, many studies have shown that transfer learning 
for medical image analysis applications using pre-trained networks on 
other datasets performs well compared to models trained from scratch 
(Tajbakhsh et al., 2016; Weatheritt et al., 2020). Other attention based 
approaches include self-supervised contrastive learning (Chen et al., 
2020), where targeted data augmentations along with a contrastive loss 
is used to inform the model on variations in the data that should not be 
considered for feature learning. However, contrastive learning assumes 
implicit knowledge of downstream task invariances (Chen et al., 2020), 
which can be challenging to design for medical applications. 

The importance of utilizing effective inductive biases is exacerbated 

in the field of medical image analysis due to the typically low sample 
size of training datasets. We propose an interpretability-guided 
approach that incorporates an inductive bias for medical image anal-
ysis tasks in order to simultaneously improve model performance, its 
robustness and interpretability. The proposed approach, coined here-
after as SIBNet, for Salient Inductive Bias Network, is complementary to 
previously proposed attention-based approaches; it leverages findings 
from the area of interpretability (Reyes et al., 2020; McCrindle et al., 
2021; Kitamura and Marques, 2021; Fuhrman et al., 2022), and is 
motivated by the following observation: A trained radiologist learns to 
perform differential diagnosis on medical images based on 
disease-specific image patterns or characteristics. Consequently, during 
model training we propose to incorporate a novel inductive bias in the 
loss term of the model such that learned features yield more 
class-distinctive and spatially coherent interpretability saliency maps. 

The proposed interpretability-guided inductive bias acts directly on 
the loss function of the model being trained, it is modular and easy to 
implement, and can be utilized in conjunction with other existing loss 
functions, as well as on existing classification model architectures 
without modifications. 

We show further benefits of the proposed approach by using infor-
mation from unlabeled datasets, which is otherwise not possible for 
attention-based approaches that necessitate ground-truth information to 

Fig. 1. Proposed pipeline for interpretability-guided inductive bias, denoted as SIBNet (Saliency Inductive Bias Network). Given a training image Itrain, and model M, 
saliency maps describing current model’s interpretation for each class label are used to yield class-distinctiveness (LCD) and a spatial coherent loss terms (LSC). These 
terms can be used in conjunction with existing loss terms (e.g. Weighted Cross-Entropy LWCE), to inject desired properties of the saliency maps for improved model 
performance and interpretability. Gray- and blue-coloured components describe the standard and new proposed learning pipeline, respectively. Our method is, and 
when combined with the unsupervised information from unlabeled images (red-dotted line) it is denoted as SIBNet + . Note: Illustration for the case of image 
classification. For image segmentation tasks the same principle applies, with the difference that class labels for ground-truth data (orange block) are used in this case 
as a proxy classification task to yield improved learned segmentation features (see Section 3.3 for more details). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Motivation and seminal observation of SIBNet. Original image with expert annotated regions corresponding to (a) Pleural Effusion; (b) Atelectasis. Saliency 
maps (Deep Taylor) of individual classifiers for (c) Pleural Effusion (AUC = 0.922) and (d) Atelectasis (AUC = 0.848). Saliency maps obtained with joint classifier for 
(e) Pleural Effusion (AUC = 0.939) and (f) Atelectasis (AUC = 0.869). Along with improved performance, it can be observed that in comparison to Figures (c) and 
(d), saliency maps generated from a model classifying both conditions are more distinctive, more spatially coherent, and more in line with the expected areas of 
radiological interest describing each condition. 
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back propagate gradients. We present results on multi-class classifica-
tion and medical image segmentation, comparing the proposed 
approach to different state-of-the-art methods, as well as several abla-
tion studies conducted to demonstrate the added value of the proposed 
approach in terms of model performance, robustness and improved 
model training. We also show quantitatively how the proposed approach 
yields improved saliency maps in better agreement with expert- 
annotated saliency maps. As means to present and evaluate the new 
proposed interpretability-guided inductive bias, we demonstrate its 
effectiveness on publicly available datasets for chest X-ray classification 
and histopathology segmentation. 

1.1. Summary of the proposed method 

Fig. 1 shows the main pipeline of the proposed approach. Given a 
training set, a model is trained with a combination of standard classi-
fication loss(es) (e.g., weighted cross-entropy) and the proposed 
interpretability-guided inductive bias terms. As the training process 
evolves, learned features yield more class-distinctive and spatially 
coherent saliency maps, which enforces class separability, and hence 
expected improved performance, as well as an enhanced spatial atten-
tion to the class label describing the targeted medical condition/disease. 

In the following we describe the basic motivation and observation 
leading to the design of SIBNet, as well as a summary of its main 
components. 

Motivation Fig. 2(a,b) show a patient image with expert annotated 
regions corresponding to pleural effusion and atelectasis, two typically 
diagnosed lung conditions, along the AUROC values for different trained 
models. Fig. 2(c,d) show the corresponding saliency maps obtained on 
classification models trained to detect only pleural effusion and atelec-
tasis, respectively. In contrast, Fig. 2(e,f) show saliency maps generated 
from a model classifying both conditions. It can be observed that in 
comparison to Fig. 2(c) and (d), saliency maps generated from a model 
classifying both conditions are more distinctive, more spatially 
coherent, and more in line with the expected areas of radiological in-
terest describing each condition. Based on this initial observation we 
hypothesized whether improved model performance and interpret-
ability could be attained through an inductive bias reflecting enhanced 
distinctiveness and spatial consistency of saliency maps. 

Deep learning model We note that any deep learning model can be 
used with the proposed interpretability-guided inductive bias. For the 
selected case of lung disease classification we trained a DenseNet-121 
architecture due to its known good performance on this task (Irvin 
et al., 2019; Rajpurkar et al., 2017). Similarly, for medical image 

segmentation we trained the popular U-Net (Ronneberger et al., 2015) 
architecture (see Section 3.3). Given a set of N labeled training images 
{(xi, yi) : 1 ≤ i ≤ N}, xi ∈ Rd, being the training images, and yi ∈ {1,…,

K}, the corresponding class labels, a deep learning model M is commonly 
updated by minimizing a standard loss term, such as the weighted cross 
entropy loss (LWCE). We note that the modularity of the approach enables 
utilization of other existing loss functions, as illustrated in the loss 
function block of Fig. 1. 

Interpretability saliency maps Saliency maps are a popular interpret-
ability approach developed initially for natural images, and later used 
for interpretability of deep learning models in medical image applica-
tions (Cardoso et al., 2020; Reyes et al., 2020; Fuhrman et al., 2022; 
Budd et al., 2021; Kitamura and Marques, 2021; McCrindle et al., 2021; 
Mahapatra et al., 2022; 2021a). Saliency maps have been used for many 
medical image analysis application such as image registration (Maha-
patra and Sun, 2011; 2008), joint registration and segmentation 
(Mahapatra and Sun, 2012; 2010), active learning (Mahapatra and 
Buhmann, 2015), image quality assessment (Mahapatra et al., 2016), 
medical image super resolution (Mahapatra et al., 2017). In this study 
we selected DeepTaylor decomposition (Montavon et al., 2017) due to 
its popularity and previous uses in other medical image applications 
(Silva et al., 2020; Mahapatra et al., 2021b; Eitel et al., 2019). Deep-
Taylor is a method to explain neural network’s predictions in terms of 
input variables. It operates by running a backward pass on the network 
in order to produce a decomposition of the neural network’s output on 
the input variables. Each neuron of a deep network is viewed as a 
function that can be expanded and decomposed on its input variables. 
The decompositions of multiple neurons are then aggregated or propa-
gated backwards, resulting in a saliency map (e.g. Fig. 2). 

Given an input image I, and model M, a saliency map SI,c ∈ Rd 

identifies relevant regions of interest in I to be classified as label c. The 
proposed inductive bias aims at enhancing the distinctiveness of sa-
liency maps SI,c=i and SI,c=j(j ∕= i)(∀i, j ∈ {1,…,K}), as well as its spatial 
coherence to identify the area of interest used by model M. We note that 
the modularity of the approach enables utilization of other interpret-
ability approaches without loss of generalization. In the results section 
we also show results obtained employing GradCAM (Selvaraju et al., 
2017) in order to illustrate this point (see Fig. 3, and supplementary). 

2. Methods 

Given an input image I, and model M, a saliency map SI,c ∈ Rd 

identifies relevant regions of interest in I to be classified as label c. The 
proposed inductive bias aims at enhancing the distinctiveness between 

Fig. 3. (a) Mean AUC from 5-fold validation for all 5 labels using: (a) Deep Taylor Saliency Maps values of λ1 = 0.9; λ2 = 1.1; (b) GradCAM based saliency maps. The 
values of λ1 = 1.4; λ2 = 1.0 are used; (c) LRP saliency maps (Alber et al., 2019), values of λ1 = 1.1; λ2 = 0.8. Results are shown for the competing methods and 
ablation studies. 
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saliency maps SI,c=i and SI,c=j(j ∕= i)(∀i,j ∈ {1,…,K}), as well as its spatial 
coherence to effectively identify the area of interest used by model M to 
perform the task. In the next section we describe how these two prop-
erties are modelled within the loss term. 

2.1. Interpretability-guided inductive bias: loss terms 

2.1.1. Class distinctiveness 
Given training image I and model M, we yield during model training 

the set of saliency maps {SI,c}
K
c=1 identifying map explanations for each 

class c. Deep latent representations has been effectively used as an image 
perception similarity metric (Zhang et al., 2018), as well as in combi-
nation with interpretability methods for image retrieval (Silva et al., 
2020). Consequently, we calculate the corresponding latent represen-
tations of the saliency maps {ZSI,c}

K
c=1 from the second to last layer of the 

current classification model. The latent representation vectors Z hence 
encode the current understanding or perception of model M to the calcu-
lated saliency maps. 

In order to enhance distinctiveness of saliency maps for different 
classes, we calculate the following class distinctiveness loss term (LCD), 
as follows: 

LCD =
2

K(K − 1)
∑K− 1

c1=1

∑K

c2=c1+1
cosine similarity

(
ZSI,c1

,ZSI,c2

)
, (1)  

where cosine_similarity(⋅) is the cosine similarity metric used to compare 
latent representations (Zhang et al., 2018; Silva et al., 2020), with values 
ranging from 0 (i.e. maximum dissimilarity) and 1 (i.e. minimum 
dissimilarity). We note that other similarity metrics could be used here. 
The idea is to ensure that the latent representations Z for each class are 
as dissimilar as possible. Since the objective function aims to minimize 
the overall loss, the cosine similarity among different latent represen-
tations Z needs to be minimized towards zero. 

Eq. (1) therefore enforces distinctiveness of the different K saliency 
maps for each label class generated by the model, promoting with this 
distinctiveness of learned features. 

2.1.2. Spatial coherence 
The spatial coherence loss term complements the class distinctive-

ness loss term, and aims at regularizing the spatial distribution of sa-
liency maps. From observations, and as shown in the example in Fig. 2, 
saliency maps tend to be disperse and not spatially consistent in relation 
to expert-annotated saliency maps identifying regions of interest used to 
perform clinical diagnosis. We propose a spatial coherence loss term 
(LSC), as follows: 

LSC =
∑

p

∑

np∈N (p)

‖ xp − xnp ‖
2, (2)  

where xp is the pixel intensity in saliency map SI,c and xnp is the set of 
pixels in the 9 × 9 neighborhood N (p) belonging to the same cluster as 
p. A large neighborhood size will lead to merging pixels from different 
regions and increase the computational complexity, while too small a 
neighborhood size does not provide adequate context information. We 
explore different neighborhood sizes ranging from 3 ×3 to 15 × 15, and 
found that 9 × 9 neighborhood size provides the best trade-off between 
computation time and accuracy. We identify clusters on each saliency 
map by connected component analysis. We note that Eq. (2) does not 
impose a pixel-wise local smoothing effect (as in a total-variation loss 
term used in denoising), but its cluster analysis penalizes the presence of 
spurious clusters. 

We present in the result section a quantitative evaluation showing 
how these proposed terms yield saliency maps in better agreement with 
an expert radiologist - who manually annotated regions of pixel attri-
bution- than other benchmarked models. 

The total loss is then defined as: 

LTotal = LWCE + λ1LCD + λ2LSC (3) 

In the results section we present a sensitivity analysis of parameters 
λ1 and λ2, and describe their role through ablation experiments. 

2.1.3. Leveraging inductive bias from unlabeled data 
Due to its design the proposed SIBNet approach comes with an im-

plicit benefit, as it can be utilized on unsupervised data. As described 
above, saliency maps {SI,c}

K
c=1 can be calculated to yield map explana-

tions for each class c, and independently of the actual true class of the 
interpreted sample. This is possible since interpretability approaches, 
such as the ones investigated here, do not rely on knowing class labels to 
generate saliency maps. This enables us to employ SIBNet on unsuper-
vised data to further promote learning of features leading to distinctive 
and spatially coherent saliency maps. 

Given a set of unlabeled images, we generate their saliency maps and 
their corresponding latent representations ZSI,c in the same manner as 
described above. Similar to Eqs.  (1) and (2), we calculate the class 
distinctiveness and spatial coherence loss terms, which are combined 
into Eq.  (3). In this manner we highlight that the proposed approach 
enables supervised and unsupervised learning. In the results section we 
refer to SIBNet+ to models trained with additional unlabeled data. 

2.1.4. SIBNet for segmentation tasks 
For deep learning based medical image segmentation the common 

choice for the loss function is a combination of cross entropy and Dice 
loss (Isensee et al., 2021). For segmentation there are no explicit 
methods to calculate saliency maps. However, we propose to incorpo-
rate inductive bias into segmentation problems using the following 
rationale, which is also used in self-supervised learning: Enhancing class 
distinctiveness of structures being segmented (e.g, segmenting tumoral 
and benign cells), leads to improved segmentation performance. We list 
below the steps to implement this extension to segmentation tasks.  

1. A separate classification model (e.g. DenseNet-121) is trained to 
predict class labels of training images. From this trained model, sa-
liency maps for each class label can be computed and corresponding 
latent representation vectors are extracted by forward passing sa-
liency maps till the second to last layer of the classification model. 
The proposed loss terms LCD and LSC are then calculated, in addition 
to the weighted cross entropy.  

2. The encoder block of the trained classification model is used as a pre- 
trained encoder for a UNet model. This step enables guidance of the 
U-Net’s encoder via the proposed SIBNet inductive bias.  

3. The decoder block of the UNet is then initialized with random 
weights, and its training is conducted. The weights of the encoder 
section are frozen without any updates. We denote this network as 
UNetSIBNet , to refer to a UNet with pre-trained encoder using our 
SIBNet loss functions. 

In our experiments we used a combination of weighted cross en-
tropy and Dice loss. 

2.2. Implementation details 

Our SIBNet method was implemented in PyTorch. For classification, 
we trained DenseNet-121 models (Huang et al., 2016), although we note 
that other networks can also be used. For segmentation tasks we used 
DenseNet-121 for the classification model, as described above in Section 
2.1.4, and the U-Net architecture (Ronneberger et al., 2015) for the 
segmentation model. 

We used Adam optimizer (Kingma and Ba, 2014) with β1 = 0.93, 
β2 = 0.999, and batch normalization, with learning rate of 10− 3, and 
105 update iterations, and early stopping based on the validation ac-
curacy. In all experiments with DeepTaylor λ1 = 1.2,λ2 = 0.9. 

For the generation of interpretability saliency maps, we used default 
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parameters of the iNNvestigate implementation of DeepTaylor (Alber 
et al., 2019). In the results section we also present results with two other 
interpretability approaches, GradCAM (Selvaraju et al., 2017), and LRP 
(Bach et al., 2015) with default parameters. In this study we selected 
DeepTaylor decomposition (Montavon et al., 2017) due to its popularity 
and previous uses in other medical image applications (Eitel et al., 2019; 
Silva et al., 2020; Mahapatra et al., 2021b). DeepTaylor is a method to 
explain neural network’s predictions in terms of input variables. It 
operates by running a backward pass on the network in order to produce 
a decomposition of the neural network output on the input variables. 
Each neuron of a deep network is viewed as a function that can be 
expanded and decomposed on its input variables. The decompositions of 
multiple neurons are then aggregated or propagated backwards, 
resulting in a saliency map. 

Training and test was performed on a NVIDIA Titan X GPU having 12 
GB RAM. The input images were all of size 320 × 320 pixels. Training 
the baseline DenseNet-121 with LWCE for 50 epochs took 13 h, and for 
our method it took 14.5 h (extra 11.5% time). All the reported results are 
on the test set and an average of 3 different runs to ensure a fair and 
robust assessment. 

3. Results 

We demonstrate the benefits of SIBNet on two common applications 
for medical image analysis - classification and segmentation. For clas-
sification we employed chest X-rays (a multi-class classification prob-
lem) and for segmentation we employed digital histopathology 
interstinal glandular images of colorectal adenocarcinoma patients (a 
multi-object segmentation problem). 

In the following sections: 1) we first describe the different datasets 
and the evaluation metrics used; 2) we present classification results for 
the CheXpert and NIH chest Xray dataset; 3) segmentation results on 
histopathology images are then presented; 4) we show results of mul-
tiple experiments to determine the importance of saliency maps; and 5) 
also report results of ablation studies. 

3.1. Dataset description and evaluation details 

Classification dataset We used the CheXpert dataset (Irvin et al., 2019) 
consisting of 224,316 chest radiographs of 65,240 patients labeled for 
the presence of common chest conditions. The complete training set has 
223,414 images (i.e, for all 14 class labels), while validation and test set 
have 200 and 500 images, respectively. We adopt a five-fold validation 
strategy using a 80/20 ratio for validation and testing. The validation 
ground-truth was obtained using majority voting from annotations of 3 
board-certified radiologists. Test images were labeled by consensus of 5 
board-certified radiologists. The test set evaluation protocol, as designed 
by the dataset creators, is based on 5 disease labels: Atelectasis, Car-
diomegaly, Consolidation, Edema, and Pleural Effusion, which were 
selected in order to compare to (Pham et al., 2020), which is the 2nd 

ranked method in the CheXpert challenge (same AUC as 1st ranked 
approach and with an available implementation). Since the validation 
and test sets have images from 5 disease labels we trained our method on 
images from the same labels, using 9000 training images for each of the 
5 labels. 

Furthermore, in order to evaluate the saliency maps yielded by every 
benchmarked model, we asked a lung radiologist with over 15 years of 
experience to manually annotate salient regions describing diagnosed 
conditions on a subset of 25 randomly selected cases. Additionally, in 
order to show the ability of the proposed approach to use unlabeled 
data, we present results obtained when incorporating an additional set 
of 15,450 unlabeled images (3090 images from each class) from the NIH 
dataset (Wang et al., 2017). To set values for λ1, λ2 we performed an 
exhaustive grid search by varying the values of λ1, λ2 in the range of [0, 
2] in steps of 0.05 and use the combination with the best performance on 
a separate dataset of 10,000 images (refer to Section 3.5.3). 

Segmentation dataset For histopathology segmentation we used the 
public GLAS digital histopathology image dataset (Sirinukunwattana 
et al., 2017) that has manual segmentation maps of glands in 165 H&E 
stained images derived from 16 histological sections from different pa-
tients with stage T3 or T4 colorectal adenocarcinoma. The slides were 
digitized with a Zeiss MIRAX MIDI Slide Scanner having pixel resolution 
of 0.465 µm. The WSIs were rescaled to a pixel resolution of 0.620 µm 
(equivalent to 20× magnification). 

A total of 52 visual fields from malignant and benign areas from the 
WSIs were selected by the challenge organizers to cover a wide variety of 
tissues. An expert pathologist graded each visual field as either “benign” 
or “malignant”. Further details of the dataset can be found in Sir-
inukunwattana et al. (2017). 

3.1.1. Comparison methods and ablation experiments 
Classification results are shown for the following methods:  

1. Our proposed method SIBNet: Salient Inductive Bias Network, which 
includes all loss terms, as in Eq.  (3).  

2. Our first comparison is the method by Pham et al. (2020), which is 
the 2nd ranked method in the CheXpert challenge (same AUC as 1st 
ranked approach and with an available implementation), and uses 
directed acyclic graphs (DAGs) to learn the relationship between 
diseases for improved performance.  

3. Our second comparison method is Squeeze and Excitation (SE) (Hu 
et al., 2018), which uses a channel-wise attention mechanism.  

4. The third method is CBAM (Convolutional Block Attention module) 
(Woo et al., 2018b), which combines channel-, and spatial-wise 
attention mechanisms. 

The above-mentioned approaches are based on attention mecha-
nisms. In addition, we include further baselines and ablated variations of 
our proposed approaches:  

1. DenseNet: uses only LWCE for training;  
2. SIBNetNoLSC : Excludes the spatial coherence term in Eq. (2);  
3. SIBNetNoLCD : Excludes the class distinctiveness term of Eq. (1).  
4. SIBNet+: Same as SIBNet but utilizing 15,450 unlabeled datasets 

from the NIH dataset, as mentioned above.  
5. SIBNet-GradCAM & SIBNet-LRP : Same as SIBNet but with GradCAM 

(Selvaraju et al., 2017) or LRP (Layer-wise Relevance Propagation) 
(Bach et al., 2015) for saliency maps. This experiment aims at 
showing the modularity and effectiveness of SIBNet using alternative 
interpretability saliency methods. 

Evaluation metrics The trained classification models were assessed via 
the Area Under the ROC (AUC-ROC) curve, and the Area Under the 
Precision Recall curve measures. We also report validation loss curves to 
show the effectiveness of the proposed approach for improved model 
training. In addition, we compared quantitatively the saliency maps 
produced by the different benchmarked models with those produced by 
an experienced lung radiologist by means of commonly used metrics, 
such as Dice Coefficient (DC), Hausdorff Distance 95%(HD95)(Reinke 
et al., 2021), and Structural Similarity Index Measure (SSIM) (Wang 
et al., 2004). To calculate these metrics, we binarized saliency maps 
using the ConvexHull function of SciPy with default parameters. 

Due to the small dataset size of the provided validation set (200 
samples), and following best practices in training models, we show 
distribution of classification results for all labels in the CheXpert vali-
dation set of 200 images, using five-fold validation, with a 80%/20% 
ratio in order to show consistency of the performance across different 
folds and models (i.e. boxplots in Fig. 3(a)). We refrained from 
comparing to previously reported ensemble results (as in Pham et al., 
2020), which are typically oriented to challenges, in order to make a 
more clear and fair comparison of benchmarked models. 
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3.2. Classification results for chest xray 

3.2.1. CheXpert dataset 
Fig. 3 shows AUC-ROC (AUCROC) box plots for all 5 conditions in the 

CheXpert 5-fold validation set using different saliency map methods 
such as DeepTaylor (Fig. 3(a)), GradCAM (Fig. 3(b)) and LRP (Bach 
et al., 2015) (Fig. 3(c)). The proposed SIBNet shows the highest mean 
AUC followed (Pham et al., 2020; Woo et al., 2018b; Hu et al., 2018). 
Note that SIBNet+ has superior performance for all saliency methods 
due to the inclusion of unlabeled data from the NIH dataset. This dem-
onstrates the ability of the approach to utilize, where available, unla-
beled images to improve model performance, which is not possible with 
other approaches necessitating ground-truth data to back propagate 
gradients. 

The AUCROC is a popular metric for most classification challenges. 
However, due to the potential bias towards majority classes, we also 
report the area under precision recall curves (AUCPR). Table 1 summa-
rizes the AUCPR values for different methods, showing a similar trend as 
for AUCROC values. 

Training performance Fig. 4 shows validation loss curves for different 

approaches. The results show that SIBNet (and SIBNet+) has a lower 
initial loss and better convergence than other methods utilizing different 
attention mechanisms. Fig. 5 shows the AUCROC values for each of the 
individual 5 diseases, as well as the overall mean for the 5-fold evalu-
ation on the validation dataset. Results are shown for the three-best 
methods: SIBNet, SIBNet++, and Pham et al. (2020). SIBNet consis-
tently outperforms (Pham et al., 2020) for all lung conditions, while 
SIBNet++ improves upon SIBNet due to the availability of additional 
information from unlabeled images. 

3.2.2. NIH dataset 
We also conducted experiments on a second and different testing 

dataset using the NIH Chest X-ray dataset (Wang et al., 2017), which has 
112,120 expert-annotated frontal-view X-rays from 30,805 unique pa-
tients, and annotations of 14 pulmonary conditions. 

For this experiment we compared SIBNet to Chexnet (Rajpurkar 
et al., 2017) training both models with the same training dataset as 
described above for the CheXpert dataset, so the only difference between 
both models is in the loss term used by Chexnet (cross entropy) and by 
SIBNet (cross entropy plus class distinctiveness and spatial coherence 
terms). This experiment hence serves the purpose to test for model 
generalization, and to assess the added benefit of the proposed SIBNet 
loss terms on a different dataset. Results using DeepTaylor and Grad-
CAM are summarized in Fig. 6(a). Fig. 6(b) shows AUCROC results for 

Table 1 
Mean area under precision recall curves (AUCPR) from 5-fold validation CheXpert dataset.  

Baselines Proposed Ablation 

DenseNet-121 SE CBAM Pham SIBNet SIBNet+ SIBNet NoLCD SIBNet NoLSC SIBNet-GradCAM 

84.1(4.1) 90.4(4.0) 91.4(4.2) 93.2(4.2) 94.1(3.4) 95.6(3.9) 90.3(4.3) 91.5(4.2) 91.2(4.2)  

Fig. 4. Validation loss values for different epochs during training. Note: Deep 
Taylor decomposition was used to compute the saliency maps. 

Fig. 5. Bar plots showing average AUCROC values for each pathology from the 
5-fold evaluation CheXpert validation set, using the three-best methods: SIBNet, 
SIBNet+, Pham (Pham et al., 2020). 

Fig. 6. Results for NIH dataset: (a) AUCROC Box Plots for average values across 
all pathologies; (b) AUCROC values for all 14 pathologies for 3 methods. 
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individual pathologies from three methods, including Chexnet (Raj-
purkar et al., 2017) baseline results, our proposed SIBNet and 
SIBNet++. It is observed that SIBNet and SIBNet++ improves upon 
Chexnet for all 14 different classes. 

3.3. Segmentation of pathological structures from histopathology images 

We compared the performance of UNetSIBNet with a conventionally 
trained UNet from scratch using cross entropy and Dice loss for training. 
To get saliency maps for training we train a separate DenseNet-121 
model using the manually provided “benign” or “malignant” labels. 
The trained model is able to generate the desired saliency maps for each 
label which is used for training the different UNet models. Table 2 
summarizes the segmentation performance on GLAS Challenge for 
UNetSIBNet and UNet using different backbone networks. We observe that 
UNetSIBNet leads to considerable higher segmentation performance than 
UNet (DSC 92.2 vs. 87.6). Similarly, in terms of Hausdorff distance 
metrics, UNetSIBNet yielded more robust results than its counterpart 
(HD95 52.8 mm vs. 60.6 mm). This can be attributed to UNetSIBNet being 
able to capture class-specific imaging features (i.e., benign vs. malign) 
that lead the model to better delineate the structures. 

In Table 2 we also show results for the top-2 ranked methods, ac-
cording to challenge results reported in Sirinukunwattana et al. (2017), 
and comparative results from Xie et al. (2020) a recent deep learning 

Table 2 
Segmentation performance on the Glas Segmentation Challenge - Mean (stan-
dard deviation), using Dice Metric (DSC); F1- F1 score; HD95-95th percentile 
Hausdorff distance in mm.   

DenseNet 121 ResNet101 Competing methods  

UNetSIBNet UNet UNetSIBNet UNet Rank 
1 

Rank 
2 

(Xie 
et al., 
2020) 

DSC 92.2(3.4) 87.6 
(4.1) 

91.8(3.8) 87.0 
(4.5) 

89.9 89.6 90.6 

HD95 52.8(4.2) 60.6 
(4.9) 

53.9(4.3) 61.1 
(5.3) 

55.9 62.8 55.1 

F1 91.8(3.5) 87.0 
(4.3) 

91.3(4.0) 86.5 
(4.8) 

89.4 88.9 89.0  

Fig. 7. Segmentation results for the GlaS Segmentation Challenge. Original image and contours of different segmentation methods are shown. The manual seg-
mentation is shown as a red contour and each algorithm’s output is shown in green for: (a) UNetPre− SIBNet ; (b) Cropped regions highlighted by black arrows in (a); (c) 
UNet; (d) Cropped regions highlighted by black arrows in (c). Rows correspond to different images. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 8. Comparison with Radiologist’s Saliency Maps.(a) Original image with expert-annotated outlines of diagnosed conditions. Saliency Maps for different 
methods: (b) SIBNet; (c) SIBNetNoLSC ; (d) SIBNetNoLCD ; (e) Pham et al. (2020). Top row: Pleural effusion; Bottom row: Atelectasis. 
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method that outperforms these two methods. Rank-1, Rank-2 are both 
deep learning based methods with specific pre-processing steps designed 
to improve method robustness, while (Xie et al., 2020) employs a pair-
wise relation-based semi-supervised (PRS2) model for gland segmenta-
tion. Fig. 7 shows example segmentation outputs of UNetSIBNet and UNet. 
The results clearly show the improvements over the baseline UNet. We 
note that visual results for the other approaches are not available due to 
the lack of code availability. 

3.4. Investigation of saliency maps’ performance 

3.4.1. Enhanced interpretability saliency maps 
Fig. 8 shows the resulting saliency maps on the CheXpert dataset for 

the proposed, ablated, and best compared approach from Pham et al. 
(2020), along with the corresponding saliency map generated by the 
expert lung radiologist. Fig. 8(a) shows the expert delineated regions for 
pleural effusion (red outline, top row) and atelectasis (blue outline, 
bottom row). Salient maps are shown for SIBNet (Fig. 8(b)), SIBNetNoLSC 

(Fig. 8(c)), and SIBNetNoLCD (Fig. 8(d)), and by Pham et al. (2020) (Fig. 8 
(e)). Maps corresponding to the baseline DenseNet are shown in Fig. 2. 
Excluding the spatial coherence term LSC results in more dispersed 
salient regions, with image borders and corners also seemingly used by 
the model, alluding to a potential shortcut learning. On the other hand 
excluding the class distinctiveness LCD results in more similar saliency 
maps for different disease labels. Employing all loss terms (Eq. (3)) 
yields more distinctive and spatially coherent salient regions for each 
class label. 

3.4.2. Comparison with radiologist’s saliency maps 
We compared saliency maps from SIBNet and benchmarked ap-

proaches, with those generated by a radiologist with over 15 years of 
experience. Results in Fig. 8 show that saliency maps yielded by SIBNet 
are most similar to the radiologist’s maps. Although we do not expect a 
perfect alignment, a good saliency map should highlight a majority of 
the regions of interest characterizing the lung condition. Quantitative 
measures for saliency overlap in Table 3 also highlight SIBNet’s superior 
performance. 

We also report performance of models during their training. Fig. 9 
shows the average Dice metric of the resulting saliency maps after every 
epoch. All methods show dice values that are uniformly increasing, but 
values of SIBNet and SIBNet+ are notably more stable, while all other 
methods produce values that keep fluctuating. 

3.5. Ablation studies 

3.5.1. Ablation studies for CheXpert dataset 
Fig. 3 shows results for the ablation experiments excluding different 

terms in the loss function. The results show that the proposed SIBNet loss 
terms are complementary and important contributors to the overall 
model performance. Excluding any one term results in a performance 
drop. 

Table 3 
Similarity of saliency maps with expert maps-Mean (standard deviation), using SSIM-structural similarity index (Wang et al., 2004); DM-Dice Metric; HD95-95th 
percentile Hausdorff distance in mm. SSIM,DM ∈ [0,100].   

Baselines Proposed Ablation  

DenseNet-121 SE (Hu et al., 2018) CBAM (Woo et al., 2018b) Pham (Pham et al., 2020) SIBNet SIBNet+ SIBNet NoLCD SIBNet NoLSC 

SSIM 52.1(4.1) 62.2(4.0) 64.3(4.1) 68.5(4.2) 72.1(3.7) 74.2(3.5) 61.2(4.1) 64.2(4.2) 
DM 69.1(4.4) 72.3(3.9) 77.4(3.7) 80.2(3.7) 85.9(3.2) 88.2(3.4) 73.8(3.8) 76.7(3.7) 
HD95 14.7(3.5) 12.4(3.4) 11.8(3.1) 10.9(3.2) 10.3(2.9) 9.9(2.8) 12.5(2.9) 11.6(3.2)  

Fig. 9. Agreement of saliency maps between methods and expert annotations, 
assessed via Dice values over epochs. Fig. 10. Box Plots of AUCROC values when using latent representations of 

original images instead of saliency maps. 

Fig. 11. Change of AUC values for different λ1, λ2 using Deep taylor Sa-
liency maps. 
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3.5.2. Using latent representations of original images instead of saliency 
maps 

As further ablation study, we report performance metrics when using 
the original images instead of saliency maps to calculate the proposed 
losses. Fig. 10 shows the box plots of AUCROC values when using the 
latent feature vectors of the original images instead of the saliency maps. 
Although SIBNet still outperforms the other approaches, there is a sig-
nificant reduction in performance when using the original images (see 
Fig. 3). This behaviour can be attributed to the fact that saliency maps 
highlight information regarding the pathology, which is in turn the 
target of the classification model being explained. In contrast, the 
original X-ray image includes other sources of information, including 
the overall anatomy, that is of much lower relevance to the trained 
model. This result highlights the benefit of using saliency maps as a 
natural and interpretable attention mechanism. 

3.5.3. Setting λ values 
Fig. 11 illustrates the change of λ1 and λ2 values on a coarse scale for 

DeepTaylor saliency maps. For the full range of values of λ1, λ2 there are 
1600 combinations. Since this is difficult to illustrate, we show in Fig. 11 
variations with steps of 0.2, which gives 100 possible combinations. Best 
performance was found for λ1 = 1.4 and λ2 = 1.0, showing that both 
terms contribute to improved results (i.e. none of the terms reduced to 
zero). Similar behaviour was observed for saliency maps based on 
GradCAM and LRP. 

3.5.4. Robustness to noise 
In an attempt to quantify the models robustness to noise we added 

Gaussian noise of μ = 0 and different σ ∈ {0.005,0.01,0.05,0.1} to 
input images. Table 4 shows for the CheXpert dataset, the AUCROC values 
for different methods at different levels of added noise. While the per-
formance of all methods decreases with added noise, SIBNet perfor-
mance is more robust to noise variations. 

3.5.5. Using simpler classifiers 
To determine whether the observed superior performance of SIBNet 

is due to more discriminative learned features, we performed an alter-
nate classification where we used learned features to train simple clas-
sifiers such as SVMs (with different kernels) and Random Forests. 
Results are summarized in Table 5. We observed that the linear classi-
fiers yielded similar results as the SIBNet method (see Table 1). This 
suggests that the use of inductive biases results in more discriminative 
features that can be used with different types of classifiers. We note that 
the proposed inductive bias is not restricted by the deep learning 
framework, and nor does it require further use of non-linear kernels in 
SVM classifiers. 

3.5.6. Effect of reduced/increased network capacity 
As another way of evaluating model generalization capability, we 

reduced and increased the number of parameters across different layers 
of benchmarked models and investigated the effect on validation and 
test losses. Fig. 12 summarizes our findings. These experiments were 
carried out on the CheXpert dataset. We denote our reference model (i. 
e., without any reduction/increase) as having P number of parameters. 
Fig. 12 shows the loss value with varying number of parameters denoted 
as multiples of P. With reduced number of parameters we observe an 
increase in validation and test error. Conversely, when increasing the 
number of parameters beyond P, training and validation errors remain 
constant up to 1.8P, when we notice that although the validation error 
remains mostly constant, the test error increases, particularly for CBAM 
and (Pham et al., 2020). These results indicate a lower tendency of 
SIBNet to overfit as well as an improved generalization capability. 

4. Discussion 

Inductive bias plays an important role in machine and deep learning 
as it allows us to inject domain knowledge and specific sought-out 
characteristics that a trained model should have. In medical image 
analysis applications this need is exacerbated by the relatively smaller 
datasets, and different confounders present in real world clinical data-
sets, increasing the likelihood of shortcut learning (Geirhos et al., 2020; 
DeGrave et al., 2021), where models use spurious correlations in the 
data. Convolutional Neural Networks (LeCun et al., 1989) are a suc-
cessful example of inductive bias for image recognition tasks, where the 
convolution operator implicitly encodes the known a-priori information 
regarding neighboring pixel relationships in an image. Recently, visual 
image transformer networks (Dosovitskiy et al., 2020) have demon-
strated high performance levels by making the inductive bias more 
general but at the cost of necessitating more training data than CNN 
networks. In medical imaging, hybrid approaches are emerging in an 
effort to combine the benefits of both approaches (Chen et al., 2021; Wu 
et al., 2021). In this study we introduce a complementary inductive bias 
building on findings from the area of interpretability of deep learning. 
Interpretability in medical imaging applications has been signaled as 
essential to ensure a safe, trustable and effective adoption of deep 

Table 4 
Effect of adding noise on the Chexpert dataset. AUCROC values for added Gaussian noise of μ = 0 and different σ.   

Baselines Proposed Ablation  

DenseNet-121 SE CBAM Pham SIBNet SIBNet+ SIBNet NoLCD SIBNet NoLSC SIBNet-GradCAM 

σ = 0 84.4(4.6) 90.8(4.3) 91.6(4.3) 93.2(4.1) 94.3(3.9) 95.5(3.8) 90.1(4.3) 91.4(4.1) 92.1(4.0) 
σ = 0.01 83.9(4.8) 90.2(4.4) 91.0(4.5) 92.6(4.3) 93.6(4.1) 95.0(3.9) 89.6(4.4) 91.0(4.3) 91.7(4.2) 
σ = 0.05 81.1(5.0) 89.0(4.7) 89.7(4.6) 91.1(4.4) 92.1(4.2) 93.4(4.1) 88.1(4.5) 89.6(4.2) 90.3(4.3) 
σ = 0.1 78.4(5.1) 86.2(4.8) 87.3(4.5) 88.4(4.5) 89.8(4.2) 90.7(4.2) 85.0(4.5) 86.1(4.3) 87.1(4.2)  

Table 5 
Effect of using features with different classifiers.   

SVM-Linear SVM-Gaussian Random forests 

AUC 94.1(4.3) 94.2(4.2) 94.0(4.3)  

Fig. 12. Change of validation and test error with varying number 
of parameters. 
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learning technologies in the clinics (Cardoso et al., 2020; Reyes et al., 
2020; Fuhrman et al., 2022; Budd et al., 2021; Kitamura and Marques, 
2021; McCrindle et al., 2021). Beyond the originally-defined objective of 
yielding model interpretation, in this study we demonstrate how inter-
pretability can be used to produce an effective inductive bias mecha-
nism, simultaneously leading to improved model performance and 
model interpretability. Through experimentation with two common 
medical imaging problems of classification and segmentation, several 
ablation and robustness tests, we show the interesting properties of the 
proposed Saliency Inductive Bias Network (SIBNet) approach. 

Modularity of SIBNet SIBNet enables utilization of different inter-
pretability approaches. In this study we experimented with known 
methods such as DeepTaylor, GradCam and LRP, and demonstrate that 
irrespective of the saliency map method, improved model performance 
is attained. Although we show results for DeepTaylor, GradCAM and 
LRP, we emphasize that other approaches can be used interchangeably. 
This flexibility allows one to adopt new approaches being developed in 
the evolving field of interpretability (Doshi-Velez and Kim, 2017; Eitel 
et al., 2019). Secondly, since SIBNet does not require modification of the 
model architecture, it allows re-utilization of available pre-trained 
models on large datasets. Furthermore, the proposed SIBNet loss terms 
can be used in conjunction with other loss terms commonly used to train 
deep learning models, allowing further exploration of losses (Ma et al., 
2021). 

On the effectiveness of saliency map latent representations The proposed 
class distinctiveness term of SIBNet utilizes the latent representation of 
the whole saliency map, which simultaneously encodes location, shape 
and other information. In this sense, this term has the ability of char-
acterizing diseases or clinical conditions that might even present spatial 
overlap, as is the case presented in this study for lung conditions. We 
attribute this to the effectiveness of latent representations studied in 
Zhang et al. (2018). Complementing this term, the spatial coherence 
term of SIBNet regularizes incorrect local variations, which from our 
experience occur often in medical imaging, potentially as a result of 
shortcut learning, leading to sparse saliency maps not being consistent 
with the analysis performed by radiologists (DeGrave et al., 2021). 

Furthermore, the superiority of latent representations derived from 
saliency maps, over those directly generated from the input images, 
aligns with previous findings in Silva et al. (2020), where latent repre-
sentations of saliency maps were used for medical image retrieval pur-
poses, and in sample selection for active learning (Mahapatra et al., 
2021b). Intuitively, we attribute this superiority to the fact that saliency 
maps focus on the information regarding the pathology, which is in turn 
the target of the model being explained. In contrast, latent representa-
tions of the input images encode other sources of information, including 
the overall anatomy, which is typically of much lower relevance for the 
task, but can potentially be misused by a model operating in shortcut 
learning mode (Geirhos et al., 2020; DeGrave et al., 2021). 

Improved learning rate, robustness and generalization potential The 
proposed interpretability-guided inductive bias jointly aims at 
improving model performance and interpretability by explicitly guiding 
the learning process to generate features yielding distinctive saliency 
maps across classes, as well as to promote spatial coherence of saliency 
maps generated by the model. Our findings suggest that the proposed 
inductive bias is not only able to yield improved performance of trained 
models, but also yields a faster learning rate, as evidenced in the vali-
dation curves in Fig. 4. We note that this behaviour was found across the 
different saliency maps utilized in our experiments (i.e. DeepTaylor, LRP 
and GradCam). This characteristic is particularly important in medical 
imaging applications where large annotated training datasets are chal-
lenging and time consuming to create. We believe these results align 
with recent findings regarding the importance of effective inductive bias 
(Locatello et al., 2019). Furthermore, high learning rates are particularly 
important in clinical scenarios where imaging devices and protocols are 
updated, and thus model retraining, or active learning, needs to take 
place in a time and resource effective manner. 

In terms of robustness, we analyzed SIBNet under different levels of 
image noise, model capacity, and its performance on a secondary un-
known dataset. Compared to the benchmarked approaches, SIBNet 
shows a superior generalization capability and robustness levels, how-
ever our experiments are limited here and we cannot guarantee supe-
riority across tasks (no free lunch theorem). We advocate that the 
proposed inductive bias is well suited for a large set of medical imaging 
tasks where the focus of the task relates to image areas where the 
medical condition of interest is radiologically seen. 

Improved interpretability Enhanced interpretability of deep learning 
systems for medical image applications has been an important area of 
discussion and research in the last few years. The proposed 
interpretability-guided inductive bias explicitly enforces sought-out 
characteristics of class distinctiveness and spatial coherence, leading 
to saliency maps in better agreement with expert-generated saliency 
maps (see Table 3 and Fig. 9). The proposed class distinctiveness loss 
term of SIBNet across potential classes, aligns with the differential 
diagnosis that radiologists need to be trained on. This is essential in 
order to correctly diagnose cases in the presence of similar imaging 
patterns that could otherwise confuse a non-expert reader. Compared to 
other approaches proposing self-attention maps, such as CBAM (Woo 
et al., 2018b) and channel-wise attention mechanisms (Hu et al., 2018), 
SIBNet can be utilized with any network architecture without need for 
modifications. Similarly, in comparison to contrastive learning (Chen 
et al., 2020), SIBNet does not require artificial construction of contras-
tive samples via data augmentation, but naturally utilizes the expected 
class-distinctiveness of saliency maps per data point to drive the learning 
process. 

Semi-supervised uses Beyond supervised learning we investigated the 
use of unlabeled data, and reported results of SIBNet++, which can use 
unlabeled data to further guide a model during training. In these 
regards, an interesting area of further research would be to employ this 
finding to perform quality control of already deployed models on newly 
unseen (i.e. unlabeled) datasets, utilizing the levels of class distinctive-
ness and spatial coherence, observed during training, as quality refer-
ence points for testing time. 

Some limitations and potential further areas of research Some limita-
tions are worth mentioning. Our study was limited to classification and 
segmentations tasks, and although we foresee interesting advantages, 
we cannot guarantee similar findings on tasks such localization and 
other regression tasks. We also limited our study to medical imaging 
datasets, but we see interesting applications to other medical multi- 
omics scenarios where existing interpretability approaches for non- 
imaging datasets (Lundberg and Lee, 2017) could be used in combina-
tion with saliency maps for medical images to drive the learning process 
of such multi-omics models. 

5. Conclusions 

In this paper we propose a novel interpretability-guided inductive 
bias approach that is motivated by the hypothesis that enhanced class- 
distinctiveness and spatial coherence of saliency maps, injected during 
model training, leads to improved model performance and improved 
interpretability of model’s predictions. Experiments and comparisons 
with state of the art approaches on publicly available datasets show the 
added benefits of the proposed approach. We highlight its ability to 
operate on any existing architecture without need of modifications and 
its modularity, which is exemplified by using different interpretability 
approaches and unlabeled data. Beyond the presented results, we 
believe the proposed approach can be extended for multi-omics prob-
lems where different data types (e.g. imaging, text reports, clinical 
laboratory, etc.) can naturally be handled by available interpretability 
approaches able to interpret data of different nature, leading to a flexible 
multi-omics interpretability-guided inductive bias framework. 
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Appendix A. Additional results For SIBNet saliency maps 

Fig. A.13 shows the resulting GradCAM-based saliency maps for 
SIBNet, DenseNet-121, and best compared approach from Pham et al. 
(2020), along with the corresponding saliency map generated by the 
expert lung radiologist, for a case jointly presenting Pleural effusion and 
Atelectasis. Fig. A.14 shows saliency maps for a case with Edema. We 
show results for SIBNet, DenseNet and best compared approach from 
Pham et al. (2020). In addition, we show results for both Deep Taylor 
and GradCAM. Similar to the results presented for Deep Taylor Maps 
(Ref Fig. 8), we observe that inclusion of our novel loss terms makes the 
saliency maps more compact and greater aligned with diseased regions. 
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Fig. A1. Saliency map comparison with radiologist’s saliency maps using GradCAM for a patient diagnosed with Pleural effusion (red contour) and Atelectasis (blue 
contour). From left to right: Original image with expert-annotated outlines of diagnosed conditions, saliency maps for SIBNet, DenseNet-121, Pham et al. (2020). Top 
row: Saliency maps for Pleural effusion (red contour); Bottom row: Saliency maps for Atelectasis (blue contour). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. A2. Saliency map comparison with radiologist’s saliency maps using Deep Taylor and GradCAM for a patient with Edema. From left to right: Original image 
with expert-annotated outline of Edema, DeepTaylor-based saliency maps for SIBNet, DenseNet-121, Pham et al. (2020), and GradCAM-based saliency maps for 
SIBNet, DenseNet-121, Pham et al. (2020). 
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