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Abstract

Informative sample selection in active learning (AL) helps a
machine learning system attain optimum performance with
minimum labeled samples, thus improving human-in-the-
loop computer-aided diagnosis systems with limited labeled
data. Data augmentation is highly effective for enlarging
datasets with less labeled data. Combining informative sam-
ple selection and data augmentation should leverage their re-
spective advantages and improve performance of AL systems.
We propose a novel approach to combine informative sample
selection and data augmentation for multi-label active learn-
ing. Conventional informative sample selection approaches
have mostly focused on the single-label case which do not
perform optimally in the multi-label setting. We improve
upon state-of-the-art multi-label active learning techniques
by representing disease labels as graph nodes, use graph at-
tention transformers (GAT) to learn more effective inter-label
relationships and identify most informative samples. We gen-
erate transformations of these informative samples which are
also informative. Experiments on public chest xray datasets
show improved results over state-of-the-art multi-label AL
techniques in terms of classification performance, learning
rates, and robustness. We also perform qualitative analysis to
determine the realism of generated images.

Introduction
Annotating medical images is necessary for state-of-the-art
(SOTA) supervised learning methods, but poses challenges
due to the high expertise and costs involved. Active Learning
(AL) allows an expert to label informative samples which
enable a model to have high performance with minimal la-
beled samples (i.e., high learning rates). Data augmenta-
tion is also effective with few labeled samples and syn-
thetic data is used to improve model generalization (Perez
and Wang 2017). Despite increasing dataset size, conven-
tional data augmentation (flipping, rotating, etc.) does not
add new informative samples to the training set. Recent
works for data augmentation use Generative Adversarial
Networks (GAN) (Goodfellow et al. 2014), Spatial Trans-
form Networks (STN) (Jaderberg et al. 2015), Variational
Autoencoder (VAE) (Kingma and Welling 2013), and Mixup
(Zhang et al. 2017) for synthetic feature generation.
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Combining data augmentation and active learning can
leverage both approaches’ advantages. (Tran et al. 2019)
select informative samples by an acquisition function and
generate augmented samples from them. However, the ac-
quisition function does not evaluate the potential informa-
tion gain from augmented samples and the generated data
does not guarantee informativeness. Kim et al. in (Kim et al.
2021) propose Look Ahead Data Augmentation (LADA),
that evaluates the informativeness of potential augmenta-
tions and generates informative samples. Thus, augmented
samples provide qualitatively different information from the
base samples. However, LADA is not equally effective for
the multi-label setting. Chest xrays (CXRs) have multiple
disease labels making informative sample selection a chal-
lenge since one needs to consider the mutual influence and
similarity of all potential class labels,. Additionally, aug-
menting such informative samples should ensure appropri-
ate informativeness of the new samples. In this paper we
propose a novel method for multi-label active learning com-
bined with informative sample data augmentation.

Prior Work
Active Sample Selection: Different informative sample
selection approaches for deep learning based medical im-
age analysis include sample entropy (Zhu and Bento 2017),
model uncertainty (Gal, Islam, and Ghahramani 2017),
Fisher information (Sourati et al. 2019), and clustering-
based sample selection (Zheng et al. 2019). Sample entropy
quantifies it’s difficulty in classification, with higher entropy
characterizing higher sample informativeness. (Wang et al.
2017a) use sample entropy, a least-confidence component,
and margin sampling to select informative samples. (Zhou
et al. 2016) use GANs to synthesize samples close to the
decision boundary, which are then annotated by human ex-
perts. (Mayer and Timofte 2018) generate high entropy sam-
ples, which are used as a proxy to find the most similar
samples from a pool of real sample candidates to be an-
notated by experts. The state-of-the-art in active learning is
mostly dominated by methods relying on uncertainty esti-
mations. Uncertainty-based methods identify the most infor-
mative samples for which a model is most uncertain. (Yang
et al. 2017) propose a two-step sample selection approach
based on uncertainty estimation, followed by a second selec-
tion step based on a maximum set coverage similarity met-
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ric. Test-time Monte-Carlo dropout (Gal, Islam, and Ghahra-
mani 2017) has been used to estimate sample uncertainty,
and consequently select the most informative ones for la-
bel annotation (Bozorgtabar et al. 2019). (Mahapatra et al.
2021) propose an interpretability-guided sample selection
approach featuring state-of-the-art performance for classi-
fication and segmentation tasks. However these approaches
are not designed for multi-label classification problems.

A comprehensive survey on multi-label deep active learn-
ing can be found in (Wu et al. 2020). Some specific
approaches include application to remote sensing images
(Mollenbrok, Sumbul, and Demir 2023) and sub-example
querying. However there is very limited work on ML active
learning for medical image analysis, with (Reyes, Morell,
and Ventura 2018) using a measure of inconsistency of a
predicted label set to select the most informative samples.

Active Learning with Data Augmentation: Prior work
on leveraging data augmentation for active learning includes
Bayesian Generative Active Deep Learning (BGADL),
which combines acquisition and augmentation steps in a
pipelined approach (Tran et al. 2019). However, a large num-
ber of labeled instances are needed to train the generative
model, and BGADL does not measure the potential infor-
mation gain from data augmentation. Consistency-based Ac-
tive Learning (CAL) algorithms consider data augmentation
by replacing uncertainty with an augmentation-based incon-
sistency term. (Kim et al. 2021) propose look-ahead-data-
augmentation (LADA) to select informative samples and
also evaluate informativeness of generated samples, but does
not perform accurately in a multi-label setting.

Contributions: Different from previous works, we com-
bine data augmentation and informative sample selection in
a multi-label setting with the following novelties: 1: Using
graph attention transformers to incorporate the importance
of different nodes and quantify a graph’s informativeness.
Simple aggregation such as sum and mean of the weights
give equal importance to all nodes and do not emphasize
nodes with greater information that could have greater con-
tribution to the task in hand. 2: We propose a novel multi-
label informativeness score, derived from graph attention
transformers, that quantifies the importance of each sample
based on multi-label interactions. 3: A novel data augmenta-
tion approach to reduce redundancy in sample selection that
takes base informative images (identified from the multi-
label informativeness score) and generates novel transfor-
mations such that new images are informative compared to
the base image.Our method is dubbed as DAMLAL (Data
Augmentation with Multi Label Active Learning), and out-
performs previous active learning approaches for chest X-
ray classification.

Methods
Outline Of Proposed Method: Figure 1 depicts the dif-
ferent stages of our workflow. We identify multi-label infor-
mative samples using a multi-label sample informativeness
measure by jointly considering the mutual influence of all
potential class labels. New informative samples are synthe-
sized from identified base informative samples to provide

Figure 1: Workflow of proposed DAMLAL method. Given
unlabeled samples a graph-based transformer is used with a
novel metric to rank informative samples. Selected samples
are used to synthesize more informative and non-redundant
samples which are added to the training dataset for the next
active learning cycle.

Figure 2: Graph Multiset Transformer: A graph with n nodes
depicting multi-label information of a sample is passed
through several message-passing layers (a) and an attention-
based pooling block (GMPoolk) (b) to get k(< n) nodes.
A self-attention block (SelfAtt) (c) encodes the relationship
between k nodes, and passes through GMPool1 (d), to obtain
a single node value. Different node colors indicate different
classes and the edge length denotes node similarity.

new information to the training set. The classifier model is
then updated and these set of steps repeated till no new in-
formative samples are found.

Multi-Label Sample Informativeness
To identify most informative samples in multi-label settings,
we incorporate class-label interactions using a graph-based
ranking metric scheme that leverages graph transformers,
and a graph pooling approach to learn better global rela-
tionships among graph nodes. We model each sample as
follows. Assuming K nodes in each graph (corresponding
to K classes), we define edge weights between nodes i, j,
as wij = cosine similarity(zSI,i

, zSI,j
). zSI,i

and zSI,j

are latent feature vectors derived from saliency maps S of
sample image I for class labels i and j, which have shown
to perform better than using feature maps in classification
due to their intrinsic focused attention mechanism (Mahap-
atra, Poellinger, and Reyes 2022b). Cosine similarity is used
since its range is bounded and suitable as a loss term.

Graph Transformers: Graph pooling is important to
obtain a lower dimensional informative representation of
graphs. While Node drop methods (Zhang et al. 2018; Lee,
Lee, and Kang 2019) and Node clustering methods (Ying
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et al. 2018; Bianchi, Grattarola, and Alippi 2019) are pop-
ular, they tend to drop informative nodes at every pooling
step, and have high computational complexity respectively.
To overcome these limitations, we use a Graph Multiset
Transformer (GMT) (Baek, Kang, and Hwang 2021) atten-
tion unit. GMT pooling condenses a graph into a set of rep-
resentative nodes, and then encodes their relationships to en-
hance the representation power of the graph (Figure 2). We
refer the readers to (Baek, Kang, and Hwang 2021) for full
details and provide a short summary below. A simple sum
pooling over a graph does not consider each node’s rele-
vance to the task and treats them equally. This limitation
is addressed using an attention mechanism on the multiset
pooling function to better capture structural dependencies
among nodes.

Graph Multi-head Attention: Assuming n node vectors,
input query Q, key K and value V the output of the attention
stage is: Att(Q,K,V) = ϕ(QKT )V. Multi-head attention
(Vaswani et al. 2017) can be used by linearly projecting Q,
K, and V, h times respectively to yield h different repre-
sentation subspaces. To enable better representation learn-
ing, we instead use Graph Multi-Head attention (GMH) to
generate key and value pairs using Graph Neural Networks
(GNNs) as: GMH(Q,H,A) = [O1, · · · , Oh]WO; where
Oi = Att(QWQ

i , GNNK
i (H,A), GNNi(H,A)). The out-

put of GNNi contains neighboring information of the graph,
and improves over previously used linear node embeddings
for key and value matrices. Given node features H from
GNNs, a Graph Multiset Pooling (GMPoolk) compresses
the n nodes into k(< n) nodes. To quantify the interactions
among graph nodes, a Self-Attention function (SelfAtt), in-
spired by the Transformer architecture (Vaswani et al. 2017;
Lee et al. 2019) is used. SelfAtt captures inter-relationships
among n nodes by using node embeddings H on both query
and key locations of GMH.

Overall Architecture: For a graph G with node features
X and an adjacency matrix A, the Encoder is denoted as:

Encoder(X,A) = GNN2(GNN1(X,A),A), (1)

where we stack 2 GNNs to construct the deep structures,
although more GNNs may be stacked depending on the ap-
plication. After obtaining a set of node features H from an
encoder, the pooling layer aggregates the features into a sin-
gle vector. Finally, we obtain the entire graph representation
by using GMPool with k = 1 as follows:

MIS = Pooling(H,A)

= GMPool1(SelfAtt(GMPoolk(H,A)), A′), (2)

where A′ is the identity or coarsened adjacency matrix,
adjusted after compressing the nodes from n to k with
GMPoolk. The above step condenses the entire graph and
represents it as a single value: the multi-label informative-
ness score MIS with higher values indicating higher sam-
ple informativeness. To verify whether the value of MIS
truly reflects sample informativeness, we select 500 images
at random and calculated their MIS and uncertainty values
(most commonly used sample informativeness metric), and
generated a scatter plot of the two metrics (Figure 3). We

Figure 3: Scatter plot between MLinfo and uncertainty val-
ues of 500 samples. The points are concentrated around a
line with a high correlation coefficient (0.92), suggesting
that MLinfo is a good measure of sample informativeness.

found a strong correlation coefficient of 0.92 showing that
the proposed MIS also measures sample informativeness.

Variational Auto Encoder Training
The VAE encoder outputs two vectors of same size: mean
vector, µ⃗, and a standard deviation vectors, σ⃗. Given an en-
coding of an image, one can generate variations of it by sam-
pling from the parameters µ⃗ and σ⃗. For smooth interpolation
amongst encodings and construction of new samples, a cost
function defined as a combination of the reconstruction er-
ror term and the Kullback–Leibler (KL) divergence is com-
monly used:

LV AE =
∑

∥x− x̂∥2 +KL [N (µx, σx),N (0, 1)] (3)

The KL loss is equivalent to the sum of all KL divergences
between the component X ∼ N(µx, σ

2
x) and the standard

normal, and is minimized when µx = 0, σx = 1.

Informative Synthetic Image Generation Given image
I , we pass it through the encoder to obtain latent distribu-
tion parameters µI , σI . By sampling from this distribution,
we generate different transformations of the original image
I , which we denote as In. We first identify informative sam-
plesfrom a given pool using the MIS score (Eqn. 2). We
aim that In is similar to I and at the same time has novel
information such that by adding to the training set we add
qualitatively novel data. Hence, In should fulfill the follow-
ing novelty criteria:
1. Class label preservation: Image I and all generated In

should have the same class labels.
2. Redundancy avoidance: In’s semantic content should be

sufficiently different from I to ensure that In are identi-
fied as informative.

We propose a novel scoring function that quantifies the de-
gree to which the generated images meet the above criteria.
The final score for each generated image is used to rank the
images and select the most informative ones.

Preserving Label Similarity: To preserve the labels be-
tween I and In we enforce that class probability values of
I and In be close. Let us denote the probability of class
k for image I as pkI , and the corresponding probability for
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generated image In is pkIn . Class probabilities for each la-
bel is determined using the current classification model If
pkI > 0.5(< 0.5) we expect pkIn > 0.5(< 0.5). The change
in probability values should not be too high to avoid intro-
ducing spurious information. Consequently, we define the
label score as a function of the relative difference between
class probabilities computed for I and In, as follows:

Scorelabel =

{ |pk
In−pk

I |
pk
I

, if |pk
In−pk

I |
pk
I

≤ η1

−γ1, otherwise
(4)

We set η1 = 0.3 and γ1 = 0.1, and we put a condition that
pkI−0.5 and pkIn−0.5 always have the same sign. If the signs
are different, then the labels are different and the generated
sample is not considered for informativeness evaluation. As
per the above formulation if the difference of probability val-
ues is less than equal to 30%, the score is same as this value.
If the difference is greater than 30% it indicates a significant
change of the probability distributions. Such a high change
may bias the probability to too high or low values which in-
dicate that the generated image is not very informative since
the classifier is very confident in predicting its label. Such an
approach ensures that generated images with high distorted
content are not included in the training set.

Redundancy avoidance: To ensure generated images
have new information compared to the original image, we
use the difference in MIS values (Eqn.2). We put a condi-
tion that the relative difference between their scores is above
a threshold and define the redundancy avoidance score as:

Scorered =

{
|MISI−MISIn |

MISI , η2 ≤ |MISI−MISIn |
MISI ≤ η3

−γ2, otherwise
(5)

We set η2 = 0.05, η3 = 0.25, and γ2 = 0.15 to define the
range of thresholds within which the MIS score of the new
sample can vary. The total informativeness of the generated
sample is then calculated as,

Scoresample = λ1Scorelabel + λ2Scorered. (6)

Higher Scoresample indicates higher overall informative-
ness. We rank the generated samples based on Scoresample

and select the top-n informative samples to add to the train-
ing set. λ1, λ2 determine relative contribution of each term.

Baseline Methods For Comparison: We compare our
method’s performance with the following baselines: 1) Fully
supervised Learning (FSL): using a DenseNet-121 classi-
fier (Huang et al. 2016) on the designated training sets. 2)
Random Sample Selection without informativeness crite-
ria. 3) Uncertainty based informative sample selection.

Implementation Details: Our method is implemented in
TensorFlow. Initially we choose 5% training samples and
train a DenseNet-121 (Huang et al. 2016) on the NIH
ChestXray14 dataset (Wang et al. 2017b). We select a batch
of 128 images from the unlabeled dataset. For each im-
age we set up the graph and calculate the MIS (multi-
label informativeness) score. Top 3 samples of each class

Figure 4: Augmenting and choosing informative samples
from a base informative sample. Given base informative im-
ages we generate additional images by sampling from the
variational autoencoder. To add only informative generated
images to the training set, we calculate sum of label score
Scorelabel and redundancy avoidance score Scorered.

are the base informative samples. We generate more infor-
mative samples, rank them and add the top samples along-
with the base image to the training set. The classifier is
updated, and the cycle continues till there are no more in-
formative samples.We used Adam (Kingma and Ba 2014)
with β1 = 0.93, β2 = 0.999, batch normalization, binary
cross-entropy loss, learning rate 1e−4, 105 update iterations
and early stopping based on the validation accuracy. The ar-
chitecture and trained parameters were kept constant across
compared approaches. Training and testing were performed
on an NVIDIA Titan X GPU having 12 GB RAM. The in-
put image size is 320×320 pixels. To obtain interpretability
saliency maps, we used default parameters of the iNNves-
tigate implementation of Deep Taylor (Alber et al. 2019),
and GradCAM (Selvaraju et al. 2017). For uncertainty es-
timation, we used a total of T = 20 dropout samples with
dropout distributed across all layers (Kendall and Gal 2017).

Comparison Methods: Our proposed method
‘DAMLAL’ is compared with other AL methods: 1)
‘GAL’- Graph-Based Active Learning (GAL) approach of
(Long et al. 2008); 2) ‘LEMAL’: the “example-label based
sampling strategy (LEMAL)” approach by (Wu et al. 2014);
3) ‘CVIRS’- the Uncertainty sampling based on “Category
Vector Inconsistency and Ranking of Scores (CVIRS)” ap-
proach of (Reyes, Morell, and Ventura 2018); 4) ‘AlphaMix’
- the “Active Learning by Feature Mixing (Alpha-Mix)”
method of (Parvaneh et al. 2022). We also compare with 5)
LADA (Kim et al. 2021), and 6) A graph-based multi-label
active learning method called ‘GESTALT’ (Mahapatra,
Poellinger, and Reyes 2022a).

Results and Discussion
Dataset Description: We use the CheXpert dataset (Irvin,
Rajpurkar, and et al. 2019) consisting of 224, 316 chest ra-
diographs of 65, 240 patients labeled for the presence of
common chest conditions. The training set has 223, 414 im-
ages, while validation and test sets have 200 and 500 images.
The validation ground truth was obtained using majority vot-
ing from annotations of 3 board-certified radiologists. The
test set evaluation protocol is based on 5 disease labels: At-
electasis, Cardiomegaly, Consolidation, Edema, and Pleural
Effusion.We also use the NIH ChestXray14 dataset (Wang
et al. 2017b) having 112, 120 expert-annotated frontal-view
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X-rays from 30, 805 unique patients. For each task, the
dataset was split into training (70%), validation (10%), and
test (20%) at the patient level such that all images from one
patient are in a single fold.

Comparative Results for CheXpert Dataset: Table 1
shows the Area Under the Curve (AUC) for every 10% in-
crement of training data using different methods. Except for
random sample selection, all AL-based methods outperform
the fully-supervised learning model (FSL) with fewer sam-
ples, confirming the benefits of selecting samples based on
their informativeness. This finding aligns with other works
(Mayer and Timofte 2018; Yang et al. 2017; Sourati et al.
2019) indicating the capability of AL methods to boost
the learning rate of trained models. GESTALT does bet-
ter than most methods while LADA is slightly worse than
GESTALT. We show results for two versions of DAMLAL -
DAMLALDT , when using saliency maps obtained with the
Deep Taylor method, and DAMLALGC , when using Grad-
CAM saliency maps. Of the two, DAMLALDT shows better
results and we refer to it as DAMLAL. DAMLAL signifi-
cantly improves over GESTALT and LADA by integrating
data augmentation with multi-label AL. GESTALT outper-
forms FSL at 45% of labeled data, whereas DAMLAL out-
performs FSL at 37% of training data. DAMLAL requires
significantly less labeled data to attain better performance.
Although LADA combines data augmentation with active
learning, it does not consider the multi-label scenario.

Ablation Studies: We attribute the improved performance
of DAMLAL to: 1) integration of data augmentation with
multi-label active learning; 2) use of graph attention trans-
formers that improve the representation learning. We con-
duct ablation studies on DAMLALDT to quantify their indi-
vidual contributions and summarize results in Table 1.

First we exclude data augmentation from the pipeline
and use only the initially identified informative samples and
use very basic augmentation strategies like rotation, transla-
tion, and scaling instead of our proposed informative aug-
mentation. We refer to this method as DAMLALcon−DA

(i.e., DAMLALDT using conventional data augmentation).
DAMLALcon−DA does better than GESTALT and shows
the merit of using GATs and data augmentation for multi-
label sample selection. A second variant of DAMLALDT

uses only the sum of graph weights which we term as
DAMLALSum. It does better than GESTALT due to added
informative augmentation but fares worse than DAMLAL.
This is due to graph transformer networks doing a better job
of learning the global dependencies, and being more accu-
rate in identifying informative samples.

Importance of Graph Multi Set pooling: We replace the
multi-set pooling with conventional pooling and report the
results in Table 1 as DAMLALpooling . We observe a signifi-
cant drop in performance compared to DAMLALDT show-
ing the multiset pooling has a significant role in the im-
proved performance. We also completely remove the graph
attention, and self attention, and show the results in Table 1
as DAMLALno−GAT , and DAMLALno−SA. Individual re-
sults clearly show the importance of each component of the

Figure 5: Additional Dataset - NIH DataSet: AUC mea-
sures at different percentage levels of training percentage
for baselines (indicated with dotted lines) and the proposed
DAMLAL approach.

graph pooling stage.
We also investigate the role of the parameters k and n. n

is the number of input nodes which corresponds to the num-
ber of labels for the input image. In our experiments we use
n = 5 since the test set of CheXpert dataset evaluates on 5
diseased labels. Decreasing n leads to reduced performance
since fewer nodes result in inferior learning of features. In-
creasing n improves performance since more nodes (disease
labels) improve the feature learning ability of the network. k
denotes the dimensions of the Graph Multiset Pooling stage.
In our experiments we set k = 3 (kint) for the intermediate
layers while k = 1 for the final layer (kfin).

Performance on Additional Datasets
In Figure 5 we show result obtained for the NIH dataset
across different methods. The trend is similar to the results
shown in Table 1 wherein different active learning methods
outperform the fully supervised learning method at a lower
training data percentage, and the proposed DAMLAL ap-
proach outperform other methods.

Robustness and Generalization
To test the robustness of the proposed approach, we added
simulated Gaussian noise of µ = 0 and different σ ∈
{0.005, 0.01, 0.015, 0.05, 0.1}. Figure 6 shows the AUC
values for the baseline performance of DAMLAL and dif-
ferent σ. The results are close to DAMLAL for σ =
0.005, 0.01, but start to degrade significantly for noise lev-
els above σ = 0.01, which we term as noise threshold. With
added noise, the performance of all methods degrades. How-
ever, our proposed DAMLAL performs better than others
and is more robust.

Hyperparameter Settings
We adopt the following steps to set the value of η1, η2, η3.
For η1 we varied the values from [0, 1] in steps of 0.05, keep-
ing η2 = 0.05, η3 = 0.35. The best results were obtained
for η1 = 0.3, which was our final value. Following similar
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Train Data % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% p-
FSL - reference 90.23 90.23 90.23 90.23 90.23 90.23 90.23 90.23 90.23 90.23 < 0.001

Random 41.69 47.5 52.6 58.1 64.07 69.34 75.72 81.49 85.64 90.23 < 0.001
Uncertainty 62.15 66.56 72.41 80.16 85.80 88.12 90.34 90.72 90.84 91.03 < 0.001

LEMAL(Wu et al. 2014) 64.70 69.17 76.08 81.25 88.32 89.03 91.09 91.40 91.74 92.08 < 0.001
CVIRS(Reyes, Morell, and Ventura 2018) 66.05 70.88 76.05 84.12 89.09 91.02 91.48 91.52 92.03 92.54 0.001

AlphaMix(Parvaneh et al. 2022) 68.30 72.57 79.11 87.22 91.43 93.12 93.47 93.87 94.09 95.01 0.005
GAL(Long et al. 2008) 68.91 73.01 79.61 87.99 91.74 92.82 93.30 93.91 94.24 94.56 0.007
LADA(Kim et al. 2021) 69.15 73.98 80.82. 89.08 92.93 93.64 94.04 94.72 95.13 95.73 0.001

GESTALT 70.82 74.64 80.82 89.27 93.28 94.13 94.92 95.24 95.88 96.71 0.02
DAMLALDT 72.24 76.18 82.47 91.02 94.90 95.88 96.42 96.92 97.43 98.21 -
DAMLALGC 71.63 75.84 81.16 90.35 94.53 95.11 95.79 96.07 96.7 97.57 0.07

Ablation Studies
DAMLALcon−DA 71.23 75.32 81.83 89.93 94.08 94.45 95.62 95.89 96.24 97.01 0.034

DAMLALSum 71.01 75.1 81.43 89.51 93.71 94.21 95.31 95.61 96.01 96.81 0.032
DAMLALred 68.22 71.83 78.23 84.68 87.12 90.34 91.97 92.47 93.47 94.01 0.03
DAMLALlabel 65.61 68.25 74.37 79.51 82.02 85.48 87.15 88.02 89.42 90.14 0.03

DAMLALpooling 64.13 67.24 71.34 76.23 79.21 83.02 86.25 87.12 87.64 88.52 0.032
DAMLALno−GAT 62.21 65.52 69.71 73.95 77.12 80.94 83.84 85.36 86.02 86.78 0.023
DAMLALno−SA 61.35 64.93 68.62 73.02 76.21 79.41 82.29 84.62 85.11 85.77 0.011

Table 1: AUC values on CheXpert dataset for different baselines, proposed DAMLAL approach, and ablation studies. The
p−values are with respect to DAMLAL. DT: DeepTaylor; GC: GradCAM; con-DA: Conventional Data Augmentation. FSL:
Fully supervised model trained with all 100% data shown as reference. Bold indicates best performance.

Training And Test Time
DenseNet-121 Random Unc GESTALT GAL LEMAL CVIRS AlfaMix DAMLAL

18h(0.67T ) 18.5h(0.69T ) 19.5h(0.72T ) 25h(0.93T ) 23.5h(0.87T ) 20h(0.74T ) 21.5h(0.8T ) 24h(0.89T ) 27h(T )
0.18s 0.19s 0.2s 0.32s 0.28s 0.22s 0.24s 0.3s 0.4s

Table 2: Training(h)/Inference(s) time in hours and seconds for different methods.

Figure 6: AUC measures for different features for added
Gaussian noise of µ = 0 and different σ.

steps, we set η2 = 0.1, while keeping η1 = 0.3, η3 = 0.35.
Thereafter we fix η1 = 0.3, η2 = 0.1, and vary the values
for η3 and get the best results for η3 = 0.3. While obtaining
the optimal values of η1, η2, η3 we keep fixed γ1 = 0.2 and
γ2 = 0.2. After setting the values of η1, η2, η3 we vary γ1, γ2
and obtain the best values for γ1 = 0.1 and γ2 = 0.1. The
sensitivity of the different parameters is shown in Table 3.

The threshold η1 is used to ensure that the probability val-
ues of the generated image do not change significantly as to

make it uninformative. For example, if pkIn is close to 0.9
then the generated image is not very informative as the clas-
sifier is very confident about the prediction. In such a case
the score function Scorelabel is assigned a negative value of
0.1 (γ1). This ensures that this particular sample’s informa-
tiveness is reduced and is given less importance in selecting
informative synthesized samples. We observe that too high
negative values for γ1 will give disproportionate importance
to the probability score and will unfairly reduce the score of
the sample despite a high value for Scorered.

The threshold parameters η2, η3 control the degree of re-
dundancy that may be allowed for the generated images. We
want that the generated images should have a minimum de-
gree of novelty which is controlled by η2 = 0.05. Quanti-
tatively, this may be interpreted that the multilabel informa-
tiveness score changes by atleast 5%. On the other hand too
much change of the informativeness score indicates major
distortions to the image and could also be due to an ‘out-
lier’ image. Hence the upper threshold η3 = 0.25 indicates
that we allow upto 25% change of the image’s informative-
ness score. This ensures that the transformed images are not
too different from the base image. The penalty γ2’s optimal
value is 0.1 since too high values give disproportionate im-
portance to the redundancy score.
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Vals→ 0.0 0.1 0.2 0.3 0.4 0.5
η1 93.6 94.1 94.7 95.3 94.8 94.0
η2 95.5 96.4 95.9 95.2 94.8 94.3
η3 94.3 95.2 96.1 97.5 96.7 96.0
γ1 96.7 98.1 96.8 96.0 95.6 94.9
γ2 96.8 98.2 96.9 96.2 95.7 94.8

Vals→ 0.6 0.7 0.8 0.9 1.0
η1 93.5 92.8 92.1 91.7 91.2
η2 93.5 92.9 92.3 91.7 91.1
η3 95.4 94.8 94.1 93.6 92.9
γ1 94.2 92.7 92.1 91.8 91.2
γ2 94.1 92.5 91.8 91.3 90.6

Table 3: AUC values for DAMLAL for different values of
the parameters η1, η2, η3, γ1, γ2.

Realism of Synthetic Features
Data augmentation is an important part of our pipeline,
where informative synthetic samples are added to the train-
ing set. Hence it is imperative that the generated images be
realistic else it will adversely affect the performance of the
trained classifier. We perform a qualitative assessment of our
synthetic images to determine their degree of realism. We
select 1000 synthetic images almost equally distributed be-
tween the 14 classes and ask two trained radiologists, having
12 and 14 years experience in examining chest xray images
for abnormalities, to identify whether the images are realistic
or not. Each radiologist was blinded to the other’s answers.

Results in Table 4 show one radiologist (RAD 1) iden-
tified 912/1000 (91.2%) images as realistic while RAD 2
identified 919 (91.9%) generated images as realistic. Both
of them had a high agreement with 890 common images
(89.0% -“Both Experts” in Table 4) identified as realis-
tic. Considering both RAD 1 and RAD 2 feedback, a to-
tal of 941 (94.1%) unique images were identified as real-
istic (“Atleast 1 Expert”). Subsequently, 59/1000 (5.9%)
of the images were not identified as realistic by any of the
experts (“No Expert”).

We also generate images using GANs and repeat the qual-
itative assessment with the two radiologists. The agreement
statistics are summarized in Table 4. GANs show a higher
degree of agreement since it is a well established fact that
GANs generate more realistic images than VAEs, but are
more time consuming and difficult to train. However the dif-
ference in the percentage of identified realistic images is not
very high. We believe this is to be an important assessment
to ensure there are no abnormal artefacts introduced in the
entire active learning setup.

Importance of Score Values
We investigate the importance of each of the scoring terms
in Eqn. 6. Table 1 show the performance measures when
using only Scorered (DAMLALred) and only Scorelabel
(DAMLALlabel. The results clearly show that discarding
either of the terms degrades the performance. Exclud-
ing Scorered leads to worse performance than excluding

RAD 1 RAD 1 Both Atleast 1 No
Experts Expert Expert

VAE 912 919 89.0 94.1 5.9
(890) (941) (59)

GANs 927 931 90.5 95.8 4.2
(905) (958) (42)

Table 4: Agreement statistics for different image generation
methods amongst 2 radiologists. Numbers in bold indicate
agreement percentage while numbers within brackets indi-
cate actual numbers out of 1000 samples.

Scorelabel. This may be explained by the fact that the redun-
dancy score uses the multilabel informativeness score MIS
to determine informative samples.

Computation Time
For a training dataset of 100, 000 images of size 320× 320,
the training time (in hours) for different methods on an
NVIDIA Titan X GPU having 12 GB RAM is summarized
in Table 2. Compared to GESTALT, our proposed DAMLAL
method has an 8% higher training time. This is due to the ex-
tra computations involved in the informative augmentation
and graph transformer attention which is an integral part of
the process. However, the resulting performance improve-
ment justifies the added complexity of our method. The in-
ference time for a single image (in seconds) is also summa-
rized for different methods.

Conclusions
In this paper, we present a novel approach that combines
multi-label active learning with data augmentation and the
key motivation is to leverage their mutually complemen-
tary strengths. By using graph attention transformers with
graph neural networks we learn more discriminative graph
aggregations. Complementing the improved graph aggrega-
tion strategy is the informative augmentation step that takes
a base informative image, generates augmented versions,
and calculates a score based on label preservation and in-
formativeness of the augmented images. The overall infor-
mativeness of the augmented samples is the sum of the two
scores, and the most informative samples are added to the
training set for further training. Our proposed method yields
better results than competing methods and ablation studies
highlight the importance of the graph attention transformers
and the informative augmentation step in the overall perfor-
mance of DAMLAL. We also engage two experienced ra-
diologists to perform qualitative assessment of images gen-
erated by our method and GANs, which confirms the high
degree of realism of our synthetic images.
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