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Abstract. The interpretability of deep learning is crucial for evaluat-
ing the reliability of medical imaging models and reducing the risks of
inaccurate patient recommendations. This study addresses the "human
out of the loop" and "trustworthiness" issues in medical image analysis
by integrating medical professionals into the interpretability process. We
propose a disease-weighted attention map refinement network (DWARF)
that leverages expert feedback to enhance model relevance and accuracy.
Our method employs cyclic training [13] to iteratively improve diagnostic
performance, generating precise and interpretable feature maps. Exper-
imental results demonstrate significant improvements in interpretability
and diagnostic accuracy across multiple medical imaging datasets. This
approach fosters effective collaboration between Al systems and health-
care professionals, ultimately aiming to improve patient outcomes. The
code is available on censored for review.

1 Introduction

Machine learning (ML) techniques, especially deep learning (DL) have signifi-
cantly expanded in both research and industrial sectors, particularly with the
advancements in deep neural networks (DNN). The impact and potential reper-
cussions of these technologies have become too significant to overlook. In certain
applications, failure is unacceptable; for example, a temporary malfunction in
a computer vision algorithm for autonomous vehicles can result in fatalities. In
the medical field, the stakes are even higher as human lives are directly affected.
Early detection of diseases is crucial for patient recovery and for preventing
the progression of illnesses to more severe stages. Despite recent promising re-
sults from machine learning methods [I8IBITTI27I29I28/T2], current methods are
not without imperfections [I4[7)23]. Specifically, many medical Al systems still
struggle with issues such as short-cut learning [5] and misattribution [6], which
can hamper the reliability of medical Al system.

The significance of interpretability in medical imaging arises from the crucial
need for transparency and trust in healthcare applications of Al. Traditionally,
medical imaging analysis prioritized accuracy, but with the increasing integration
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of AI, the emphasis has shifted towards creating understandable and explain-
able Al systems. The goal of explainable AT (XAI) is to make AI decision-making
processes in medical imaging more comprehensible, thereby enhancing reliability
and enabling healthcare professionals to effectively integrate Al tools into clinical
practice [24JT]. Current XAI methods interpret model outputs through various
means, but due to the inherent uncertainty and complexity of deep learning
patterns, translating these into intuitive interpretations for users remains dif-
ficult. This situation underscores the necessity for trustworthy ML systems in
healthcare, which demand transparency and active involvement of medical pro-
fessionals to ensure accuracy and relevance [4I17].

Saliency map-based techniques are extensively utilized in medical explainable
AT (XAI) due to their capability to highlight critical regions in medical images
that influence model predictions. These techniques enhance transparency and
trust in Al-driven diagnostic tools by visually representing areas of interest,
such as tumors or lesions [2]. Methods like Grad-CAM [20], Integrated Gradients
[22], and SmoothGrad [2I] provide reliable explanations by generating class-
specific localization maps and reducing noise. Consequently, saliency maps play
a crucial role in making AI decisions interpretable and justifiable in clinical
settings, promoting their adoption in healthcare.

In this work, we tackle the "human out of the loop" and "trustworthiness"
issues in medical image analysis by incorporating medical professionals into
the interpretability process [I6]. By leveraging their insights, we enhance inter-
pretability maps, aligning deep learning explanations more closely with medical
intuition. This approach enhances the relevance and utility of deep learning in-
terpretations in medical diagnostics through expert feedback. Achieving effective
human-machine teaming, where human decision-making and ML system perfor-
mance are integrated, is essential for improving patient outcomes. To be specific,
in this work, we are aiming to address the imperfect alignment between medical
items and corresponding visual regions [26]. We take the clinicians’ attention
annotations as visual guidance during the classification model training to si-
multaneously optimise attention maps and classification performance. Through
extensive experiments, DWARF outperforms other baselines on both classifica-
tion performance and attention map performance across different datasets. Fur-
ther feedback from clinicians demonstrates that DWARF enhances clinicians’
confidence in AT assisted disease classification.

2 Method

The object of our method is to introducing disease specific attention as a guid-
ance during the classification model training. In this section, we introduce our
DWAREF from three aspects: architecture and training strategy, losses and net-
work initialization.
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2.1 Architecture and training strategy

To refine the saliency map with finding-related prior knowledge, we introduce our
DWARF module, as shown in Fig[I] The overall structure of DWARF consists of
a pretrained Vision-Language Model (VLM), denoted as fyim,, and expert heads
Sheads- For a multi-modality model, it is hard to directly optimize cross attention
map because the attention difference between human and the model [25] as
well as the scale changes (the cross attention value is not bounded within 0-1
according to experiments). To address this, we utilize the finding-specific heads
to project the origin attention map denoted as M, € R"*% of class ¢ where c is
in a collection of different findings’ labels NV from its origin embedding space to
the visualization space for clinicians. Finally we get the segmentation map M. =
Jhead(M.). To accumulate finding-specific knowledge effectively, we introduce a
cyclic training process. The cyclic training mechanism is designed to iteratively
refine the network’s understanding and segmentation of specific findings. By
incorporating cyclic training, the network can effectively refine its ability to
identify and segment specific medical findings, leading to improved diagnostic
performance. The overall training pseudo code is shown in Algorithm/[l]
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Fig. 1: Flow chart of finetuning the classification model. Our method only trains
single disease each epoch with disease name as prompt. For each disease, we add
an additional head to mapping origin attention to refined segmentation map.

2.2 Losses and network initialization

Loss Function In our framework, we employ a cross-entropy loss, denoted as
L5, for multi-label classification tasks. Additionally, we use a modified Dice loss,
Lseg, optimized for attention maps. Attention maps in medical image analysis
are critical for detecting disease-related markers. Training and validation typi-
cally focus on positive samples, which may cause models to overestimate certain
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Algorithm 1 Training Process for DWARF

Input: Multi-label dataset Dy,uiti, Segmentation head freqd, Ground truth G
Output: Optimized network parameters 6
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Data Collection:
Decompose Dyuiti into multiple single-label datasets Dgingie
for each finding f in Dyyuies do

Dsingie[f] < createSingleLabelDataset(Dmuiti, f)
end for
Segmentation:
for each single-label dataset Dsingic[f] do

for each image I in Dgngic[f] do

M[I] < freaa(I)
end for

: end for
: Classification and Segmentation Feedback Loop:
: for each single-label dataset Dgingic[f] do
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for each image I in Dgngic[f] do
Coutput[I] < classify (I, M.[I])
Lseq + calculateLoss(M[I], G[I]seq)
Leis + calculateLoss(Coutput[I], G[I]eis)
Ltotal — ALseg + (1 - )\)Lcls
0 < updateNetworkParams(6, Ltotal)
end for

: end for
: Iterative Refinement:
: for each epoch do

NN

N N N

for each single-label dataset Dsingie[f] do
M, « segmentation(Dsingie[f], fread)
0 < feedbackLoop(M., G, 6)

end for

: end for
: Return 0

features, leading to false positives. Our False Positive Suppression technique

mitigates this by adjusting the Dice score to penalize false positives.

where X and Y are sets representing the predicted and true regions, respectively,
« is a smoothing constant to prevent division by zero, and € ensures numerical

The standard metric, the Soft Dice Score, is mathematically represented as:

2-1XNY|+a+e
I X|+Y]+a+e

£Dice =

stability.
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To specifically address false positives, we define:

2.1 XNY|+a+e
| X| + adjusted|Y |+« + ¢

(2)

Eseg =

adjusted|Y| = |Y| + (wpp — 1) - FP (3)

Here, FP is the count of false positives, and wgp is the weighting factor penalizing
each false positive.
The combined loss function, aimed at minimizing, is expressed as:

C = )\ﬁseg + (]- - >\)£cls (4)

where o adjusts the emphasis on attention annotations.

Model Initialization We initialize the text encoder using the weights from
Med-KEBERT|[28] (An advanced text encoder pretrained on medical knowledge
graph). For the image encoder and cross-attention layers, we adopt the archi-
tecture from DeViDe. Additionally, we introduce disease-specific segmentation
heads for targeted diseases.

We propose the Identity Enhanced Initialization (IEI) technique to ad-
dress the limitations associated with random or simplistic initializations, which
can often lead to suboptimal learning trajectories. Our observations indicate that
random initialization of segmentation expert heads tends to encourage the model
to learn shortcuts, as depicted in Figure a). Conversely, the pretrained Visual
Language Model (VLM) already offers robust image-text correspondence[l2],
which can serve as an effective foundation for initialization. The IEI method in-
volves initializing the weights of the segmentation heads with an identity matrix,
focusing on enhancing the model’s sensitivity to structures pertinent to specific
diseases. This approach directs the learning process towards more precise fea-
ture recognition from the start. By avoiding reliance on the simplest or most
obvious features (referred to as the "shortcut path"). A qualitative comparison
is illustrated in Figure

3 Experiments and Results

To fully assess the properties of our framework, we con- duct extensive experi-
ments across quantitative metrics and qualitative indices.

3.1 Dataset

We used three different publicly available datasets: ChestX-Det [10], CheXlocal-
ize [19], and Vindr-CXR [15]. These datasets contain between 1,000 to 10,000
chest X-rays (CXRs). Each dataset includes multi-label classification labels as
well as segmentation labels, provided at the bounding box or polygonal levels.
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(a) Random initialization ) IEl initialization

| M

Fig. 2: With random initialization, the model tends to directly learn shortcut
results which always highlight the same area. While using IEI initialization, the
model can start from pretrained VLM’s attention to refine its focus.

The ChestXDet dataset is segmented into three versions based on the segmenta-
tion difficulty of the findings. The four-findings version includes common findings
such as Atelectasis, Cardiomegaly, Consolidation, and Effusion, which are preva-
lent across various datasets. The expanded seven-findings version adds Diffuse
Nodule, Emphysema, and Mass, which show relatively high performance. The
full version encompasses the original ChestXDet dataset with 13 findings.

3.2 Baselines

To ascertain the efficacy of the DWARF method for modeling, we established
several baselines for comparison. These include a pretrained vision language
model without fine-tuning including DeViDe[12] and KAD[28], a finetuned VLM
employing only multi-label classification loss, and a finetuned VLM training with

classification loss and multi-label segmentation loss (extra supervision strategy
of GAIN [g]).

3.3 Training Details

With ViT-B as the visual backbone and Med-KEBERT as the textual backbone,
we finetune on the ChestX-Det dataset [9] on an image size of 224. We utilize
the AdamW optimizer with learning rates Ir = 5 x 10~°. We optimize on V100
16G GPUS with a total batch size of 32 for a total of 500 epochs.

3.4 Quantitative results

DWAREF achieves SoTA results compared to other pretrained /finetuned
VLM baselines. In the Tab[I} we compared the performance of our DWARF
with various state-of-the-art models, including pretrained DeViDe, KAD and
finetuned GAIN which trained with direct Cross-Entropy Loss and Dice Loss.
These models were evaluated based on different metrics such as Max AUC, Max
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Dice, F1 Score, and MCC. Our analysis extends to various datasets including
ChestX-Det, cheXlocalize and Vindr-CXR, highlighting the models’ adaptabil-
ity and effectiveness across different medical imaging contexts. DWARF' yields
stably better results than the other aforementioned methods.

DWAREF achieves enhanced Stability and Scalability To explore the scal-
ability and stability of DWARF, we firstly compared DWARF with GAIN across
different numbers of diseases and observed significant and consistent improve-
ments on ChestXDet dataset. For 4 diseases (defined in sec, the Dice score
improved from 0.1438 to 0.3854, and the max AUC score increased from 0.8660
to 0.8871. Similarly, for 7 diseases, the Dice score increased from 0.1903 to
0.3492, and the max AUC score rose from 0.8519 to 0.8717. These results,
as shown in Figf3] highlight the consistent enhancement provided by DWARF
across different numbers of diseases. Additionally, since our model is only trained
once per epoch, it results in insufficient training within the same number of
epochs. Therefore, we extended the training from 500 epochs to 1000 epochs to
explore the scalability of the model’s performance. We found that the Dice score
improved from 0.1805 to 0.2302, as shown in Fig.

DWARF’s Independence from Extensive Annotation To address the
challenges associated with obtaining dense and consistently high-quality anno-
tations for medical imaging, we are exploring the feasibility of substituting hu-
man annotations with pseudo labels generated by disease-specific models. This
approach leverages the expertise encapsulated in pre-trained segmentation mod-
els for various diseases. The results of these experiments, as detailed in Tab [3]
indicate that the DWARF system continues to demonstrate substantial improve-
ments, achieving an impressive enhancement in performance by 0.1271.

Validation Dice Metric Across Epochs

— Dwarf_500ep
— Baseline
— Dwarf_1000ep

020

Validation Dice

o 200 00 600 800 1000

Fig.3: DWARF demonstrates sustained learning capacity, benefiting from ex-
tended training epochs, whereas the baseline model suffers from overfitting with
additional training.
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DWARF Enhances Clinician Confidence in Classification Models To
validate our approach’s effectiveness in enhancing clinicians’ confidence in classi-
fication models, we conducted a double-blind experiment. We randomly selected
5 samples each of four diseases (4 common diseases across datasets: Atelecta-
sis, Cardiomegaly, Consolidation, and Effusion) from the ChestXDet dataset,
totaling 20 samples. Using DWARF and DeViDe, we generated attention maps
for each sample, creating 20 anonymized sets for clinician preference evaluation.
Two clinicians assessed the maps based on: 1) Accuracy (whether the map accu-
rately pinpointed the finding with high confidence), and 2) Specificity (whether
the map was focused and intuitive). DWARF was preferred in 15 out of 20 and
18 out of 20 cases, with an average preference rate of 82.5

3.5 Ablation results

Disease-specific head makes attention map trainable According to the
analysis presented in sec[2.1] the segmentation expert heads are pivotal for pro-
jecting the cross-attention values effectively. To explore the contributions of these
heads, we conducted an ablation study, the results of which are detailed in Tab[d]
The inclusion of expert heads significantly enhanced the attention performance,
with the metric improving from 0.2288 to a robust 0.3559.

3.6 Qualitative Result

To enhance the clarity of the explanation regarding the visual explainability
representation of our method, we illustrate the attention map using the test set
of the CheX-Det dataset. As depicted in Fig[4] our DWARF method significantly
improves the focus of the classification model’s attention. This enhancement
allows the model to more precisely highlight the relevant areas that form the
basis for its classification decisions.

Atelectasis Consolidatic Effusion Cardiomegal: Mass Diffuse Nodule Emphysema

@

W/0
Dwarf

.

Fig. 4: Qualitative results of training with and without the DWARF architecture
demonstrate that utilizing our DWARF framework consistently enhances the
aggregation of feature maps and provides prior region information.




Dwarf: Disease-weighted network for attention map refinement 9

4 Conclusion

In this research, we have developed a two-stage saliency map revision strat-
egy. This approach effectively integrates disease-related knowledge and clini-
cians’ preferences into the generation of saliency maps. By incorporating this
methodology, we are also introducing clinicians into the Al training loop. This
strategy not only improves the accuracy of the Al but also makes it more user-
friendly for clinicians, ensuring that their expertise and insights are reflected in
the AI’s learning process. There are still some unvalidated capabilities including
the transferability and few-shot ability of the model. We will conduct further
experiments to address them.
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Table 1: DWARF outperforms other finetuned /pretrained VLM on classification
performance and attention accuracy on 4 metrics: AUC, Dice, F1 score and
MCC. All models take the same transformer architecture as encoder. The best

methods are bolded

Method Dataset AUC (%) F1 Score (%) MCC (%) Max Dice (%) Model Type

DeViDe [12] ChestX-Det 74.24 42.46 34.29 13.66 Pretrained VLM
KAD [28] ChestX-Det 73.81 40.04 31.84 13.89 Pretrained VLM
GAIN [8] ChestX-Det 80.90 48.57 42.65 13.90 Finetuned VLM
DWARF ChestX-Det 81.94 +0.37 53.73 +0.29 49.87 +0.06 18.24+ 0.18 Finetuned VLM

DeViDe cheXlocalize 78.26 41.66 59.83 11.93 Pretrained VLM
KAD cheXlocalize 74.22 58.01 41.53 11.59 Pretrained VLM
GAIN  cheXlocalize 83.64 62.86 50.18 11.91 Finetuned VLM

DWARF cheXlocalize 84.93 + 0.05 63.44 +0.21 50.79 +0.32 13.40+ 0.51 Finetuned VLM

DeViDe  Vindr-CXR 72.92 41.28 31.43 7.19 Pretrained VLM
KAD Vindr-CXR 73.19 40.22 30.78 7.06 Pretrained VLM
GAIN Vindr-CXR 78.51 45.20 36.48 7.23 Finetuned VLM

DWARF Vindr-CXR 80.01 +0.23 47.05 +1.14 39.55+1.07 10.21 +£0.42 Finetuned VLM

Table 2: Comparison of DWARF and GAIN models on different numbers of
selected diseases from the ChestX-Det dataset.

Backbone Disease number AUC (%) F1 (%) MCC (%) Max Dice (%)

4 86.80 - - 14.38
GAIN 7 85.19 - - 19.03
13 80.90 48.57 42.65 13.90
4 88.71 - - 41.47
DWARF 7 87.17 60.17 52.01 39.11
13 81.94 53.73 49.87 18.24

Table 4: Ablations of disease-

Table 3: Ablations of expert supervi-
sion. DWARF taking the trained seg-
mentation models’ generated pseudo
label could also achieve impressive im-
provement. Seven usual findings in
ChestX-Det are used for evaluation
including: Atelectasis, Cardiomegaly,
Consolidation, Effusion, Diffuse Nod-
ule, Emphysema, and Mass.

Method Disease # AUC (%) DICE (%) Max DICE (%)
GalN(cls) 7 86.80 14.38 14.38
DWARF (expert) 7 84.73 31.71 36.94
DWARF 7 87.17 38.56 39.11

specific head. Seven usual find-
ings are selected for evaluation
(see Table [3). Compared to di-
rectly optimizing cross attention
value, introducing additional seg-
mentation expert head improves
both the classification and atten-

tion performance.

Method

AUC Max Dice

Directly optimize

86.63  22.88

Disease-specific head 87.32 35.59
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