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Abstract—Facial nerve segmentation is of considerable im-
portance for pre-operative planning of cochlear implantation.
However, it is strongly influenced by the relatively low resolution
of the cone-beam computed tomography (CBCT) images used
in clinical practice. In this paper, we propose a super-resolution
classification method, which refines a given initial segmentation
of the facial nerve to a sub-voxel classification level from
CBCT/CT images. The super-resolution classification method
learns the mapping from low-resolution CBCT/CT images to
high-resolution facial nerve label images, obtained from manual
segmentation on micro-CT images. We present preliminary
results on dataset, 15 ex-vivo samples scanned including pairs
of CBCT/CT scans and high-resolution micro-CT scans, with a
Leave-One-Out (LOO) evaluation, and manual segmentations on
micro-CT images as ground truth. Our experiments achieved a
segmentation accuracy with a Dice coefficient of 0.818 ± 0.052,
surface-to-surface distance of 0.121 ± 0.030mm and Hausdorff
distance of 0.715± 0.169mm. We compared the proposed tech-
nique to two other semi-automated segmentation software tools,
ITK-SNAP and GeoS, and show the ability of the proposed
approach to yield sub-voxel levels of accuracy in delineating the
facial nerve.

Index Terms—Facial nerve, Segmentation, Cochlear implanta-
tion, Supervised Learning, Super-Resolution, CBCT, micro-CT.

I. INTRODUCTION

Cochlear implantation is a conventional treatment that helps
patients with severe to profound hearing loss. The surgical
procedure requires drilling of the temporal bone to access
the cochlea. In the traditional surgical approach, a wide
mastoidectomy is performed in the skull to allow the surgeon
to identify and avoid the facial nerve, whose damage can cause
temporal or permanent ipsilateral facial paralysis. In order
to minimize invasiveness, a surgical robot system has been
developed to perform highly accurate and minimally invasive
drilling for direct cochlear access [1]. The associated planning
software tool, OtoPlan [2], allows the user to semiautomati-
cally segment structures of interest and define a safe drilling
trajectory. The software incorporates a semiautomatic and ded-
icated method for facial nerve segmentation using interactive
centerline delineation and curved planar reformation [2].
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The surgical planning for minimally invasive cochlear im-
plantation is affected by the relatively low resolution of
the patient images. Imaging of the facial nerve is typically
performed using CT or CBCT imaging with a resolution in
the range of 0.15− 0.3mm slice thickness, and a small field
of view 80− 100mm temporal bone protocol. This resolution
is comparatively low in regards to the diameter of the facial
nerve, which lies in the range of 0.8− 1.7mm.

Atlas-based approaches combined with level-set segmenta-
tion have been proposed before to segment the facial nerve
in adults [3] and pediatric patients [4]. These methods au-
tomatically segment the facial nerve, with reported average
and hausdorff accuracies in the ranges of 0.13− 0.24mm and
0.8 − 1.2mm, respectively. This reported accuracy is similar
to other approaches, such as OtoPlan [2] or NerveClick [5],
where a semi-automatic statistical model of shape and intensity
patterns was developed with a reported RMSE accuracy of
0.28 ± 0.17mm . Since for the facial nerve a margin of up
to 1.0mm is available and an accuracy of at least 0.3mm
(depending on the accuracy of the navigation system) is
required [6], an accurate facial nerve segmentation is crucial
for an effective cochlear implantation surgical plan.

Super-resolution methods have been presented in computer
vision related tasks to reach sub-voxel accuracy in regression
problems, where the goal is to reconstruct a high-resolution
image from low-resolution imaging information. Most of such
methods employ linear or cubic interpolation [7], but are sub
optimal for CBCT/CT images of the facial nerve, due to their
SNR and local structural variability. In a recent study [8], a
Random Forest based regression model was used to perform
upsampling of natural images. Similarly, in [9] a supervised
learning algorithm was used to generate diffusion tensor
images at super-resolution (i.e. upscaling from 2×2×2mm to
1.25× 1.25× 1.25mm resolution). Recently, in [10], a super-
resolution convolutional neural network (SRCNN) learns an
end-to-end mapping between the low- and high-resolution
images. In [11] a super-resolution (SR) approach reconstructs
high resolution 3D images from 2D image stacks for cardiac
MR imaging, based on a convolutional neural network (CNN)
model.

In the present clinical problem, we are concerned with the
delineation of the facial nerve for cochlear implantation plan-
ning. Hence, as opposed to other super-resolution schemes,
here we propose a super-resolution classification method for
accurate segmentation refinment of the facial nerve.
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We adopted a supervised learning scheme to learn the
mapping between CBCT/CT images to high-resolution facial
nerve label images, obtained from manual segmentations on
micro-CT images. Here we coin the method super-resolution
classification (SRC). The proposed approach then employs
SRC to refine an initial segmentation provided by OtoPlan [2]
to generate accurate facial nerve delineations.

In the following sections we present a description of the
image data and the proposed algorithm, followed by segmen-
tation results on test cases, and a comparison with two other
general-purpose segmentation (ITK-SNAP, GeoS) software
tools used to perform segmentation refinement.

II. MATERIALS AND METHODS

This section describes the image data used to train and test
the proposed SRC algorithm. Figure 1 shows an overview of
the complete pipeline, composed of two phases for training
and testing. During training, image upsampling, image pre-
processing, registration to micro-CT images, and building of
a classification model based on extracted features, are per-
formed. During testing, the input CBCT image is upsampled,
preprocessed, and features are extracted to perform super-
resolution classification.

A. Image Data

We developed and tested our approach on a database of
15 patient cases, comprising 7 pairs of CBCT and micro-
CT images, and 8 pairs of CT and micro-CT images of
temporal bones. The CBCT temporal bones were extracted
from four cadaver heads in the context of an approved clinical
study on cochlear implantation [12]. The CBCT were obtained
with a Planmeca ProMax 3D Max with 100× 90mm2FOV .
Micro-CT was performed with a Scanco Medical µCT 40
with 36.9× 80mm2FOV . For each sample, a CBCT (0.15×
0.15×0.15mm3) and micro-CT ( 0.018×0.018×0.018mm3)
scan was performed. The set of 8 pairs of CT and Xtreme
CT images of temporal bones were obtained with a CT
imaging (Siemens SOMATOM Definition Edge) and a tempo-
ral bone imaging protocol with parameters: 120kV p, 26mA,
80mmFOV . The spatial resolution of the scanned CT images
was 0.156 × 0.156 × 0.2mm3. The Xtreme CT ( 0.0607 ×
0.0607 × 0.0607mm3 ) scans were obtained with a Xtreme
CT imaging (SCANCO Medical). We note that cadaver images
are similar to clinical images of the facial nerve, enabling the
evaluation of our method with cadaver images. The image
volume size ranges around 70× 80× 110 voxels from CBCT
and 60× 55× 60 voxels from CT .

To create ground truth datasets, manual segmentations of the
facial nerve on micro-CT images was performed following the
segmentation protocol presented in [2], and were verified by
experts using Amira 3D Software for Life Sciences version
5.4.4 (FEI, USA) [13]. The experts verifying the manual
ground-truth are two senior biomedical engineers trained in
the cochlear anatomy and with years of experience in manual
segmentation of the cochlear structures.

B. Preprocessing

To create the supervised based machine learning model
and to evaluate the approach on ground truth data, derived
from micro-CT images, we rigidly aligned the pairs of CBCT
and CT and micro-CT images using Amira (version 5.4.4)
via the normalized mutual information method [14] and
elastix [15] [16] with the advanced normalized correlation
metric (see Appendix A). For the sake of clarity, we refer
for the rest of the paper to both CBCT and CT as CBCT/CT
to indicate that the operations are applied to both.

1) Intensity normalization: We normalize the intensities
of the CBCT/CT images by histogram matching, with a
common histogram as a reference. Since we are computing the
histogram only on a ROI (described below in section II-B3)
to match the range of intensities being targeted for the facial
nerve, we avoid the effect of background voxels and hence,
there is no need to set an intensity threshold for the histogram
matching.

2) CBCT/CT and micro-CT image alignment (only training
phase): In order to learn the mapping between CBCT/CT and
micro-CT images we rigidly aligned the pairs of CBCT/CT
and micro-CT images. Due to the fact that the diameter of
the facial nerve lies in the range of 0.8 − 1.7mm and the
facial nerve is only imaged across approximately at 5 − 11
slices of CBCT/CT (0.15 × 0.15 × 0.15mm3), we manually
initialized a rigid registration based on landmarks defined
by screws implanted in the specimens for patient-to-image
registration, as presented in [12], followed by an automated
rigid registration in Amira (version 5.4.4) using normalized
mutual information metric. A second rigid registration was
performed between the transformed micro-CT image and
the CBCT image, using elastix with advanced normalized
correlation metric. We observed that in practice this pipeline
resulted in an improved robustness and accuracy, as opposed
to performing a single registration. We also remark that no
change of resolution is performed when registering the micro-
CT image to the CBCT image (as typically is the case for
image registration tasks). The set of sought transformations
are then applied to the ground truth image in order to map
them onto the CBCT image space.

3) Region of interest selection (ROI): Since the main focus
of the method is to obtain sub-voxel accuracy of the facial
nerve border, and to reduce computational costs, we adopted
a band-based region of interest selection strategy. Here we use
the segmentation results from OtoPlan as initial segmentation
to be refined through Super Resolution Classification. From
the preliminary OtoPlan segmentation of the CBCT/CT image,
a region-of-interest is created via a combination of erosion
and dilation morphological operations. The region of interest,
on which the super-resolution classification takes place, cor-
responds to the arithmetic difference between the dilated and
eroded label images. In practice, a 16 and 24 voxel structuring
element (0.3mm and 0.4mm respectively on each side, which
effectively translates as an additional two times magnitude of
the accuracy error reported by other approaches) ) was tested
on the upsampled CBCT/CT images.

2
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C. Super-Resolution Classification (SRC)
This section describes the steps for CBCT/CT upsampling,

the feature extraction and the classification model building.
1) CBCT/CT upsampling: Similar to [8], we perform an

upsampling of the CBCT/CT image to the target resolution
in order to combine features extracted from the upsampled
and the original image. In this study we employed a B-spline
upsampling scheme. However, other interpolation schemes,
such as linear or cubic, can be used since as classification
results were not sensitive to this choice.

2) Feature Extraction: We employ texture-based features
derived from first-order statistics, percentiles and Grey Level
Co-occurrences Matrix (GLCM) [17] [18] [19], which are
only extracted on the computed region of interest. First-order
statistics [20] and percentile features [21] [22] are computed
at original and upsampled resolutions, while GLCM features
are computed only on patches from the upsampled image. This
is supported by direct testing of GLCM features derived from
both the original and upsampled images with poorer results
(in terms of all evaluated metrics) than using only GCLM
features extracted from the upsampled image. This can also
be explained by the fact that the much larger size of voxel-
wise GLCM features (in comparison to the other imaging
features). We remark that through direct testing of GLCM
features derived from both original and upsampled CBCT/CT
images, GLCM features extracted from the original CBCT/CT
image do not contribute as much as those extracted from the
upsampled image.

a) First-order statistics: Mean, standard deviation, min-
imum, maximum, skewness and kurtosis of voxel intensities
are computed for each image patch of the CBCT/CT and
upsampled CBCT/CT image.

b) Percentiles: From each image patch of the CBCT/CT
and upsampled CBCT/CT image, the 10th percentile, 25th per-
centile, 50th percentile, 75th percentile, 80th percentile, 95th
percentile of the intensity distribution, are used as features.

c) The Grey Level Co-occurrences Matrix (GLCM):
The Grey Level Co-occurrences Matrix (GLCM) is a second-
order statistical texture that considers two-voxels relationship
in an image. Following [19], we adopted 8 GLCM features: in-
ertia, correlation, energy, entropy, inverse difference moment,
cluster shade, cluster prominence, haralick correlation. Mean
and variance of each feature with 13 independent directions
in the center voxel of each image patch are calculated. Hence,
16 features of GLCM were calculated in the upsampled
CBCT/CT image.

3) Classification model – Training phase: Given a training
set {〈Xi,Yi〉|i = 1, ..., N} of CBCT/CT and micro-CT
aligned pairs of images, we extract from each ith image
patch, a feature vector Xi = (v1, ....vn) ∈ X and responses
y ∈ {0, 1}, which describes the background/foreground label
of the center voxel over a grid of C voxels. Then, a function
ŷ : X 7→ y from a space of features X to a space of responses
y is constructed. The mapping is cast as a classification
problem.

As classification model, we adopted extremely randomized
trees (Extra-Trees) [23], which is an ensemble method that
combines the predictions of several randomized decision trees

to improve robustness over a single estimator. Extra-Trees
have shown to be slightly more accurate than Random Forests
(RF) and other tree-based ensemble methods [23]. During the
training phase of Extra-Trees, multiple trees are trained and
each tree is trained on all training data. Extra-Trees randomly
selects without replacement, K input variables {v1, ....vk}
from the training data. Then, a cutpoint si is randomly
selected, ruled by a splitting criteria [vi < si], for each
selected feature within the interval [vmin

i , vmax
i ] . Among the

K candidate splits, the best split is chosen via normalization
of the information gain [24]. We note that in our experiments,
and in order to reduce irrelevant features [23], the number of
input variables K is set to the size of the input feature vector
n.

4) Classification model – Prediction phase: During testing,
the CBCT/CT image is pre-processed through image intensity
normalization (using the same reference image as for the
training phase). Image features in a band of interest (results
reported using a band size of 16 and 24 voxels) are extracted
from the original and upsampled CBCT/CT image, and passed
through the Extra-Trees classification model. The computed
output corresponds to the label of the central voxel from the
extracted patch.

5) Postprocessing: The refined segmentation is regularized
in order to remove spurious and isolated segmented regions.
In this study we adopted a basic regularization scheme based
on erosion (kernel size=16 or 24) and dilation (kernel size=16
or 24) morphological operations.

III. EXPERIMENTAL DESIGN

A Leave-One-Out (LOO) cross-validation study was carried
out to evaluate the accuracy of the proposed super-resolution
segmentation approach. The idea of LOO is to split data into
train and test sets. One image data is chosen as a test set
while the remaining data are used for training. This method is
repeated until every image data has been tested and evaluated
using the following evaluation metrics.

A. Experimental detail

The upsampling of the CBCT/CT images was performed in
Amira with a B-spline interpolation kernel. For computation
of features, patches of size 5 × 5 × 5 were extracted on the
original and upsampled CBCT/CT images. Feature extraction,
morphological operations to create the ROI, and intensity
normalization was performed with the Insight-Toolkit version
4.4.1 [25], and classification was completed with Scikit-learn:
Machine Learning in Python [26]. Default parameters were
used for the Extra-Trees classifier.

B. Segmentation initialization with OtoPlan

As input to the segmentation refinement step with SRC we
utilized OtoPlan [2] to obtain an initial segmentation from
where the ROI bands are extracted, and then classified.

In OtoPlan, the centerline of the facial nerve is manually
drawn and the borders are automatically defined by the tool.
After this step, the facial nerve border can be manually
modified by dragging contours of the facial nerve.

3
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(a) Training phase

(b) Testing phase

Fig. 1: Proposed super-resolution classification (SRC) approach, described for the training (a), and testing phase (b). During training, the original CBCT/CT
image is aligned to its corresponding micro-CT image. OtoPlan [2] is used to create an initial segmentation, from where a region-of-interest (ROI) band is
created. From the original and upsampled CBCT/CT images, features are extracted from the ROI-band to build a classification model, which is used during
testing to produce a final super-resolution segmented image. The zoomed square on the segmented super-resolution image shows on one voxel of the CBCT/CT
image, the more accurate segmentation yielded by SRC. 4
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Based on this initial segmentation we extracted a ROI with
two different sizes (section II-B3), referred as to band 16 and
band 24, to indicate 16 and 24 voxels band size. The rationale
behind is to analyze the sensitivity of SRC to different band
sizes, as well as to analyze a potential dependency between
the accuracy of the initial segmentation and the performance
of SRC.

C. Evaluation metrics

(1) Hausdorff Distance (HSD). This metric measures the
Hausdorff distance [27] from the ground truth surface to
its nearest neighbor in the segmented surface.

(2) Root Mean Squared Error (RMSE). The RMSE is cal-
culated by the square root of the Mean Squared Error

(MSE). RMSE =

√∑n
i=1(a−b)2

m , where a ∈ A, b =
min
b∗∈B

||a−b∗||, and m corresponds to the number of surface
points used to compute RMSE.

(3) Average Distance (AveDist). AveDist(A,B) =
max(d(A,B), d(B,A)), where d(A,B) =
1
m

∑
a∈A

min
b∈B
||a − b||. The smaller the value of the

average distance the better the accuracy of the facial
nerve segmentation is.

(4) Positive Predictive Value (PPV). PPV = TP
(TP+FP ) ,

where TP stands for true positive — the number of
correctly segmented facial nerve voxels— and FP stands
for false positive, the number of wrong segmented voxels.

(5) Sensitivity (SEN). SEN = TP
(TP+FN) , where FN stands

for the number of wrong labeled background voxels (i.e.,
segmenting facial nerve voxels as background).

(6) Specificity (SPC). SPC = TN
(TN+FP ) , where TN stands

for the number of correctly segmented background voxels.
(7) Dice Similarity Coefficients (DSC). A DSC value of 1

indicates the segmentation fully overlaps with the ground
truth (i.e. perfect segmentation), while a DSC value of
0 indicates no overlap beween the segmentation and the
ground truth segmentation.

D. Evaluation

In this section we present segmentation results separately
for CBCT and CT images with the intention to show the
performance of the proposed approach on two different scan
types. We remark that the adopted LOO evaluation strategy
employs the entire set of clinical CBCT/CT scans for the
training phase.

1) Experiment 1: Segmentation results on CBCT(training
and testing with LOO): We compared the proposed SRC
method with the segmentation software GeoS and ITK-SNAP.
We employed ITK-SNAP (version 3.4.0) [28] and its Random-
Forest-based generation of speed images, which relies on
defining brushes on the foreground and background areas of
the facial nerve. The number of brushes was found empirically
via trial-and-error with the main criteria of yielding robust
segmentation results. In practice this resulted in approximately
four brush strokes per image, and eight bubbles for contour
initialization. No extensive search of optimal placement of
brushes was conducted in order to keep the experiments to

the typical usage scenario of the tool. Similar procedure was
conducted for the GeoS tool (version 2.3.6) [29], a semi-
automatic tool based on brush strokes and Random Forest
supervised learning. On average over fifteen brush strokes
were used for GeoS, with no further improvements observed
beyond this number.

For both software tools, brush strokes were defined on the
ROI-band (16 or 24 voxels) on background and foreground
areas (c.f. section II-B3).

In order to compare DSC values among segmentation results
and the ground truth (produced at micro-CT resolution), we
resampled the results from the tools to the resolution of the
ground truth using nearest interpolation. Second, we converted
the segmentation results to surfaces [30] and computed average
and Hausdorff distances.

Figure 2 shows the facial nerve segmentation results for
each sample of the CBCT dataset for the proposed SRC
method, and ITK-Snap and GeoS. From the DSC values and
the Hausdorff distances (Figures 2a and 2b), it can be observed
that the proposed method is robust and provides a higher
average DSC and a lower Hausdorff distance than the other
methods. From Figure 2d and Figure 2e it can be observed
that that overall ITK-SNAP and GeoS tend to undersegment
the CBCT cases. Conversely, SRC did not show a potential
bias towards over-, or under-segmentation.

Table I summarizes the comparative results between the
proposed approach and GeoS and ITK-SNAP, with two dif-
ferent band-based region of interest. It can be observed that
in comparison to ITK-SNAP and GeoS, the proposed SRC
method is more accurate and robust to an increase of the
band size. Particularly, GeoS resulted to be less robust to an
increase of the band size, as described by the increase variance
of the metrics. The proposed SRC method achieved an average
DSC value of 0.843, a mean Hausdorff distance of 0.689mm,
and a sub-voxel average distance accuracy of 0.156mm.
Regarding the tested segmentation tools, GeoS yielded the
lowest DSC value among the evaluated approaches (average
DSC of 0.686), followed by ITK-SNAP with an average DSC
value of 0.765. In terms of distance metrics, the average
Hausdorff metric for GeoS and ITK-SNAP was 0.951mm and
0.819mm, respectively. Using a two-tailed t-test and Wilcoxon
signed ranks tests, statistically significantly greater results than
GeoS and ITK-SNAP were obtained (p < 0.05, Bonferroni
corrected) for the dice, average distance and RMSE metrics.
Figure 3 shows an example result, put in the context of
the original and high-resolution ground-truth, while Figure 4
shows example results for all tested approaches. It can be
observed that the proposed approach yields a more precise
delineation than the other tested methods. Particularly, the
postprocessing step based on simple morphological removes
any potential holes and isolated small regions.

2) Experiment 2: Segmentation results on CT: Figure 5
and Table II summarize the comparative results on the CT
database, between the proposed approach and GeoS and ITK-
SNAP for two different band-based sizes. Similar to the results
on CBCT cases, it is observed that the proposed SRC method
is superior to ITK-SNAP and GeoS, and is more robust to the
band size. The proposed method achieved an average DSC

5
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(a) Dice Similarity Coefficients (b) Hausdorff Distance

(c)

(d) Positive Predictive Value (e) Sensitivity

Fig. 2: Evaluation on CBCT cases between the proposed super-resolution segmentation method and GeoS (version 2.3.6) and ITK-SNAP (version 3.4.0).
Average values for DSC (a), Hausdorff (b), Positive Predictive Value (d), and Sensitivity (e). Case number 7 could not be segmented via GeoS. Note: best
seen in colors.

CBCT dataset with band16 CBCT dataset with band24
Method Proposed method (SRC) GeoS ITK-SNAP Proposed method (SRC) GeoS ITK-SNAP
Dice 0.843±0.055(0.866)∗ 0.686±0.037(0.686) 0.765±0.058(0.795) 0.822±0.062(0.847) 0.578±0.123(0.547) 0.732±0.099(0.777)
AveDist 0.112±0.034(0.100)∗ 0.296±0.058(0.193) 0.196±0.052(0.205) 0.131±0.032(0.121) 0.436±0.137(0.461) 0.197±0.064(0.164)
RMSE 0.156±0.038(0.144)∗ 0.345±0.062(0.367) 0.247±0.063(0.248) 0.186±0.034(0.180) 0.493±0.134(0.526) 0.237±0.062(0.212)
Hausdorff 0.689±0.163(0.670)∗ 0.951±0.253(0.886) 0.819±0.185(0.760) 0.747±0.117(0.736) 1.309±0.207(1.364) 0.744±0.090(0.708)

TABLE I: Quantitative comparison on CBCT cases between our method and GeoS and ITK-SNAP, for band sizes 16 (left)
and 24 (right). Dice and surface distance errors (in mm). The measurements are given as mean ± standard deviation (median).
The best performance is indicated in boldface. The ∗ indicates that SRC results are statistically significantly greater (p < 0.05)
than GeoS and ITK-SNAP using a two-tailed t-test and Wilcoxon signed ranks tests.

6
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Fig. 3: Example results for the proposed super-resolution segmentation approach. From left to right: Original CBCT image with highlighted (in blue) facial
nerve, resulting segmentation and ground truth delineation (orange contour), and zoomed area describing SRC results on four corresponding CBCT voxels.

value of 0.797, a mean Hausdorff distance of 0.739mm, and
a sub-voxel average distance accuracy of 0.129mm. GeoS
yielded the lowest DSC value among the evaluated approaches,
followed by ITK-SNAP with an average DSC value of 0.731.
In terms of distance metrics, the average Hausdorff metric for
GeoS and ITK-SNAP was 0.954mm and 0.829mm, respec-
tively. Using a two-tailed t-test and Wilcoxon signed ranks
tests, statistically significantly greater results than GeoS and
ITK-SNAP were obtained (p < 0.05, Bonferroni corrected)
for the dice, average distance and RMSE metrics, see Table
II.

IV. DISCUSSIONS

In this study we developed an automatic super-resolution fa-
cial nerve segmentation via a random forest Extra-Trees based
classification framework that refines an initial segmentation of
the facial nerve to sub-voxel accuracy. To our knowledge, this
is the first attempt to perform super-resolution classification
for facial nerve segmentation in CBCT/CT images by explot-
ing imaging modalities featuring different resolution levels.
Preliminary results, based on a leave-one-out evaluation on
fifteen ex-vivo cases, suggest that the proposed method is able
to classify the facial nerve with high accuracy and robustness.
On a standard desktop computer, the learning phase is the
most time-consuming part, requiring for our set-up around 2
hours. The testing phase (running on a new case) takes only
9 minutes. Given an input CBCT or CT image, the proposed
pipeline start with an initial segmentation of the facial nerve
region, which in this study was obtained via OtoPlan [2].
However, we remark that other approaches can be used to
yield the initial segmentation (e.g. [3], ITK-SNAP [28]). A
band ROI is then created from this initial segmentation and
used by SRC to attain a highly accurate segmentation of the
facial nerve in an automated fashion. Comparison with other
available segmentation tools, ITK-SNAP and GeoS, confirms
the higher accuracy and robustness of the proposed SRC
approach.

According to our experiments, better segmentation results
are obtained when the features computed on both the original
and upsampled CBCT images than with features extracted
only from the original CBCT image. This is in agreement

with recent findings in semi-supervised regression based image
upscaling where features extracted from an initial upsampling
has shown to yield better estimates of the sought high-
resolution image [8]. This is motivated by the fact that the
training phase is enriched by including model samples that
stem from micro-CT labels (i.e. from the micro-CT ground-
truth image) and corresponding imaging features approximated
at micro-CT level by the upsampling step on the CBCT/CT
images.

As described, GLCM features extracted from the original
CBCT/CT image do not contribute as much as those extracted
from the upsampled image. This behavior can be conceptually
explained since GLCM features computed on the upsampled
image describe textural patterns on a much localized 53 patch
size that better correlates to the label of the central voxel,
extracted from the micro-CT image. Conversely, GLCM fea-
tures computed on the original CBCT/CT image covers a much
larger spatial extent, and hence the described textural informa-
tion correlates less to the label of the central voxel at micro-CT
resolution. Interestingly, the role of features from first-order
statistics and percentiles provide benefits on both original
and upsampled CBCT/CT images. First-order statistics and
percentiles computed on the original CBCT/CT image improve
the positive predictive value, but yields to a blocky effect in the
segmentation result when not used in combination with first-
order statistics and percentiles computed on the upsampled
CBCT/CT image. We also checked (not reported here) the
accuracy of the general-purpose segmentation tools on the
upsampled CBCT images. Obtained results suggests that these
general-purpose tools do not benefit from an upsampling
of the CBCT image. On the contrary, worse results were
obtained, with an average worsening on the dice scores of
80.1% and 62.3% for ITK-SNAP and GeoS, respectively. We
refrained from further investigating the reasons as to why of
this behavior due to the lack of implementation details of the
tools.

The proposed SRC approach can also be used on pathologi-
cal anatomies as it does not rely on shape priors. For instance,
in case of bony dehiscence of the fallopian canal. In facial
nerve dehiscence the nerve is uncovered in the middle ear
cavity, leading to proximity of air voxels to the facial nerve.
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Fig. 4: The facial nerve segmentation comparison on the original CBCT image between the proposed SRC method and other segmentation software —
ITK-SNAP and GeoS. The ROI selection via band 16 from OtoPlan initial segmentation.

CT dataset with band16 CT dataset with band24
Method Proposed method (SRC) GeoS ITK-SNAP Proposed method (SRC) GeoS ITK-SNAP
Dice 0.797±0.036(0.802)∗ 0.666±0.109(0.685) 0.731±0.041(0.738) 0.749±0.048(0.759) 0.549±0.084(0.545) 0.744±0.049(0.734)
AveDist 0.129±0.023(0.125)∗ 0.292±0.021(0.292) 0.194±0.036(0.204) 0.156±0.027(0.155) 0.484±0.181(0.433) 0.176±0.061(0.163)
RMSE 0.177±0.033(0.178)∗ 0.353±0.030(0.341) 0.243±0.045(0.251) 0.216±0.037(0.226) 0.593±0.247(0.477) 0.229±0.073(0.229)
Hausdorff 0.739±0.171(0.758)∗ 0.954±0.264(0.883) 0.829±0.162(0.746) 0.854±0.168(0.901) 1.524±0.732(1.087) 0.812±0.221(0.848)

TABLE II: Quantitative comparison on CT cases between our method and GeoS and ITK-SNAP, for band sizes 16 (left) and
24 (right). Dice and surface distance errors (in mm). The measurements are given as mean ± standard deviation (median).
The best performance is indicated in boldface. The ∗ indicates that SRC results are statistically significantly greater (p < 0.05)
than GeoS and ITK-SNAP using a two-tailed t-test and Wilcoxon signed ranks tests.

As the proposed approach uses a band surrounding the facial
nerve, it already includes air voxels labeled as background to
train the model. Therefore, it is expected that the proposed
method can handle these cases. However, due to the absence
of this type of cases in our database, we were not able to test
this point in this study. In the context of the required accuracy
for an effective and safe cochlear implantation planning of
at least 0.3mm [6], analysis of the RMSE error (suitable for
this clinical scenario as large errors are to be penalized), the
proposed SRC approach is the only one yielding RMSE errors
with ranges not surpassing the required accuracy for the tested
CBCT/CT cases (Table I & II).

There are some limitations in this study. First, the approach
relies on aligned pairs of CBCT/CT and micro-CT images,
which are not readily available on all centers. A potential

solution to this limitation, is the use of synthetically-generated
images from a phantom of known geometry. Similarly, our
short-term goal is to prepare a data descriptor in order to
make the datasets in this study available for research purposes.
Secondly, the learned mapping between clinical and high
resolution imaging is specific for the corresponding imaging
devices used to generate training data. However, as technical
specifications of CBCT/CT imaging devices among different
vendors do not differ substantially for facial nerve imaging of
cochlear patients, we hypothesize that utilization of an existing
super-resolution classification model to a different CBCT/CT
vendor might require slight adaptations related to straightfor-
ward intensity normalization and histogram matching opera-
tions. In this direction, future work includes evaluation of the
approach on a large dataset including images from different

8
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(a) Dice Similarity Coefficients (b) Hausdorff Distance

(c)

(d) Positive Predictive Value (e) Sensitivity

Fig. 5: Evaluation on CT cases between the proposed super-resolution segmentation method and GeoS (version 2.3.6) and ITK-SNAP (version 3.4.0).
Average values for DSC (a), Hausdorff (b), Positive Predictive Value (d), and Sensitivity (e). Case number 8 could not be segmented via GeoS. Note: best
seen in colors.

CBCT/CT devices in order to produce a more generally appli-
cable algorithm. Future work also consider a larger dataset of
cochlear image datasets including pathological cases to further
validate the approach. The segmentation method was made
specific to the task of super-resolution segmentation of the
facial nerve. Our next step is to extend it to the segmentation
of the chorda tympani by creating a dedicated model for it. In
order to share the data with the scientific community and to
foster future research in this and other related research lines,
a data descriptor and open repository will be released.

Another limitation is the computational cost needed to
extract features on the upsampled CBCT/CT image (hour
range depending on the length of the facial nerve), which
is expected to be improved through a pyramidal upsampling
scheme, on which features are progressively extracted on
each resolution level and concatenated, similar to the pyramid
approach recently proposed in [31].

In this study we employed an ad-hoc regularization post-
processing of the resulting segmentation based on morpho-
logical operations, aiming at removing isolated small regions
and holes in the segmentation. Future work includes the use
of a regularization component based on a conditional random
field, similar to [32]. In practice, the postprocessing step had
a larger impact on the Hausdorff distance metric, as single
and isolated voxels outside of the facial nerve region would
be used to compute it.

We anticipate that the proposed approach can be seamlessly
applied as well to pediatric cases, because it does not rely on
shape priors as it is the case of atlas-based methods. Moreover,
as demonstrated, this approach can be applied to other image
modalities for super-resolution image segmentation, particu-
larly for CT, which is an imaging modality often employed
for bone imaging.

9
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V. CONCLUSIONS

We have presented an automatic random forest based super-
resolution classification (SRC) framework for facial nerve
segmentation from CBCT/CT images, which refines a given
initial segmentation of the facial nerve to sub-voxel accuracy.
Preliminary results on seven 3D CBCT and eight 3D CT
ex-vivo datasets suggests that the proposed method achieves
accurate segmentations at sub-voxel accuracy.
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VII. APPENDIX A

A protocol description of the registration pipeline
1) Registration with Amira:

First, manual alignment of the CBCT/CT image and
the corresponding micro-CT image based on manually
placed landmarks (from 4 landmarks). Second, first rigid
registration with normalized mutual information in Amira
(version 5.4.4).

2) Registration with elastix:
First, the rigidly transformed micro-CT image is defined
as the moving image, and the CBCT/CT image is defined
as the fixed image. In order to preserve the resolution of
the micro-CT image and transform it to the CBCT/CT
image space, the CBCT/CT image is resampled to micro-
CT resolution. Default registration parameters taken from
http://elastix.bigr.nl/wiki/index.php/Default0.
The resulting non-rigid trasnform parameters is used to
transform the ground-truth label image using nearest in-
terpolation. The resulting trasnformed ground-truth image
is then used during training of the SRC approach.

VIII. APPENDIX B

Parameters
n estimators 10 the number of tress
criterion default=’gini’ the Gini impurity
max feature default=’auto’ sqrt(the number of features)
max depth default=’None’ nodes are expanded until

all leaves are pure or until
all leaves contain less than
min samples split samples.

TABLE III: Employed parameters of the ExtraTreesClassifier
in sklearn.
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