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ABSTRACT

In this paper, we introduce a hybrid image registration
approach for diffusion weighted image (DWI) distortion cor-
rection. General intensity-based multimodal registration uses
mutual information (MI) as the similarity metric, which can
cause matching ambiguities due to the intensity correspon-
dence uncertainty in some anatomical regions. We propose
to overcome such limitations by enhancing the registration
framework with automatically detected landmarks. These
landmarks are then integrated naturally into multimodal dif-
feomorphic demons algorithm using Gaussian radial basis
functions. The proposed algorithm was tested with clinical
DWI data, with results demonstrating that better distortion
correction can be achieved using the hybrid algorithm as
compared to using a pure intensity-based approach.

Index Terms— Image Registration, Diffusion Weighted
Imaging, Landmark Detection

1. INTRODUCTION

Diffusion-weighted imaging (DWI) is a powerful imaging
technique which is capable of providing variational infor-
mation of the biological tissues through detection of water
molecular diffusion. Most magnetic resonance (MR) diffu-
sion studies require multiple images with which diffusion
sensitization is in noncollinear directions. Such an analysis
requires all the images to be spatially well aligned. However,
the accuracy of the analysis is often restricted by geometri-
cal distortions inherent to the pulse sequence called motion
probing gradient (MPG). The eddy currents iduced by this se-
quence cause field inhomogeneities that lead to these spatial
distrortions.

In order to facilitate further DWI analysis, image regis-
tration based distortion correction [1, 2, 3] has been widely
researched and showed to be superior over the acquisition
protocol-based methods and the field map-based methods.
The principle is to align the images at each gradient direc-
tion to the undistorted B0 image. Since B0 image are often
acquired with T2w sequences, multimodal registration is re-
quired. Most of the proposed methods are focused on affine
registration using mutual information (MI). However, the

eddy current distortion is not necessarily linear. Therefore,
non-rigid registration is indispensable in this case.

In this paper, we extend our previous work on multi-
modal diffeomorphic demons registration [4] by incorporat-
ing salient landmarks. The landmarks are extracted automat-
ically and serve as guidance for the voxel-wise matching.
The energy function is governed by point-wise mutual infor-
mation, landmark information and a regularization term. The
optimization of this energy results in a combination of a dense
vector field and Gaussian basis functions for landmarks in a
space of diffeomorphic transformations. The methodology of
the whole framework, including the detection and integration
of the landmarks, is elaborated in Section 2, followed by the
experiments and results on clinical DWI datasets in Section
3. Advantages and limitations of this work are discussed in
Section 4.

2. HYBRID MULTIMODAL IMAGE REGISTRATION

2.1. Why Hybrid Registration?

In general, non-rigid registration algorithms can be classified
into two categories in terms of the used image information:
landmark-based and intensity-based. The landmark-based
methods define a unique smooth transformation based on cor-
responding landmarks, which are usually located in anatom-
ically salient regions. The correspondence of the points
away from the landmarks is defined by a certain interpolation
method. Landmark-based approaches ensure accurate regis-
tration in salient regions, and they are usually computational
efficient and capable of handling large geometrical defor-
mations. Nevertheless, they do not guarantee overall voxel
to voxel correspondences and the result can be significantly
affected by the choice of the landmarks. Therefore, more at-
tention has been recently paid to intensity-based approaches,
where the transformation is directly computed from the in-
tensity information of all the voxels in the image data. Thus,
the intensity-based methods can often achieve globally better
accuracy. However, one major limitation is the insufficient
information used in this approach for voxel-wise matching,
which in general causes matching ambiguity. The ambiguity
is especially severe with mutual information-based multi-



modal registration, where voxel matching is established only
depending on the statistical relation of the intensity distribu-
tion in two images. Therefore, more information needs to be
incorporated to make the voxel distinct to match.

Consequently, it is natural to think of combining the ad-
vantages of those two approaches. Although substantial ef-
forts has been put into hybrid registration approaches dur-
ing the past years [5, 6, 7, 8, 9, 10, 11], only few [8, 9] can
deal with multimodal images. However, these methods re-
quire manually annotated landmarks, which is a tedious, time-
consuming task. In this work, automatic landmark detection
is achieved for the sake of efficiency and clinical applicabil-
ity. The detected landmarks are integrated to the multimodal
demons registration algorithm in a diffeomorphic space. De-
tails are given in the following subsections.

2.2. Landmark Detection

Given two images F and M , the goal of landmark detection
is to find a set of points q ∈ F and their correspondences
r ∈M , which should be anatomically meaningful in order to
serve as a guide to improve the registration accuracy. The pro-
posed landmark detection scheme is divided into two steps:
(1) detecting of salient landmarks in the reference image F ,
(2) locating their corresponding points in target image M .

Scale saliency [12] is adopted to detect landmarks in F .
It is a geometrical measure to detect salient regions with a
complex structure and bases on information theoretical idea
that higher entropy indicates more complex structures. Scale
saliency is defined by the weighted entropy across scale and
position:

Y (z, x) = H(z, x)×W (z, x), (1)

where Y (z, x) is the scale saliency value of a point x at scale
z; H and W denote the entropy and the weighting function
respectively, which are defined as:

H(z, x) = −
∑
x∈F

p(z, x) log2 p(z, x) (2)

W (z, x) = z ·
∑
x∈F
|p(z, x)− p(z − 1, x)| (3)

where p is the probability density as a function of point x
at scale z. The scale vector z at which entropy is peaked is
defined as:

z =

{
z :

∂H(z, x)

∂z
= 0,

∂2H(z, x)

∂z2
< 0

}
(4)

In brain images, anatomical landmarks are usually located
at the regions with complex structure such as sulci, vertices of
the ventricle, etc. Thus, the points in F with high scale salient
responses are considered as the anatomical landmarks. More-
over, to encourage uniform registration accuracy in the image,
it is desirable that the detected landmarks are homogeneously
distributed within the image space. Hence, instead of a global

thresholding and clustering as in [12], we first partition the
image space intoN regions, in each region theK most salient
candidates were selected as shown in Figure 1. Then, in order
to keep each landmark distant enough from the others, a k-
means clustering is performed on those candidates. For each
cluster, the most scale salient point is taken as a landmark.

Fig. 1: (a) The reference image space is partitioned into re-
gions where different scales of the salient landmarks are de-
tected. (b) The corresponding landmark in the target image
is detected by block matching in a local search space (dashed
circle)

To find the correspondences of the landmarks q in the tar-
get image M , we employ block matching algorithm [13] due
to its robustness and efficiency. As the salient scale z of each
landmark q is known, the correspondence pairing is done by
optimizing a cost function to find a set of n transformations
Ti, i = 1, . . . , n between the window functions of qi and ri:

Q(Ti) =MI(DF (qi, z),T ◦DM (qi, z)), (5)

where DF and DM are the window functions of q and r; MI
denotes mutual information measurement for its capability of
coping with multimodal matching. The correspondence ri
can then be easily obtained by transforming qi by Ti.

2.3. Integration to Intensity-Based Registration

The detected landmarks are then integrated with multimodal
diffeomorphic demons algorithm, which is herein utilized as
the intensity-based method. This registration algorithm can
be summarized by a model with an energy consisting of a
similarity function, a transformation error function and a reg-
ularization term. The diffeomorphism is ensured by mapping
the update field at each iteration through the exponential op-
eration on the Lie group. In order to cope with multimodal
image registration, we previously extended this framework by
adopting point-wise mutual information (PMI) as the similar-
ity metric [4], since PMI calculates the voxel-wise contribu-
tion of the global MI and thus is easy to integrate in a dense
field approach. Given a deformation field s, the energy func-



tion can be described as follows:

E(c, s) = Sim(F,M ◦ c) + σ ‖s− c‖2 + σλReg(s), (6)

where Sim is the intensity similarity metric defined as:

Sim(F,M ◦ c) = − log

(
p(iF , iM◦c)

p(iF )p(iM◦c)

)
, (7)

Reg is the regularization term which is typically a Gaussian
kernel, and c is the estimated transformation according to the
metric.

To incorporate the detected landmarks, we reformulate the
demons energy function by introducing the energy term for
landmarks. Different to our previous work [14], a correspon-
dence term σ ‖c− l‖2 is added, so that the landmark energy
can be optimized together with the update field u on the Lie
group to ensure the diffeomorphism:

E(c, s) =Sim(F,M ◦ c) + σ ‖s− c‖2 + σ ‖c− l‖2

+ σγ ‖s− l‖2 + σλReg(s),
(8)

where l is the estimated transformation according to the
landmark. Given n corresponding landmarks qi and ri,
i = 1, . . . , n that have been localized in F and M . The
energy term with respect to the landmarks can be written as:

σγ ‖s− l‖2 =

n∑
i=1

(ri − qi ◦ s)2. (9)

The optimization of this modified energy function with
respect to c, l, s leads to the following steps:

1. Minimizing σγ ‖s− l‖2 with respect to l. This is eas-
ily done by guiding the moving landmarks towards the
reference landmarks.

2. Find the correspondence c of the dense field by mini-
mizing Sim(F,M ◦ c)+ σ ‖s− c‖2 + σ ‖c− l‖2 with
respect to c. c turns out to be a combination of update
field u and splines of Gaussian radial basis functions,
which is projected on the Lie group through the expo-
nential map:

c(x) = s(x)◦exp

(
u(x) +

n∑
i=1

αiG(x− qi)

)
, (10)

where G is the Gaussian kernel, α is a scalar value and
αi is a vector of weighting parameters.

3. Find the estimated transformation s by minimizing
σ ‖s− c‖2 + σλReg(s) with respect to s.

3. RESULTS

To validate our distortion correction approach, we applied the
proposed algorithm to six clinical DWI datasets. Each dataset
consists of one T2w image with b = 0 s/mm2 and six T1w
images with b = 500s/mm2 with different gradient orienta-
tions. The resolution of the images is 384 × 384 × 44 with
voxel spacing of 0.5365× 0.5365× 3 mm3. The evaluation
of our hybrid approach is decoupled into two parts:

Landmark Correspondence Accuracy

We first examined the accuracy of landmark correspondences
since it is crucial for the whole registration algorithm. Typi-
cally, about 70 landmarks were detected through all the slices
in both images. For quantitative validation, we manually an-
notated the correspondencing landmarks in the target image
as the “bronze standard” for the list of detected landmarks
in reference image. Table 1 shows the results between cor-
respondences detected by our matching algorithm and the
bronze standard. The mean error is around 1 mm, while the
maximum error reaches more than 4 mm due to the missing
correspondences in some regions.

Table 1: Mean Error Between Detected Correspondences and
Bronze Standard [mm]

Dataset 1 2 3 4 5 6
Mean 0.86 0.96 0.84 0.94 1.06 1.31
Max 2.91 3.20 2.65 2.74 3.77 4.80

Registration Accuracy

A common difficulty in validating results from non-rigid im-
age registration algorithms, is the lack of ground truth. There-
fore, we are limited to using indirect measures to establish
the reliability of our variational approach. In this case, we
first performed visual inspections of the registration results
by superimposing the contour of the B0 image onto the other
images. The eddy current distortion is observed in the occipi-
tal lobe in Figure 2(b), while Figure 2(c) shows that the image
was well corrected as the contours mostly correspond with the
B0 image.

Fig. 2: T2w B0 image contour (yellow curve) overlays on (a)
B0 image (b) initial distorted image and (c) registered image



For quantitative analysis, 15 pairs of corresponding
anatomical landmarks were also identified in both images
to evaluate the geometric registration error. All the dataset
were tested using the hybrid approach as well asthe intensity-
based method. From Figure 3, one can see that the automatic
hybrid approach outperforms the intensity-based in terms
of mean error and maximum error thanks to the additional
information provided by the landmarks.

Fig. 3: (a) Mean error and (b) maximum error between the
“bronze standard” and different registration results.

4. DISCUSSION

In this paper we proposed a novel approach for DWI distor-
tion correction using hybrid multimodal registration. The al-
gorithm couples the automatically extracted landmarks and
the multimodal demons registration in a diffeomorphic space.
Due to the richer information used in the landmark detec-
tion, voxels in salient regions can establish more reliable cor-
respondences than just using point-wise mutual information,
therefore potential local-minima can be avoided. Besides, it
is always flexible to incorporate different information in land-
mark detection for task-specific registration problems.

Experiments on clinical data demonstrate that the distor-
tion is better corrected using the proposed hybrid approach
than using a pure intensity-based method. On the other hand,
due to the fact that the accuracy of the registrationsignificantly
depends on the landmark detection, the applicability of this
approach could be restrained for tackling problems like miss-
ing correspondences. Therefore, future works will be devoted
to improve the landmark detection in terms of accuracy but
more importantly robustness. Moreover, the successful DWI
distortion correction opens a wide range of applications.
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