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ABSTRACT: The localization of clinically important points in brain

images is crucial for many neurological studies. Conventional manual
landmark annotation requires expertise and is often time-consuming.

In this work, we propose an automatic approach for interest point

localization in brain image using landmark-annotated atlas (LAA). The
landmark detection procedure is formulated as a problem of finding

corresponding points of the atlas. The LAA is constructed from a set

of brain images with clinically relevant landmarks annotated. It pro-

vides not only the spatial information of the interest points of the brain
but also the optimal features for landmark detection through a learn-

ing process. Evaluation was performed on 3D magnetic resonance

(MR) data using cross-validation. Obtained results demonstrate that

the proposed method achieves the accuracy of � 2 mm, which out-
performs the traditional methods such as block matching technique

and direct image registration. VVC 2012 Wiley Periodicals, Inc. Int J Imag-

ing Syst Technol, 22, 145–152, 2012; Published online in Wiley Online Library

(wileyonlinelibrary.com). DOI 10.1002/ima.22015
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I. INTRODUCTION

In neurological studies, finding interest points that are clinically rel-

evant in brain images is an important task for many applications

such as morphological analysis and statistical shape model (Lao

et al., 2004). Besides, it can also provide useful information for

image processing method (e.g., seed points for segmentation, guid-

ance for registration, etc.). However, traditional localization of

landmarks is done manually. This requires expertise in brain anat-

omy and is usually time-consuming. It also suffers from the incon-

sistency from different raters (Gartus et al., 2007).

In previous works, different automatic landmark detection

approaches have been proposed. In general, they can be classified

into three main categories: Geometric-based, model-based, and

learning-based methods.

Geometric-based methods find geometrically salient points, cur-

vatures or surfaces to represent prominent locations in the anatomy.

Note that although many point detectors are commonly used in

computer vision such as scale-invariant feature transform (Lowe,

1996), they cannot be easily extended into 3D hence not applicable

for many medical images. Therefore, 3D differential operators (Thi-

rion, 1996; Rohr, 1997) are proposed to detect interest points on the

geometrical curvatures in volumetric images. Despite the computa-

tional efficiency achieved by these approaches, they are usually sen-

sitive to image noise and do not necessarily represent the anatomi-

cally important points defined by the experts.

Model-based methods overcome the limitations of geometric-

based techniques by detecting landmarks through fitting a template or

a model into the input image. Some efforts have been done to detect

tip-like, saddle-like, or sphere-like structure landmarks using deform-

able templates or 3D parametric intensity models (Frantz et al., 2000;

Worz and Rohr, 2006). Whereas this approach is able to localize the

predefined anatomically important points in brain images, it usually

requires fine-tuned parameters for the models. For each specific land-

mark, the intensity distribution and the curvature parameters of the

model should be well-defined independently to each other.

Recently learning-based methods attract more attentions due to

its generality and versatility. In (Izard et al., 2006), the authors used

a probability intensity model of three landmarks in hippocampus

based on the deformation of tissue probability maps. The estimation

the landmark location is equivalent to finding the best deformation

from the tissue probability map to the image by likelihood maximi-

zation. A regression method was proposed by Zhou et al. (2005), in

which the landmark localization is generalized as an image-based

regression problem. The regressor, which infers the spatial locations

of the landmarks associated with the input image, is learned using

boosting method. However, the training process of this method

requires large number of weak regressors to converge, resulting in

large computation time. Guerrero et al. (2011) exploited a manifold

learning approach based on Laplacian Eigenmaps. The position of

the patches is learned in the manifold and can be used to predict the

location of the landmarks via regression. Although accurate results

are achieved, manifold learning usually needs large training sam-

ples, limiting the applicability of this method.

In this work, we introduce a novel method by combining the

advantages of both model-based and learning-based approaches,

in which a model of anatomical landmarks is created with optimal

features selected from a learning process for landmark localization.
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Consequently, interest point localization in brain images is achieved

via landmark-annotated atlas (LAA). LAA is an atlas constructed

from a set of brain images with anatomically important landmarks

annotated. Thus, the landmark localization problem can be formu-

lated as finding corresponding points of LAA in the input image.

For each landmark, its position in the input image is detected by

using a matching criteria—mutual saliency proposed by Ou et al.

(2011). Different from the way that mutual saliency is used in (Ou

et al., 2010), in this work a set of Gabor attributes (Manjunath and

Ma, 1996) is learned for each specific anatomical landmark instead

of being learned for all voxels from the training samples. In addi-

tion, a spatial prior is also modeled to facilitate the landmark local-

ization procedure.

The structure of this article is organized as follows. First, the

methodology of the framework is elaborated in Section II including

the details of atlas construction, feature selection, and experiment

setup. In Section III, we present the results obtained from our method

on clinical datasets and compare with block matching technique and

image registration. The discussion will be presented in Section IV.

II. METHODS

As briefly introduced above, the landmark localization contains two

major steps. As shown in Figure 1, the first step is to build the

LAA. It consists of an average brain image with important land-

marks annotated, on which optimal features are learned from a set

of 48 Gabor attributes. In the second step, the positions of the land-

marks in the input image can be localized using these learned fea-

tures combining with a spatial prior. The following describes each

step in detail.

A. LAA Construction

A.1. Brain Atlas Image. LAA consists of a set of anatomically

important landmarks on an average brain images. The key parts of

building such atlas are creating a mean image and the landmark

annotation.

To obtain the mean image, we follow the scheme proposed by

Guimond et al. (2001). Given a reference image IR, which is arbitra-
rily selected from the training data, and a set of N images I1,. . .,IN
representing the group of subjects under consideration. The average

image construction can be divided into the following steps:

The first step regards the evaluation of global shape differences

between the reference and each image of the set. This is achieved by

registering each image Ii to IR using the novel symmetric diffeomor-

phic registration approach described in (Vercauteren et al., 2009). Note

that, mean intensity model is not considered in this work because all

images are pre-processed with the intensity histogram matching and

normalized into gray scale of [0, 255]. This registration framework

optimizes the update field in the log-domain to ensure the invertibility

and provides stationary velocity fields as the results. These velocity

fields Vi can be looked at as generators for diffeomorphic deformations

through the group exponential map that can be computed using the

scaling and squaring method (Arsigny et al., 2006).

The second step computes the average velocity field. Thanks to

the log-Euclidean framework (Arsigny et al., 2006), statistics of the

deformation, e.g., averages, can be easily computed while preserving

the diffeomorphism. In the log-Euclidean framework, velocity fields

are regular elements in a vector space; this allows us to use simple Eu-

clidean arithmetic instead of more complex nonlinear techniques (Beg

et al., 2005). The average velocity field is then simply computed as:

�V ¼ 1

N

XN
i¼1

Vi ð1Þ

In the third step, the mean image is created by warping IR using the

mean transformation computed from the velocity field. This diffeo-

morphic transformation can be mapped from velocity field through

an exponential operator.

�I ¼ IR o expð �VÞ ð2Þ

In total, 15 anatomical landmarks are then annotated on the mean

image on different regions, including points at four tips of the ven-

tricle, splenium of corpus callosum, genu of corpus callosum

(GCC), frontal lobe cortex, anterior commissure, posterior commis-

sure, left and right tip of putamen (L-P, R-P), center of cerebellum,

fourth ventricle (FV), superior and inferior aspect of pons. These

landmarks define the stable anatomical structures and can be used

for brain morphometric analysis (DeQuardo et al., 1999).

A.2. Feature Selection. With the landmark atlases established, we

adopt Gabor attributes-based mutual saliency used in DRAMMS algo-

rithm (Ou et al., 2010) as the feature for landmark localization. The

mutual saliency measures the distinctiveness of the similarity between

two voxels. In other word, it calculates whether two voxels are similar

to each other and not similar to any other voxels in the neighborhood.

The mutual-saliency between two voxels p and q, denoted as ms(p,q),
is computed through dividing the mean similarity in the central part of

the neighborhood of q [denoted as CN(q)] by the mean similarity in

the peripheral neighborhood of q [denoted as PN(q)].

msðp; qÞ ¼
1

CNðqÞ
P

q02CNðqÞ simðp; q0Þ
1

PNðqÞ
P

q02PNðqÞ simðp; q0Þ ð3Þ

In practice, CN and PN are concentric circles around the voxel q.
PN is the outer circle of CN. In Eq. (3), sim(p,q0) measures the

Figure 1. Scheme of the proposed landmark detection algorithm.
The first step is to create the LAA, which is the average brain from the

training samples with important landmarks annotated and best fea-

tures learned. Then the spatial positions of the landmarks in the input

image can be localized using these learned features. [Color figure can
be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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similarity between p and q0 based on a D dimensional feature vector

A*, defined as:

simðp; q0Þ ¼ 1

1þ 1
D jjA�ðpÞ � A�ðq0Þjj2 ð4Þ

The feature vector A* consists of a set of 3D Gabor attributes (See

Appendix A), which have been proven to be a robust and powerful

tool for landmark localization in both general computer vision and

medical image processing (Zhan et al., 2006). The motivation of

using multiple Gabor attributes is that the multiscales and multior-

ientations of the Gabor responses make it possible to characterize

the image content with different dominant sizes and orientations

from even noisy images. Moreover, it renders the landmark distinc-

tively identifiable, hence reducing the ambiguity in matching.

However, in practice, each landmark in different regions is only

dominated by a few attributes (i.e., it has significant responses only

with certain scales and orientations). This redundancy of the attributes

reduces the uniqueness of landmark localization (Wu et al., 2007) and

the computational performance. Therefore, seeking optimal features

is highly necessary for the sake of accuracy and efficiency.

Consequently, we apply a learning process to find the optimal

features for each anatomical landmark p annotated in the atlas. This

is achieved by searching a subset attributes A* of the total Gabor

attributes Ã, which maximizes the cost function ms(�,�) 3 sim(�,�)
on all training data S.

A� ¼ arg max
A2A

X
Ii2S

½msIiðp; p0Þ3simiiðp; p0Þ� ð5Þ

where p is the landmark position in the atlas image and p0 is the cor-
responding point of p in the training image Ii.

Forward inclusion and backward elimination method (Kohavi

and John, 1997) is adopt to optimize the Eq. (5). The forward inclu-

sion step, starting from zero attribute selected, includes one Gabor

attribute so that the cost function increases the most compared to

including other attributes at each iteration. The procedure stops

until no inclusion increases the cost function value. The backward

elimination step, on the other hand, starting from all attributes

selected, at each iteration eliminates one Gabor attribute so that the

cost function increases the most compared to excluding other attrib-

utes. The final optimal attributes A* are the intersection between

the selected attributes from forward inclusion step and backward

elimination step. As illustrated in Figure 2, the distinctiveness of

the matching is enhanced after the learning process. The LAA is

then created once the optimal features are learned for all the ana-

tomical landmarks annotated on the atlas image.

B. Landmark Localization. With the LAA established, the input

image is first affinely registered to the atlas by maximizing the mutual

information between the two images so that global shape difference

can be removed. In addition, the spatial variation of the corresponding

landmarks is reduced, resulting in smaller search range for detection.

Moreover, we model a spatial prior function for each landmark

using the spatial information of the landmarks during the training

process so that we can restrict the search range for each landmark

to those locations which have a nonzero probability. In practice, the

spatial prior probabilities of each landmark is modeled based on the

position of the landmark in the training set using kernel (or Parzen

window) density estimation.

Finally, the landmark localization can be formulated as finding

corresponding point q* of landmark p in the input image, which

maximizes the cost function in Eq. (5) multiplied by the spatial

prior Gp(q) by searching the region X defined by the spatial prior:

q� ¼ arg maxq2XGpðqÞ3msðp; qÞ3simðA�ðpÞ;A�ðqÞÞ; ð6Þ

where Gp(q) is a Gaussian kernel function of the landmark position

of p generated from the training samples.

C. Experiment Setup. To evaluate the proposed method, we

obtained 10 subject T1 images from the IXI dataset (http://

www.brain-development.org/) with dimension of 256 3 150 3 256

and voxel size of 0.9375 3 1.2 3 0.9375 mm3. Due to the limited

number of datasets that we possess, cross validation was performed

to evaluate the algorithm. Therefore, in total 10 tests were carried

out. We first manually annotated 15 landmarks on anatomically im-

portant regions on all datasets as stated in Section II. Then, in each

test, nine datasets are used as training data to construct the LAAs.

The landmarks positions on the atlases were then automatically

computed by composing the mean transformation on the landmarks

in the reference image, from which the optimal features were

trained. Then the trained atlases and best features were used in the

validation dataset to perform landmark detection.

We initially chose a Gabor filter bank of axial and sagittal view

of the image with three different scales and four orientations in both

real and imaginary domain, hence in total 48 Gabor attributes. After

feature selection, the number of features reduces around less than

20 depending on different landmarks.

We compared our algorithm to two other methods: block-match-

ing (Jordan et al., 1997), which is a classical algorithm in computer

vision used for object tracking; and image registration, which is

used to search point-to-point correspondences in the images. For

Figure 2. The similarities between the yellow cross in (a) atlas and (b) subject show that using learned best features (d) gives higher distinctive-
ness in matching points than using all Gabor features (c). The red color indicates high similarity value whereas blue means low value. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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block-matching, we used the block size of 40 3 40 3 40 and the

gradient descent optimization to search the optimal position. For

image registration, we adopted diffeomorphic demons algorithm

with step size of 2.0 and regularization kernel size of 1.0. Multi-re-

solution strategy was adopted by using three different levels.

Affine registration was first applied on the input images for all

the compared methods to remove the global shape difference to

facilitate the landmark localization. All the methods were imple-

mented in C11 with the help of Insight Toolkit library (http://

www.itk.org).

Figure 3. Landmark detection result on one data using the proposed method. White crosses indicate the detected points in all axial, coronal,

and sagittal views. (a) anterior commissure (AC), (b) posterior commissure (PC), (c) fourth ventricle (FV), (d) splenium of corpus callosum (SCC),
(e) genu of corpus callosum (GCC), (f) leftanterior tip of the ventricle, (g) right-anterior tip of the ventricle, (h) left-posterior tip of the ventricle, (i)

right-posterior tip of the ventricle, (j) frontal lobe cortex (FLC), (k) left-anterior tip of putamen, (l) rightanterior tip of putamen, (m) center of cerebel-

lum (CC), (n) superior aspect of pons (SP), and (o) inferior aspect of pons (IP).
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III. RESULTS

Figure 3 shows the result of our method on one test data. Visually, all

the 15 landmarks are well detected. To perform the statistical analysis,

we also measured quantitatively the accuracy by computing the Eu-

clidean distance between the detected landmark and ground truth. Ta-

ble I shows the results from all three methods on all 10 datasets. The

proposed LAA achieves the best accuracy for most landmarks except

for FV, cerebellum, and GCC where image registration and block-

matching obtains better results. This could be due to the small number

of training samples used in the experiment, which cannot cover large

shape variation of the surrounding tissue of these two landmarks.

Overall, LAA yields the average error of 2.12 mm whereas block-

matching and registration obtains 2.66 and 2.51 mm, respectively.

Statistical analysis is performed by using t-test, demonstrating the sta-

tistical difference between LAA and the other two methods (p 5
0.0016 with block-matching, p5 0.02 with registration).

Figure 3. (Continued)
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The execution time of our algorithm is about 1 min per image

on an Intel Pentium PC with 3.2 GHz, running Windows XP.

Block-matching approach uses only � 30 s, whereas image registra-

tion takes more than 5 min to converge.

IV. DISCUSSION

In this article, we present a new approach for the localization of an-

atomical point landmarks in 3D brain images. LAA is introduced to

formulate a problem of finding corresponding point of an atlas, in

which anatomically important landmarks are annotated. By using

an optimized multiscale and multiorientation Gabor attribute vector,

which increases the uniqueness of the interest point and reducing

the matching ambiguity, accurate localization of the anatomical

landmarks is achieved.

Similar to DRAMMS algorithm (Ou et al., 2011), we also use mu-

tual saliency to measure the distinctiveness of the point in this work.

However, there are two main differences between the ways that mu-

tual saliency is used in the proposed method and in DRAMMS.

Figure 3. (Continued)
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1. Since DRAMMS is a general-purpose registration algorithm,

the features are learned from different points with various ge-

ometrical representation uniformly scattered in the image.

Contrarily, in LAA, the features are learned for each specific

landmark. Thus, the optimal features are equal for all the

points in the image in DRAMMS, whereas in LAA the fea-

tures are specifically tailored for each different landmark.

2. Different from DRAMMS, Spatial prior is learned in the pro-

posed method to weight the cost function and define the

search region for landmark localization.

Evaluation on 3D MR brain images was performed by meas-

uring the Euclidean distance between the detected landmarks and

the ground truth. The results of the proposed LAA method are com-

pared to the ones of block-matching technique and diffeomorphic

demons algorithm. Note that although methods for localizing spe-

cific landmarks have been proposed (Worz and Rohr, 2006; Guer-

rero et al., 2011), the implementation of these methods are unfortu-

nately not available for the community, nor a common database of

annotated datasets is available for benchmarking. The same applies

for DRAMMS, and although we agree that it is a more interesting

comparison than using Demons algorithm, implementing this so-

phisticated algorithm requires substantial efforts that are beyond the

scope of this work.

Despite limited number of training data was used due to the lack

of expert-annotated brain images available in the community,

obtained results from the purposed method still demonstrate signifi-

cant better accuracy compared to block-matching technique and

image registration technique. On the other hand, it would also be

interesting for us to apply the method on larger training samples to

see if the localization accuracy will be improved. Besides, the supe-

rior performance of the proposed method over image registration

technique indicates that the detected landmarks can serve as prior

information to guide the registration procedure (Lu et al., 2010).

For future works, it would be interesting for us to try more fea-

ture selection methods due to the variety of different learning tech-

niques available in the computer vision and machine learning com-

munity. In addition, we would like to explore the correlation of the

15 landmarks to study the dependencies of the spatial locations.

The LAA could be combined with a graphical model or statistical

appearance model to increase the robustness and computation

efficiency.

APPENDIX A. 3D GABOR ATTRIBUTES

The 3D Gabor attributes are approximated by using two banks

of 2D Gabor filters located at two orthogonal planes of a 3D

image. These two orthogonal planes can typically be axial and

sagittal planes, from which the Gabor filter banks can be com-

puted as:

gm;nðx; yÞ ¼ a�mgða�mx0g; a
�my0gÞ;

hm;nðy; zÞ ¼ a�mgða�my0g; a
�mz0gÞ;

ðA1Þ

where a ¼ Uh

U1

� �� 1
S�1

represents the scale factor with Uh and Ul being

respectively the upper and lower center frequencies of interest, m is

the scale index; x0g ¼ x cos np
N

� �þ y sin np
N

� �
, y0g ¼ �x sin np

N

� �
þy cos np

N

� �
, y0h ¼ y cos np

N

� �þ z sin np
N

� �
, z0h ¼ �y sin np

N

� �þ
z cos np

N

� �
are rotated coordinates with n being the orientation index.

The respective mother functions are represented as follow:

gðx; yÞ ¼ 1

2prxry

� �
exp � 1

2

x2

r2
x

þ y2

r2
y

 !
þ j2pWx

" #
;

hðx; yÞ ¼ 1

2pryrz

� �
exp � 1

2

y2

r2
y

þ z2

r2
z

 !
þ j2pWy

" #
;

ðA2Þ

where rx, ry, and rz denotes the standard deviation of the Gaussian

envelope, Wx and Wy are the central frequencies in each plane

respectively.
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