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a b s t r a c t 

We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D 

brain image registration. Unlike recent CNN-based registration approaches, such as VoxelMorph, which 

computes a registration field from a pair of 3D volumes using a single-stream network, we design a 

two-stream architecture able to estimate multi-level registration fields sequentially from a pair of fea- 

ture pyramids. Our main contributions are: (i) we design a two-stream 3D encoder-decoder network 

that computes two convolutional feature pyramids separately from two input volumes; (ii) we propose 

sequential pyramid registration where a sequence of pyramid registration (PR) modules is designed to 

predict multi-level registration fields directly from the decoding feature pyramids. The registration fields 

are refined gradually in a coarse-to-fine manner via sequential warping, which equips the model with 

a strong capability for handling large deformations; (iii) the PR modules can be further enhanced by 

computing local 3D correlations between the feature pyramids, resulting in the improved Dual-PRNet ++ 

able to aggregate rich detailed anatomical structure of the brain; (iv) our Dual-PRNet ++ can be integrated 

into a 3D segmentation framework for joint registration and segmentation, by precisely warping voxel- 

level annotations. Our methods are evaluated on two standard benchmarks for brain MRI registration, 

where Dual-PRNet ++ outperforms the state-of-the-art approaches by a large margin, i.e., improving re- 

cent VoxelMorph from 0.511 to 0.748 (Dice score) on the Mindboggle101 dataset. In addition, we further 

demonstrate that our methods can greatly facilitate the segmentation task in a joint learning framework, 

by leveraging limited annotations. 

© 2022 Published by Elsevier B.V. 
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. Introduction 

Deformable image registration has been widely used in image 

iagnostics, disease monitoring, and surgical navigation, with the 

oal of learning the anatomical correspondence between a moving 

mage and a fixed image. A registration process mainly consists of 

hree steps: establishing a deformation model, designing a func- 

ion for similarity measurement, and a learning step for parameter 

ptimization. Traditional deformable registration methods, such as 

emons ( Vercauteren et al., 2009 ), Large Diffeomorphic Distance 

etric Mapping (LDDMM) ( Glaunès et al., 2008 ) and symmetric 

ormalization (SyN) ( Avants et al., 2008 ), often cast the deformable 

egistration as a complex optimization problem that involves in- 

ensive computation by densely measuring voxel-level similarities. 

ecent deep learning technologies have advanced this task consid- 
� This work was initially presented at MICCIA 2019. 
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rably by developing learning-based approaches, which allow them 

o leverage the strong feature learning capability of deep networks 

 Miao et al., 2016; Yang et al., 2017; Hering et al., 2019a; 2019b; 

ielsen et al., 2019; Kuckertz et al., 2020 ), resulting in fast train- 

ng and accurate inference, e.g., by taking orders of magnitude less 

ime. 

However, learning-based approaches for medical image registra- 

ion often require strong supervised information, such as ground- 

ruth registration fields or anatomical landmarks. While obtaining 

 large-scale medical dataset with such strong annotations is ex- 

remely expensive, which inevitably limits the clinical application 

f supervised approaches. Recently, unsupervised learning-based 

egistration methods have been developed, by learning a registra- 

ion function that maximizes the similarity between a moving vol- 

me and a fixed volume. For example, Balakrishnan et al. proposed 

oxelMorph able to learn a parameterized registration function 

sing a convolutional neural network (CNN) ( Balakrishnan et al., 

018 ). Furthermore, they introduced an auxiliary loss able to in- 

egrate segmentation masks into the loss function, as described 

n Balakrishnan et al. (2019) . However, Lewis et al. demonstrated 

https://doi.org/10.1016/j.media.2022.102379
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2022.102379&domain=pdf
mailto:whuang@malongtech.com
mailto:whuang@robots.ox.ac.uk
https://doi.org/10.1016/j.media.2022.102379
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hat the performance of existing CNN-based approaches can be 

imited in real-world clinical applications, where two medical im- 

ges or volumes may have significant spatial displacements or 

arge slice spaces ( Lewis et al., 2018 ). 

Recent approaches on optical flow estimation attempted to 

andle large displacements by gradually refining the estimated 

ows ( Ranjan and Black, 2017; Hui et al., 2018 ). For example, Ran-

an et al. estimated multi-resolution optical flows with a Spatial 

yramid Network (SPN) to warp a moving volume at each pyra- 

id level. Hui et al. introduced feature warping to replace im- 

ge warping in the process of pyramidal feature refinement, re- 

ulting in a lightweight yet effective network. More recently, Ep- 

enhof et al. attempted to train neural networks progressively to 

andle the problem of large displacements, by expanding the net- 

orks gradually with additional layers that are trained on higher 

esolution data ( Eppenhof et al., 2019 ). This inspired us to design 

 sequential warping mechanism able to warp two volumes grad- 

ally in a coarse-to-fine manner. In addition to learning meaning- 

ul feature representation, medical image registration also requires 

trong pixel-wise correspondences between moving and fixed vol- 

mes, which naturally involves learning local correlations between 

ntermediate features of the moving and fixed volumes. Therefore, 

urrent optical flow estimation methods, such as Dosovitskiy et al. 

2015); Sun et al. (2018); Hui et al. (2018) , utilize a correlation 

ayer to enable the network to identify the actual correspondences 

rom convolutional features ( Dosovitskiy et al., 2015 ). This also in- 

pired us to develop a new 3D correlation layer capable of learning 

uch correlations to further enhance feature representation. 

In addition, our registration network is able to capture the se- 

antic correspondence between moving and fixed volumes. This 

llows it to accurately warp the anatomical annotations of moving 

olumes to the fixed volumes, providing rough supervised infor- 

ation for training a segmentation network on the target volumes 

here the annotations are not available ( Estienne et al., 2019; Zhao 

t al., 2019a; Hu et al., 2019b ). Recent work in Xu and Nietham-

er (2019) shows that such warped labels can be used as auxil- 

ary data to improve the performance of segmentation when the 

raining data with annotations is very limited. 

Furthermore, Estienne et al. proposed an U-ReSNet ( Estienne 

t al., 2019 ) which is a lightweight framework for joint registra- 

ion and segmentation, with excellent results achieved. This fur- 

her confirmed the benefits of joint learning. In addition, Wang 

t al. presented a label transfer network (LT-Net) able to propagate 

 segmentation map from the atlas to unlabelled images, by learn- 

ng the reversible voxel-wise correspondences ( Wang et al., 2020 ). 

n this work, we demonstrate that our Dual-PRNet ++ can be inte- 

rated into a 3D segmentation framework for joint segmentation 

nd registration, which facilitates the segmentation task using lim- 

ted manual annotations. 

Contributions. This paper extends our preliminary version of 

ual-PRNet presented at the Medical Image Computing and Com- 

uter Assisted Intervention (MICCAI) 2019 conference ( Hu et al., 

019a ), with two main extensions: we introduce Dual-PRNet ++ 

y improving sequential pyramid registration (PR) with the en- 

anced PR 

++ modules which boost the performance; and we ap- 

ly our Dual-PRNet ++ for joint 3D segmentation and registration. 

he overall contributions can be summarized as: (i) a two-stream 

D encoder-decoder network is designed to compute two convo- 

utional feature pyramids separately from two input volumes, gen- 

rating stronger deep features for deformation estimation; (ii) we 

ropose sequential pyramid registration where a sequence of regis- 

ration fields is estimated by a set of designed pyramid registration 

PR) modules. The estimated registration fields perform sequential 

arping over the decoding layers, which refine the feature pyra- 

ids gradually in a coarse-to-fine manner. This equips the model 

ith a strong capability for handling large deformations; (iii) the 
2 
R module can be further enhanced by computing local 3D corre- 

ations (between two feature pyramids) followed by multiple resid- 

al convolutions, which aggregate richer local details of anatomical 

tructure for better estimating the deformation fields, resulting in 

he improved Dual-PRNet ++ . In addition, the 3D correlations with 

ore convolutional layers in the PR 

++ module are able to enlarge 

eceptive fields which further enhance the ability to handle large 

eformations; (iv) our registration networks can be integrated 

nto a 3D segmentation network, resulting in a unified 3D frame- 

ork for joint segmentation and registration. Finally, our methods 

re evaluated on brain MRI registration, where the Dual-PRNet ++ 

utperforms the state-of-the-art approaches by a large margin. 

n addition, on 3D segmentation with limited annotations, we 

emonstrate that our methods can greatly facilitate the segmen- 

ation task via joint framework, by accurately warping voxel-level 

nnotations. 

. Related work 

In this section, we briefly review recent approaches on 

earning-based medical image registration, particularly on using 

eep learning methods. More comprehensive studies on this topic 

an be referred to Boveiri et al. (2020); Fu et al. (2020); Haskins 

t al. (2020) . 

Deep learning technologies have recently been applied to med- 

cal image registration. For example, Hu et al. explored the strong 

apability of CNN to learn deformable image registration, with 

romising results achieved ( Hu et al., 2017 ). In Miao et al. (2016) ,

NN regressors were employed to directly estimate transformation 

arameters, while De Vos et al. attempted to develop a patch- 

ased end-to-end unsupervised deformable image registration net- 

ork (DIRNet) de Vos et al., 2017 ), where a spatial transformer 

etwork (STN) ( Jaderberg et al., 2015 ) was applied for estimat- 

ng a deformation field. However, the deformation field estimated 

y STN is unconstrained, which may cause severe distortions. To 

vercome this limitation, VoxelMorph ( Balakrishnan et al., 2018; 

019 ) was proposed. It estimates a deformation field by using an 

ncoder-decoder CNN with a regularization penalty on the defor- 

ation field. Furthermore, Kuang and Schmah developed an unsu- 

ervised method, named as FAIM, which extends VoxelMorph by 

ntroducing an explicit penalty loss computing negative Jacobian 

eterminants ( Kuang and Schmah, 2018 ). 

However, these methods may fail to estimate large displace- 

ents in complex deformation fields, and recent efforts have 

een devoted to handle this issue by developing stacked multi- 

le networks ( de Vos et al., 2019; Zhao et al., 2019b; Kim et al.,

021 ). 

For example, Zhao et al. designed recursive cascaded networks 

here multiple VoxelMorph are cascaded recursively, which were 

mployed to warp the images gradually ( Zhao et al., 2019b ). Kim 

t al. proposed CycleMorph, which consists of two registration net- 

orks, taking inputs by switching their orders with a cycle con- 

istency. It can be extended to multi-scale implementation per- 

orming on large volumes. This allows the model to better capture 

ransformation relationships at different levels, but at the cost of a 

igh complexity and computational burden as it requires multiple 

odels. In de Vos et al. (2019) , multiple ConvNets were stacked 

nto a larger architecture to perform image warping in a coarse- 

o-fine manner. More recently, several attempts have been made 

y cascading an affine alignment subnetwork and a deformable 

ubnetwork to improve the performance ( Zhu et al., 2020; de Vos 

t al., 2019; Huang et al., 2021; Zhao et al., 2020 ). However, se- 

uential combination of multiple networks will result in an accu- 

ulation of interpolation artifacts, which may affect the quality of 

he estimated deformation field. 
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Therefore, recent approaches attempted to estimate deforma- 

ion fields at multiple resolutions ( Sokooti et al., 2017; Hering 

t al., 2019a; Mok and Chung, 2020; Liu et al., 2019; Jiang et al., 

020; Lei et al., 2020; Risheng et al., 2021 ). For example, a RegNet 

as introduced in Sokooti et al. (2017) , which can be trained by 

sing a large set of artificially generated displacement vector fields 

DVF), and then the feature maps computed at multiple scales 

re concatenated to equip the network with fusion information. In 

ering et al. (2019a) , mlVIRNET was introduced by creating an im- 

ge pyramid (not feature pyramid), where a single-stream network 

s applied multiple times for computing the deformation fields at 

ifferent image resolutions. 

Furthermore, Mok et al. proposed a L-level Laplacian pyramid 

ramework (named as LapIRN) to mimic the conventional multi- 

esolution strategy, which warps the images from the previous 

evel ( Mok and Chung, 2020 ). Eppenhof et al. attempted to expand 

he networks progressively with additional layers that are trained 

n higher resolution data ( Eppenhof et al., 2019 ), and a final defor-

ation field can be estimated by averaging multi-resolution defor- 

ation fields computed from the pyramidal structure of a U-Net 

 Çiçek et al., 2016 ). 

These approaches commonly stack the moving volume and 

xed volume together as the input of a single-stream CNN, which 

argely discards transformation relationships between the two vol- 

mes. Two-stream encoders have recently been developed, which 

re able to encode the two volumes separately for better ag- 

regating multi-level correlations in the feature spaces. For in- 

tance, Krebs et al. proposed an efficient latent variable model, 

hich maps similar deformations close to each other in an en- 

oding space ( Krebs et al., 2019 ), while Hering et al. developed 

 2.5D two-stream convolutional transformer architecture, which 

s a memory-efficient weakly supervised learning model for multi- 

odal image registration ( Hering et al., 2019b ). In Liu et al. (2019) ,

 dual-stream network was developed to predict multi-resolution 

eformation fields from different convolutional layers indepen- 

ently, which are then enlarged and averaged to generate a final 

eformation field. Similarly, Liu et al. utilized a dual-stream en- 

oder to obtain two feature pyramids, and then computed a single 

ransformation field with a contrastive loss and a single-stream de- 

oder ( Liu et al., 2020 ). Besides, the two-steam design was further 

pplied in Kuckertz et al. (2020) where two generators with U-Net 

rchitecture and two discriminators using patchGAN ( Isola et al., 

017 ) were developed. 

In this paper, we design a dual-stream network to compute two 

eaningful feature pyramids separately, and directly estimate se- 

uential deformation fields in the feature space, in a single pass. 

efinements on both registration fields and convolutional features 

re performed in a layer-wise, sequential, and coarse-to-fine man- 

er, providing an efficient approach to align the two volumes grad- 

ally and more accurately in the feature space. This results in an 

nd-to-end trainable model for unsupervised 3D image registra- 

ion. 

. Dual-stream pyramid registration network 

In this section, we describe the details of the proposed Dual- 

RNet and Dual-PRNet ++ , including three main components: (i) a 

ual-stream encoder-decoder network for computing feature pyra- 

ids, (ii) sequential pyramid registration, and (iii) the improved 

yramid registration (PR) modules: PR 

++ modules. 

.1. Preliminaries 

The goal of 3D medical image registration is to estimate a de- 

ormation field � which can warp a moving volume M ⊂ R H×W ×D 

o a fixed volume F ⊂ R H×W ×D , so that the warped volume W =
3 
 ◦ � ⊂ R H×W ×D can be accurately aligned to the fixed one F . We 

se M ◦ � to denote the application of a deformation field � to the 

oving volume with a warping operation, with image registration 

eing formulated as an optimization problem: 

ˆ = arg min 

�
L (F , M, �) (1) 

 (F , M, �) = L sim 

(F , M ◦ �) + λL smooth (�) (2)

here L sim 

is a function measuring the image similarity between 

he warped image ( M ◦ �) and the fixed image ( F ), and L smooth is a

egularization constraint on the deformation field ( �), which en- 

orces spatial smoothness. Both L sim 

and L smooth can be defined 

n various forms, and recent effort s have been devoted to devel- 

ping a powerful approach to computing the deformation field �. 

or example, VoxelMorph ( Balakrishnan et al., 2018; 2019 ) uses a 

NN to compute a deformation field, � = f θ (F , M) , where θ are

earnable parameters of the CNN. In VoxelMorph, the deformation 

arping operation is implemented by using a spatial transformer 

etwork ( Jaderberg et al., 2015 ), M ◦ � = f stn (M, �) , and a single-

tream encoder-decoder architecture with skip connections (sim- 

lar to U-Net ( Ronneberger et al., 2015 )) is used. Two volumes, M

nd F , are stacked as the input of VoxelMorph. More details of Vox- 

lMorph are described in Balakrishnan et al. (2018, 2019) . 

.2. Dual-stream architecture 

Our Dual-PRNet ++ is built on the encoder-decoder architec- 

ure of VoxelMorph, but improves it by introducing a dual-stream 

esign, as shown in Fig. 1 . Specifically, the backbone of Dual- 

RNet ++ consists of a two-stream encoder-decoder with shared 

arameters. We apply an encoder with the same architecture of 

-Net ( Ronneberger et al., 2015 ), which contains five convolutional 

locks. Except for the first convolutional block, each block has a 

D down-sampling convolutional layer with a stride of 2, followed 

y a ReLU operation. Thus the encoder reduces the spatial resolu- 

ion of the input volumes by a factor of 16 in total, as shown in

ig. 2 . In the decoding stage, we apply skip connections to the cor- 

esponding convolutional maps in the encoding and decoding pro- 

ess. The lower-resolution convolutional maps (from decoding lay- 

rs) are up-sampled and concatenated with the higher-resolution 

nes (from encoding layers), following by a 3 ×3 ×3 convolution 

ayer and ReLU operation, as shown in Fig. 1 . Finally, we obtain 

wo feature pyramids with multi-resolution convolutional features 

omputed from the moving volume and the fixed volume sepa- 

ately. 

The proposed dual-stream design allows us to compute feature 

yramids from two input volumes separately, and then predict de- 

ormable fields from the learned, stronger and more discrimina- 

ive convolutional features, which is the key to improve the perfor- 

ance. This is different from existing single-stream networks, such 

s Balakrishnan et al. (2018, 2019) and Kuang and Schmah (2018) , 

hich compute the convolutional features from two stacked vol- 

mes, and estimate the deformation fields using single-stream 

onvolutional filters. Furthermore, our dual-stream architecture can 

ompute two paired feature pyramids where layer-wise deforma- 

ion fields can be estimated sequentially at multiple scales. This 

llows the model to generate a sequence of deformation fields by 

esigning a new sequential pyramid registration method. 

Notice that we modify the backbone applied in the original 

ual-PRNet ( Hu et al., 2019b ) by increasing the convolutional 

locks from four to five, but reducing the number of channels from 

2 at each layer to [8, 16, 16, 32, 32] for the five layers, and also re-

oving the refine units in the original design to keep a lightweight 

nd effective model. This results in a large reduction of the model 

arameters from 410K to 175K (which might also alleviate the po- 

ential overfitting), but maintains the similar performance. For ex- 
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Fig. 1. Framework of the proposed Dual-PRNet ++ , which is a dual-stream encoder-decoder network, integrated with new sequential pyramid registration including a sequence 

of pyramid registration (PR) modules or PR ++ modules. The dual-stream model computes two convolutional feature pyramids separately from two input volumes, while the 

PR / PR ++ modules estimate a sequence of deformation fields which can warp the pyramid features gradually in a coarse-to-fine manner. Finally, the final deformation field 

is generated by sequentially warping the estimated fields, as shown in Fig. 4 . 

Fig. 2. Backbone of the proposed Dual-PRNet ++ . It consists of an encoder (yellow) and a decoder (blue), each of which has five convolutional blocks. The convolutional 

layers are indicated by the filter size, the number of output channels, and spatial resolution (w.r.t. the feature maps of previous layer). H M 
l 

and H F 
l 

denote the feature 

maps computed from the moving volume and the fixed volume separately, with various spatial resolutions (w.r.t. the input volumes) at different convolutional blocks. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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mple, it improves the Dice score from 0.631 to 0.653 on the Mind- 

oggle101, but has a reduction with 0.767 → 0.743 on the LPBA40. 

n this work, we will use the new backbone for Dual-PRNet ++ in 

ll our experiments. 

.3. Sequential pyramid registration 

VoxelMorph computes a single deformation field from the con- 

olutional features at the last up-sampling layer in the decoding 

rocess, which might make it difficult to handle multi-scale defor- 

ations precisely, which are often in case for different anatomical 

tructures of the brain. In this work, we propose a new pyramid 

egistration by designing a set of pyramid registration (PR) mod- 

les, which are implemented sequentially at each decoding layer. 

his allows the model to predict multi-scale deformation fields 

ith increasing resolutions, generating a sequence of pyramid de- 

ormation fields, as shown in Fig. 1 . 

PR module. Each PR module estimates a deformation field at 

ach decoding layer. As input, the PR module uses a pair of convo- 

utional features, together with a deformation field computed from 

he previous layer (except for the first decoding layer where the 

eformation field is not available). As output, the PR module yields 

n estimated deformation field at a given resolution level, which is 

sed in the next pyramid level. The PR module includes a sequence 

f operations with feature warping, stacking, and convolution (as 

hown in Fig. 3 (a)), which are implemented repeatedly over the 

ecoding layers. 
4 
Sequential operations. Specifically, the first deformation field 

 �1 ) is computed at the first decoding layer. We first stack the 

wo convolutional features computed at the first decoding layer, 

nd then apply a 3D convolution with size of 3 ×3 ×3 to estimate 

 deformation field. The deformation field ( �1 ) is 3D maps with 

he same shape of the corresponding convolutional feature maps. 

t is able to extract coarse-level context information, such as high- 

evel anatomical structure of the brain, which is then encoded into 

he convolutional features computed at the next decoding layer via 

eature warping: (i) the current deformation field is up-sampled by 

sing bilinear interpolation with a factor of 2, denoted as u ( �1 ) , 

nd (ii) then it is applied to warp the convolutional maps of the 

oving volume in the next layer, by using a grid sample operation, 

s shown in Fig. 3 (a). Then the warped convolutional maps are 

tacked again with the corresponding convolutional features gen- 

rated from the fixed volume, followed by a convolution operation 

o estimate a new deformation field. This process is implemented 

epeatedly at each decoding layer, and can be formulated as, 

l = C 3 ×3 ×3 
l 

(
H 

M 

l ◦ u ( �l−1 ) , H 

F 
l 

)
(3) 

here l = 1 , 2 , ..., N, indicates the number of decoding layers.

 

3 ×3 ×3 
l 

denotes a 3D convolution at the lth decoding layer. The op- 

rator ◦ is the warping operation that maps the coordinates of H 

M 

l 

o H 

F 
l 

using u 
(

�l−1 

)
, where H 

M 

l 
and H 

F 
l 

are the convolutional fea- 

ure pyramids computed from the moving volume and the fixed 

olume at the lth decoding layer. 
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Fig. 3. The proposed (a) Pyramid Registration (PR) module, and (b) its extension: PR ++ module, which improves the PR module by computing correlation features with 

further enhancement by residual convolutions. 
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.4. PR ++ modules 

Sequential pyramid registration with a set of PR modules was 

riginally introduced in our preliminary version ( Hu et al., 2019a ). 

n this extension, we introduce PR 

++ modules to enhance sequen- 

ial pyramid registration. It improves the PR module by computing 

orrelation features which are further enhanced by residual con- 

olutions, as shown in Fig. 3 (b). With respect to the PR module, 

he PR 

++ module includes two additional operations: 3D correla- 

ion and residual convolution, which are the key to enhance the 

earned features and in turn to boost the performance. Specifically, 

e design a 3D correlation layer to compute correlation features 

etween the warped features (from the moving volume) and the 

eatures from the fixed volume (see Fig. 3 (b)). Then the correla- 

ion features, together with the two stacked features, are further 

rocessed by two convolution blocks with a residual connection to 

urther enhance the representation. 

3D correlation layer . In PR 

++ module, a 3D correlation layer 

s designed to compute the local correlations between the two in- 

ut volumes in the convolutional feature space. This allows us to 

ggregate the correlated features which are not directly explored 

n the original PR module, but can emphasise local details in deep 

epresentation. 

Specifically, let P W 

i 
and P F 

j 
denote the central voxel of the 3D 

locks (with size of (2 k + 1) 3 ) sampled from the feature maps of

he warped moving volume and the fixed volume. The correlation 

elationship between the two sampled 3D blocks can be computed 

s: 

 

(
w i , f j 

)
= 

1 

(2 k + 1) 
3 

∑ 

n w ,n f ∈ [ −k,k ] 3 

p W 

i + n w × p F j+ n f (4) 

here n ∈ [ −k, k ] 3 means n iterates over a 3D neighborhood

 −k, k ] × [ −k, k ] × [ −k, k ] of P W 

i 
or P F 

j 
. In our experiments, k was

mpirically set to 1. Given a local 3D block on the feature maps of 

he (warped) moving volume, it is time-consuming to compute the 

ense correlations over all the 3D blocks sampled from the feature 

aps of the fixed volume. Therefore, given a 3D block with P W 

i 
, we

nly compute the local correlations by sampling a set of P F 
j 

within 

 3D neighborhood of d × d × d, which can be implemented as 3D 

onvolutions. We use a stride s w 

= 1 to densely sample P W 

i 
from 

he warped feature maps, and set the correlation neighborhood 

ith d = 3 on the corresponding fixed feature maps, where P F 
j 

is 

ampled with a stride of s f = 2 . Each sampled block has the same

ize of [ −k, k ] × [ −k, k ] × [ −k, k ] , and we compute direct correla-

ions between two sampled blocks using Eq. (4) . This generates 3D 

orrelation maps ( P C ) with shape of [2 × F L (d/s f ) + 1] 3 × (H/s w 

) ×
5 
W/s w 

) × (D/s w 

) , where [2 × F L (d/s f ) + 1] 3 = 27 is the number of

hannels. F L indicates a F loor computation. The generated corre- 

ation maps have the same 3D shape as the feature maps of the 

oving and fixed volumes, which ensure that the three maps can 

e stacked together for further processing. 

Convolutional enhancement. Our dual-stream architecture 

omputes two separate feature pyramids from two input volumes. 

owever, the key to the registration task is to learn the strong 

natomical correspondence between the two volumes in the fea- 

ure space, which inspired us to design a new mechanism to fur- 

her aggregate the computed pyramid features. The key function 

f the proposed PR 

++ module is to provide a powerful approach 

or learning richer local details from the two features, which en- 

ure more accurate estimations of the deformation fields at multi- 

le levels. To enrich the learned features, the computed correlation 

aps are stacked with the two pyramid features at each decod- 

ng layers: the warped features from the moving volume and the 

yramid features from the fixed volume, as shown in Fig. 3 (b). The 

orrelation maps have 27 channels over all decoding layers, while 

he number of channels of the two pyramid features varies over 

ifferent layers: [8, 16, 16, 32, 32] for the five decoding layers in 

ur experiments. 

To this end, we apply two 3D convolution blocks for further 

rocessing the stacked features, as shown in Fig. 3 (b). Each convo- 

ution block consists of two 3 ×3 ×3 convolutional layers, followed 

y a ReLU operation. The first convolution block reduces the chan- 

els of the stacked features considerably from [43, 59, 59, 91, 91] 

o [8, 16, 16, 32, 32] at the five decoding layers, which are consis- 

ent with the numbers of channels applied in the PR module for 

omputational efficiency. In addition, a residual connection is ap- 

lied to the second convolutional block, in an effort to preserve 

ore context information, and at the same time, to extract dis- 

riminative features between the two volumes. Finally, a convolu- 

ion layer is used to estimate the deformation field. The new PR 

++ 

odule is applied to our dual-stream registration framework, re- 

ulting in the enhanced version Dual-PRNet ++ , which boost the 

erformance of the original Dual-PRNet, as demonstrated in our 

xperiments. 

.5. Final deformation field 

The proposed Dual-PRNet ++ generates five sequential deforma- 

ion fields with increasing resolutions, indicated as [ �1 , �2 , �3 , 

4 , �5 ]. To compute the final deformation field, an estimated 

eformation field is up-sampled by a factor of 2, and then is 

arped by the following deformation field being estimated. Such 

p-sampling and warping operations are implemented repeatedly 
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Fig. 4. The final deformation field is computed by sequentially warping the current field with the previous one ( ×2 up-sampling). 

Fig. 5. Joint segmentation and registration framework, where the proposed Dual-PRNet ++ is used as a joint registration network, and is trained jointly with a 3D segmenta- 

tion network. Dual-PRNet ++ is applied to warp the moving labels, which are then used as supervision of the corresponding fixed volume. 
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e

nd sequentially to generate the final deformation field (as shown 

n Fig. 4 ), which encodes rich multi-level context information 

ith multi-scale deformations. This allows the model to propa- 

ate strong context information over hierarchical decoding layers, 

here the estimated deformation fields are refined gradually in a 

oarse-to-fine manner, and thus aggregate both high-level context 

nformation and low-level detailed features. The high-level context 

nformation equips our model with the ability to work with large- 

cale deformations, while the fine-scale features allows it to model 

etailed anatomical structure information. We integrate PR mod- 

les or PR 

++ modules into our dual-stream architecture, result- 

ng in an end-to-end trainable model. By simply following Vox- 

lMorph ( Balakrishnan et al., 2018; 2019 ), a negative local cross 

orrelation (NLCC) is applied as the loss function, coupled with a 

mooth regularization, e.g., a diffusion regularizer which computes 

pproximate spatial gradients using differences between neighbor- 

ng voxels, as detailed in Balakrishnan et al. (2018) . 

. Joint segmentation and registration 

Recent segmentation methods using deep learning technologies 

ften require massive manually annotated data, which is labor- 

ntensive and expensive, particularly for 3D medical images. It is 

ppealing to develop unsupervised or weakly supervised meth- 

ds for accurate segmentation on 3D medical images. The pro- 

osed Dual-PRNet or Dual-PRNet ++ is able to transfer a moving 

olume to a fixed volume, which inspired us to adopt such ability 

o roughly map the available segmentation labels from a source 

omain to a target domain where the annotations are not pro- 

ided. This enables us to train a segmentation network on the tar- 

et MRI domain by using the transferred anatomical labels, with- 

ut any manual annotation. 

In this work, we integrate the registration network into a seg- 

entation network to form a unified framework, as shown in 

ig. 5 . The framework is related to that of Xu and Niethammer 

2019) where DeepAtlas was developed to learn the two tasks si- 

ultaneously by using Voxelmorph as the registration network. 
6 
e extend the DeepAtlas approach by using the proposed Dual- 

RNet ++ as the registration network. Notice that the pre-trained 

egistration network is fixed during the training of segmentation 

etwork. 

Details of the unified framework of segmentation and registra- 

ion are presented in Fig. 5 . Given a pair of moving ( M) and fixed

olumes ( F ), a registration network is adopted to estimate a defor- 

ation field ( �), which is then used to warp the available segmen- 

ation labels from the source volume to the unlabelled (target) one, 

.g., from the moving volume to the fixed one. Taking the moving 

nd fixed volumes as input, the segmentation network generates 

wo segmentation maps, denoted as S M 

and S F . The source vol- 

mes which have ground-truth labels ( G ) are utilized to train the 

egmentation network in a regular supervised manner, while the 

nlabeled volumes can be used to train the same segmentation 

etwork, by leveraging the generated labels warped from the cor- 

esponding volumes having labels. Specifically, when the moving 

olumes are labeled and the fixed volumes are unlabeled, the seg- 

entation loss ( L seg ) for the unified framework can be computed 

s: 

 seg = λM 

L s ( S M 

, G M 

) + λF L u ( S F , G M 

◦ �) (5) 

here L s and L u are the segmentation losses computed from the 

oving volumes (with labels) and the fixed volumes (without la- 

els) respectively. In this paper, we adopt a Dice loss for the seg- 

entation task by following DeepAtlas ( Xu and Niethammer, 2019 ). 

M 

and λF are the weights that balance the impact of labelled 

nd unlabeled data. Conversely, the two segmentation losses can 

e computed reversely when we use the moving volumes as unla- 

eled and the fixed ones as labeled: 

 seg = λM 

L s ( S F , G F ) + λF L u ( S M 

◦ �, G F ) (6) 

. Experimental results and comparisons 

Datasets. The proposed Dual-PRNet and Dual-PRNet ++ are 

valuated on 3D brain MRI registration on two public datasets, 
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the HD and ASD. 

Table 1 

The results of different methods on LPBA40, in the terms of average Dice Score (Avg 

Dice), Symmetric Hausdorff Distance (HD in mm), and Average Symmetric Surface 

Distance (ASD in mm). 

Avg Dice ↑ HD ↓ ASD ↓ 
Affine 0.669 13.283 2.469 

VoxelMorph 0.683 14.575 2.238 

FAIM 0.664 12.935 1.790 

CycleMorph 0.733 12.961 1.886 

LapIRN 0.796 11.824 1.504 
PBA40 ( Shattuck et al., 2008 ) and Mindboggle101 ( Klein and 

ourville, 2012 ). The LPBA40 ( Shattuck et al., 2008 ) contains 40 T1-

eighted MR images, each of which was annotated with 56 sub- 

ortical ROIs. The Mindboggle101 ( Klein and Tourville, 2012 ) has 

01 T1-weighted MR images, which were annotated with 25 corti- 

al regions or 31 cortical regions, and can be used to evaluate reg- 

stration results with more fine and detailed structure of the brain. 

Experimental settings. Our experiments on unsupervised 3D 

rain MRI registration were conducted by following ( Kuang and 

chmah, 2018 ). Specifically, on the LPBA40, we train our models 

n 30 subjects, generating 30 ×29 volume pairs, and test on the 

emaining 10 subjects. We follow ( Kuang and Schmah, 2018 ) with 

he provided code 1 , and merge 56 labels into 7 regions specified 

s: Frontal Lobe, Parietal Lobe, Occipital Lobe, Temporal Lobe, Cin- 

ulate Lobe, Putamen, and Hippocampus, which were defined by 

he major clinical structures of the brain (e.g., each cortical lobe, 

lus three more regions). Then we center-crop the volumes into 

 size of 160 × 192 × 160 . On the Mindboggle101, we adopt the 

5 cortical regions in our experiments on the registration task, 

nd further merge the 25 cortical regions into five large regions 

orresponding to five anatomical structures of the brain: Frontal 

obe, Parietal lobe, Occipital lobe, Temporal lobe, and Cingulate 

obe, again by following the implementation details of Kuang and 

chmah (2018) . The data was divided into 42 subjects (with 1722 

airs) for training, and 20 subjects with 380 pairs for testing. All 

olumes were cropped with size of 160 × 192 × 160 . 

For joint segmentation and registration, we conducted experi- 

ents on the Mindboggle101 with 31 cortical regions by following 

u and Niethammer (2019) . λM 

and λF in Eqs. (5) or (6) are set to

 in our experiments. 

The proposed Dual-PRNet and Dual-PRNet ++ were imple- 

ented in Pytorch and trained on 4 Titan Xp GPUs. Batch size is 

et to 4, due to the limitation of GPU memory. We adopt Adam op- 

imization with a learning rate of 1e-4. The results of VoxelMorph 

ere produced by running the codes provided by the original au- 

hors. 

Measurements. We adopted the Dice score, Average Symmet- 

ic Surface Distance (ASD in mm), and Symmetric Hausdorff Dis- 

ance(HD in mm), by following ( de Vos et al., 2019 ), as evaluation

etrics. The Dice score measures the degree of overlap at the voxel 

evel. 

ice = 

2 | L W 

∩ L F | 
| L W 

| + | LF | (7) 

here L W 

and L F denote the labels of warped volume and fixed 

olume. ASD and HD calculate a surface distance between the 

oved label and fixed label, which are sensitive to outliers of reg- 

stration results. Given R W 

and R F as the surface point sets of the 

arped label and fixed label, we can computed the ASD as follows: 

 SD = 

∑ 

x ∈R W 
D (x, R F ) + 

∑ 

y ∈R F 
D (y, R W 

) 

| R W 

| + | R F | (8) 

here D (x, R F ) denote a minimal distance of one point x to an-

ther point in R F . Additionally, we adopt the definition of HD as: 

D = max { D h (R W 

, R F ) , D h (R F , R W 

) } (9) 

here 

 h (R W 

, R F ) = max 
x ∈R W 

min 

y ∈R F 

D ( x, y ) (10) 

In addition, to measure the smoothness of the estimated de- 

ormation field, we further compute folding fractions of Jacobian 

eterminant on the field ( Ashburner, 2007 ). The Jacobian determi- 

ate | J | on a deformation field indicates the relative changes in a 
�

1 https://github.com/dykuang/Medical- image- registration . 

7 
ocal area. Specifically, | J �(p) | ≤ 0 means the folding has occurred 

round the location p of �, which means � is non-smooth and 

ot physically realistic. Therefore, we adopt the fraction of folding 

n | J �| to evaluate the regularity of deformation field. 

.1. Comparisons with the state-of-the-art approaches 

We compare our Dual-PRNet and Dual-PRNet ++ with a num- 

er of recent approaches: affine registration, SyN ( Shattuck et al., 

008 ), VoxelMorph ( Balakrishnan et al., 2018; 2019 ), FAIM ( Kuang 

nd Schmah, 2018 ), PMRNet ( Liu et al., 2019 ), LapIRN ( Mok and

hung, 2020 ), Contrastive Registration (CReg) ( Liu et al., 2020 ) and 

ycleMorph ( Kim et al., 2021 ) on both LPBA40 and Mindboggle101 

atasets. As discussed in Section 2 , VoxelMorph estimates a single 

eformation field with a single-stream network. FAIM extends Vox- 

lMorph by designing a new penalty loss on negative Jacobian de- 

erminants. PMRNet computes average multi-resolution deforma- 

ion fields, which are obtained from a dual-stream encoder, as the 

nal deformation field. CReg estimates a single transformation field 

rom feature pyramids by using a contrastive loss and a single- 

tream decoder. Two registration networks were designed in Cy- 

leMorph ( Kim et al., 2021 ), with a cycle consistency, which takes 

nverse order volumes as inputs. We implemented the affine reg- 

stration and SyN by using ANTs ( Avants et al., 2011 ). For Voxel- 

orph and FAIM, we used the codes and models provided by the 

riginal authors. For CycleMorph, we utilized the released code, 

nd trained the models on the datasets used in our experiment, 

y using the same experimental settings as Kim et al. (2021) ). 

Results and comparisons. On the LPBA40 dataset, as shown in 

ig. 7 and Table 1 , Dual-PRNet improves the average Dice score to 

.778, and outperforms SyN, VoxelMorph, and CycleMoprh consid- 

rably. With the enhanced PR 

++ module, Dual-PRNet ++ can further 

ncrease the average Dice score by 2.0% (Dice 0.798), and achieves 

he best performance in the term of average Dice score. However, 

ual-PRNet ++ is outperformed by LapIR in the terms of ASD and 

D. With the penalty on both the size and nonsmoothness of the 

eformation field, LapIR is able to obtain the lowest HD and fold- 

ng fraction on the determinate of the Jacobian. 

The results on the Mindboggle101 are shown in Table 2 , where 

ur Dual-PRNet ++ consistently outperforms the other methods on 

ice score, and achieves the best performance on all five regions. 

t reaches a high average Dice score of 0.748, surpassing the closest 

ne - 0.629 of CReg and CycleMorph, by a large margin. Notice that 

he new PR ++ modules lead to a large improvement of 0 . 631 → 0 . 748

ver the original Dual-PRNet, demonstrating its ability to learn de- 

ailed brain structure . Furthermore, Dual-PRNet ++ achieves an ASD 

f 0.849, which is the best result among all methods, and a com- 

arable HD with LapIRN. This indicates that our method is able 

o generate less outliers when performing registration. Notice that 

ur methods can achieve excellent Dice scores by simply using CC 

oss and smooth loss, but did not explored an additional penalty 

n the deformation fields as did by LapIRN, which would reduce 
Dual-PRNet 0.778 13.549 2.096 

Dual-PRNet ++ 0.798 12.983 1.724 

https://github.com/dykuang/Medical-image-registration
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Table 2 

The results of different methods on Mindboggle101, in the terms of average Dice Score (Avg Dice), Symmetric Hausdorff

Distance (HD in mm), and Average Symmetric Surface Distance (ASD in mm). 

Region Frontal Parietal Occipital Temporal Cingulate Avg Dice ↑ HD ↓ ASD ↓ 
Affine 0.455 0.406 0.354 0.469 0.450 0.427 16.27 1.433 

SyN 0.558 0.496 0.446 0.578 0.549 0.525 – –

VoxelMorph 0.532 0.459 0.480 0.585 0.499 0.511 16.977 1.261 

FAIM 0.572 0.551 0.537 0.469 0.508 0.527 16.544 1.018 

PMRNet 0.579 0.559 0.430 0.544 0.546 0.532 – –

LapIRN 0.543 0.634 0.477 0.632 0.627 0.583 15.920 1.069 

CReg 0.644 0.620 0.537 0.703 0.640 0.629 – –

CycleMorph 0.695 0.612 0.526 0.683 0.628 0.629 16.255 1.009 

Dual-PRNet 0.602 0.690 0.550 0.695 0.618 0.631 16.826 1.395 

Dual-PRNet ++ 0.735 0.810 0.667 0.802 0.724 0.748 16.080 0.849 

Table 3 

Ablation study on different components of Dual-PRNet ++ on Mindboggle101 (5 re- 

gions) and LPBA40, with average Dice scores reported. 

Dual-stream PR Res. Cor. Mind101 LPBA40 

× × × × 0.511 0.683 

� × × × 0.582 0.767 

� � × × 0.631 0.778 

� � � × 0.694 0.785 

� � � � 0.748 0.798 
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Table 4 

Performance of joint segmentation and registration on Mindboggle101 (31 regions). 

Model N = 1 N = 21 N = 65 

Segmentation – – 73.48 81.31 

DeepAtlas + VoxelMorph 61.19 75.63 – –

DeepAtlas + Dual-PRNet ++ 66.86 78.04 – –
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In addition, we also computed folding fractions of Jacobian de- 

erminant on deformation fields which measure the smoothness of 

he deformation fields. Our Dual-PRNet++ obtained a folding fac- 

ion of 1.725 on the Mindboggle101, outperforming VoxelMorph 

ith 2.274, while FAIM and CycleMorph achieved higher perfor- 

ance of 0.983 and 1.142 respectively. Notice that both FAIM and 

ycleMorph have a regularity loss designed specifically to encour- 

ge the smoothness of the estimated deformation fields in an ex- 

licit manner. For example, negative Jacobian determinants were 

irectly measured as a loss in FAIM, while CycleMorph computes a 

egularization function and a cycle constraint loss to achieve it. 

.2. Ablation study 

We provide ablation studies to further verify the efficiency of 

ndividual technical components developed in our Dual-PRNet ++ . 
e assessed the benefit of the dual-stream design, sequential 

yramid registration with PR modules, and the improved PR 

++ 

odules. Results from these ablation experiments on the Mind- 

oggle101 are presented in Table 3 . To compare our dual-stream 

rchitecture with the single-stream design in VoxelMorph, we ap- 

ly the dual-stream architecture for estimating a single deforma- 

ion field as VoxelMorph, which achieved an average Dice score of 

.582 on the Mindboggle101 and 0.767 on the LPBA40, improving 

he single-stream counterpart by +7.1% and +8.4%, respectively. By 

ntegrating our sequential pyramid registration with PR modules, 

he results can be further increased, with +4.9% and +1.1% further 

mprovements on the Mindboggle101 and LPBA40. To further en- 

ance the local details in the learned deep features, we develop 

he PR 

++ modules which aggregate richer local details by explic- 

tly computing the local correlation features, with residual convo- 

utions for further enhancement. This results in a large further im- 

rovement on the Mindboggle101: 0.631 → 0.748 on Dice score, as 

hown in Table 3 . Particularly, the residual convolutions and 3D 

orrelation have independent improvements of 0.631 → 0.694 and 

.694 → 0.748 respectively, making comparable contribution in our 

esign. 

.3. Results on joint segmentation and registration 

We further evaluate the performance of joint segmentation 

nd registration framework by using the proposed Dual-PRNet ++ , 
8 
hich can be integrated into a 3D segmentation network. To make 

 fair comparison, we replace Voxelmorph with our Dual-PRNet ++ 

s the registration network in the joint framework of DeepAtlas 

 Xu and Niethammer, 2019 ). Our Dual-PRNet ++ estimates a de- 

ormation field (the final one as described in Section 2.5) which 

s then used to warp the available segmentation labels from the 

ource volume to the target one, to guide the learning. Notice that 

n this implementation, we only optimize the segmentation net- 

ork by fixing the registration one (also referred as semi-DA in Xu 

nd Niethammer, 2019 ), due to limited GPU memory. Higher per- 

ormance can be expected with a fully joint learning of the two 

asks. 

Experiments were conducted on the Mindboggle101. By follow- 

ng DeepAtlas ( Xu and Niethammer, 2019 ), we use 31 labeled re- 

ions in the experiments which are different from the 25 regions 

sed in previous registration experiments. Again, with same exper- 

mental settings as Xu and Niethammer (2019) , the joint networks 

re trained with N labeled volumes and the remained 65 − N vol- 

mes unlabeled. It is a fully supervised learning when N = 65 , 

hich is the total number of the volumes in the dataset. We use 

 = 21 in our experiments by following DeepAtlas, and results are 

ompared in Table 4 . 

In the case of N = 21 , DeepAtlas with our Dual-PRNet ++ ob- 

ains an average Dice score of 78.04%, clearly outperforming the 

ure segmentation network (73.48%) which is only trained on 21 

abelled volumes. This demonstrates that the joint registration net- 

ork is greatly helpful to improve the performance of segmenta- 

ion network, by leveraging the additional unlabelled volumes. Fur- 

hermore, as the joint registration network, our Dual-PRNet ++ can 

rovide more accurate warped anatomical labels than Voxelmorph 

sed by DeepAtlas ( Xu and Niethammer, 2019 ), resulting in large 

erformance improvements on the joint framework, e.g., 61 . 19% → 

6 . 86% in one-shot learning ( N = 1 ), and 75 . 63% → 78 . 04% when

 = 21 . Notice that our result (78.04%) is also closed to the result

81.31%) of fully supervised learning where all labelled volumes (65 

n total) are used for training. The results suggest that our Dual- 

RNet ++ can work more effectively in the joint segmentation and 

egistration framework, and is helpful to training the segmentation 

etwork with limited data and labels provided. 

. Discussion 

In this section, we further study the robustness of our meth- 

ds in the cases of large displacements and large splice spaces. 
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Fig. 6. Visualization of the estimated deformation fields with the corresponding warped volumes: (a) the moving volume, (b) the estimated deformation fields with increas- 

ing resolutions (top: left → right), with the corresponding warped volumes (bottom: left → right). Sequential warping is implemented with all the preceding fields, and thus 

the last warped volume is exactly the same as the volume warped by the final field. (c) the final deformation field with the warped volume, and (d) the fixed volume. 

Fig. 7. Dice scores of different methods on LPBA40 (7 regions). The average scores 

are: 0.669 (Affine), 0.683 (VoxelMorph), 0.731 (SyN), 0.733 (CycleMorph), 0.778 

(Dual-PRNet), and 0.798 (Dual-PRNet ++ ). 
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hen we analyze the performance on detailed structure and cross- 

ataset learning, with a discussion on the limitation of our meth- 

ds, which might accumulate interpolation artifacts. 

.1. Robustness 

On large displacement. We first visualize the generated multi- 

esolution deformation fields in Fig. 6 (top). As can be found, 

 deformation field generated from a lower-resolution layer con- 

ains coarse and high-level context information, which is able to 

ncode the high-level semantic information by warping a vol- 

me at a larger scale. Conversely, the deformation field estimated 

rom a higher-resolution layer can capture more detailed features. 

ig. 6 (bottom) shows the warped images by using the correspond- 

ng deformation fields presented. The sequential deformation fields 

re refined gradually to generate the final field, which can warp 

he moving image toward the fixed one more accurately, by ag- 

regating more detailed structural information from the preceding 

elds via sequential warping, as shown in Fig. 6 (c). 

We investigate the capability of our methods for handling large 

patial displacements, and compare our registration results against 

hat of VoxelMorph in Fig. 8 . Our Dual-PRNet and Dual-PRNet ++ 

an align the image more accurately than VoxelMorph, especially 

n the regions containing large spatial displacements, as indicated 

n green or red regions. In addition, as can be found, Dual-PRNet ++ 

as an improvement over the original Dual-PRNet, by using the en- 

anced PR 

++ modules. The design of 3D correlations with more 

onvolutional layers in the PR++ modules can enlarge the receptive 

elds, which in turn further enhances the ability to handle large 

isplacements. 
9 
To further verify the ability of our Dual-PRNet ++ to handle large 

isplacements quantitatively, we assume that the large displace- 

ents more likely happen on the regions where an affine registra- 

ion can not perform well, such as the “Occipital” and “Parietal” re- 

ions on Mindboggle101, which have low Dice scores of 0.354 and 

.406 respectively. Our Dual-PRNet ++ can have large relative im- 

rovements of 88%-100% in these two regions (where VoxelMorph 

nly has 13%-36% relative improvements), compared to 60%-71% 

elative improvements on the regions where the affine registration 

chieves a higher Dice score over 0.450. On the LPBA40, our Dual- 

RNet ++ has relative improvements of 26%-29% on the regions of 

Cingulate” and “Temporal” which have low Dice scores of 0.576 

nd 0.578 by the affine registration, while only achieving about 8% 

elative improvements on the regions of “Hippocampus” and “Puta- 

en” where the affine registration performs better with 0.753 and 

.775 Dice scores. 

On large slice space. We further evaluate the robustness of 

ual-PRNet to large slice space. Experiments were conducted on 

PBA40, by reducing the slices of the moving volumes from 

60 ×192 ×160 to 160 ×24 ×160. Specifically, we preform the slice 

eduction on moving volumes by simply removing the slices to 

60 ×24 ×160, and then interpolate the reduced volumes to the 

riginal size (160 ×192 ×160) with a spline interpolation (order = 1). 

hen we perform our methods on the reduced-interpolated vol- 

mes which have the same size of the original moving volumes. 

y this way, we can verify different levels of slice reductions be- 

ween the moving volume and the fixed volume, while keeping the 

xed volumes unchanged. During testing, the estimated final defor- 

ation field is applied to the labels of the moving volume using 

ero-order interpolation. With a large reduction of slices from 192 

o 24, our Dual-PRNet can still obtain a high average Dice score of 

.711, which even outperforms 0.683 of VoxelMorph ( Balakrishnan 

t al., 2018; 2019 ) using the original non-reduced volumes. This 

emonstrates the strong robustness of our model against the large 

pacing displacements. 

.2. On detailed structure 

Compared with LPBA40 dataset, the Mindboggle101 is anno- 

ated with the cortical structure, which contains more compli- 

ated anatomical structure of the brain, and often requires more 

ccurate local detailed information to identify subtle difference. 

ig. 9 demonstrates the registration results on a number of MRI 

xamples from the Mindboggle101. As can be found, VoxelMorph 

oes not provide accurate results on the detailed brain structure. 

n addition, as demonstrated in ablation studies, our sequential 

yramid registration with either PR modules or PR 

++ modules 

as larger improvements on the Mindboggle101 than that of the 

PBA40. Our sequential pyramid registration performs coarse-to- 
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Fig. 8. Registration results on large spatial displacements. From left to right: the moving image, the fixed image, results of VoxelMorph, Dual-PRNet and Dual-PRNet ++ . 
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(

ne refinements of the deformation fields via sequential warping, 

hich naturally aggregate more detailed information from multi- 

ayer feature pyramids. Furthermore, the enhanced Dual-PRNet ++ 

an achieve further higher performance by using the improved 

R 

++ modules, which are able to compute the local correlations 

xplicitly and thus encodes more detailed structural information. 

he sequential warping allows the model to propagate the strong 

igh-level context information gradually through the decoding lay- 

rs, which enhances both the high-level semantic context and the 

ocal detailed structure. 

We further perform more quantitative analysis. First, we can 

easure the fineness of the brain structures roughly by comput- 

ng the ratio of labeled voxels to the total number of voxels in the 

olumes. The ratios of the labeled voxels on the Mindboggle101 

nd LPBA40 are 35.83% and 60.02% respectively, which demon- 

trate that the clinical regions defined in the Mindboggle101 are 

ore fineness. Second, the difficulty of the brain structure on the 

wo datasets can be demonstrated clearly by the performance of 

n Affine Registration, which has a 0.427 Avg Dice on the Mind- 

oggle101 and a 0.669 Avg Dice on the LPBA40. Therefore, brain 

tructures presented in the Mindboggle101 are more challenging, 

nd our Dual-PRNet++ achieved an over 75% relative improvement, 

ompared to 19% relative improvement obtained on the LPBA40. 

.3. On cross-dataset learning 

We further evaluate the generalization capability of the pro- 

osed Dual-PRNet and Dual-PRNet ++ by conducting external cross- 

ataset validation. For example, we train on the LPBA40 and test 

n the Mindboggle101, and vice versa. Dual-PRNet ++ obtains an 

verage Dice score of 0.788 on the LPBA40, and 0.739 on the Mind- 
10 
oggle101, which are slightly lower than the original performance: 

.798 and 0.748, respectively. Similarly, the cross-data performance 

f Dual-PRNet are 0.747 and 0.581 on the two databases, compared 

o the original 0.778 and 0.631 respectively. Therefore, the cross- 

ata performance of both Dual-PRNet and Dual-PRNet ++ are com- 

ared favorably against the original results of VoxelMorph (with 

.683 and 0.511 respectively), demonstrating the improved gener- 

lization ability of the proposed methods over different datasets. 

.4. Limitations 

Dual-PRNet has its limitation by preforming sequential warp- 

ng on deformation fields, which might result in an accumulation 

f interpolation artifacts. Thus it yields the highest folding frac- 

ion. However, by integrating our PR 

++ module, the folding frac- 

ion of deformation field on Dual-PRNet ++ can be reduced consid- 

rably, reaching a higher performance compared favorably against 

oxelMorph. However, we note that the current implementation 

f Dual-PRNet and Dual-PRNet++ do not have an explicit mecha- 

ism to regulate the amount of regularization as it is the case for 

AIM ( Kuang and Schmah, 2018 ) or LapIRN ( Mok and Chung, 2020 ).

onetheless, inspired by these works, we note that adding a reg- 

larization term based on the determinant of the Jacobian matrix 

f the deformation is straightforward in our methods, and worth 

nvestigating in line with regularizing the solution where trad- 

ng accuracy does not affect the downstream clinical task. Besides, 

e further preformed our Dual-PRNet++ using additional supervi- 

ion of segmentation masks, which can improve the performance 

rom 0.748 to 0.752 on the Mindboggle101. However, this improve- 

ent is relatively limited when compared to that of VoxelMorph. 

 Balakrishnan et al., 2019 ) 
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Fig. 9. Registration results on the Mindboggle101. From left to right: the moving image, the fixed image, results of VoxelMorph, Dual-PRNet and Dual-PRNet ++ . 
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Besides, in this work, we only performed our methods on 3D 

rain image (MRI) registration and segmentation. We expect that 

hey can be further applied for or extended to more general 3D 

edical images, for registration or segmentation, but more exper- 

ments and evaluations are required, which can be kept as our fu- 

ure work. 

. Conclusion 

We have presented our Dual-Stream Pyramid Registration Net- 

ork (Dual-PRNet), with its extension, Dual-PRNet ++ , for unsu- 

ervised 3D medical image registration. Our Dual-PRNet has two- 

tream architecture by design, which allows it to compute two 

onvolutional feature pyramids separately from two input volumes. 

hen sequential pyramid registration with a set of PR modules is 

roposed to estimate a sequence of registration fields, which can 

efine the learned pyramid features gradually in a coarse-to-fine 

anner via sequential warping. The PR module is further enhanced 

y computing local correlation features with further enhancement 

y residual convolutions, resulting in an enhanced Dual-PRNet ++ . 
he proposed methods can be integrated into a 3D segmenta- 

ion framework for joint registration and segmentation, where we 

emonstrate that it can greatly facilitate the segmentation task by 

ccurately warping the voxel-level labels. Extensive experiments 

ere conducted on LPBA40 and Mindboggle101 databases, where 

he proposed Dual-PRNet ++ can outperform the stage-of-the-art 

ethods considerably on unsupervised brain MRI registration. 
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