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Abstract. The U-Net architecture has become the preferred model used
for medical image segmentation tasks. Since its inception, several vari-
ants have been proposed. An important component of the U-Net archi-
tecture is the use of skip-connections, said to carry over image details
on its decoder branch at different scales. However, beyond this intuition,
not much is known as to what extent skip-connections of the U-Net are
necessary, nor what their interplay is in terms of model robustness when
they are subjected to different levels of task complexity. In this study,
we analyzed these questions using three variants of the U-Net architec-
ture (the standard U-Net, a “No-Skip” U-Net, and an Attention-Gated
U-Net) using controlled experiments on varying synthetic texture images
and evaluated these findings on three medical image data sets. We mea-
sured task complexity as a function of texture-based similarities between
foreground and background distributions. Using this scheme, our find-
ings suggest that the benefit of employing skip-connections is small for
low-to-medium complexity tasks, and its benefit appears only when the
task complexity becomes large. We report that such incremental benefit
is non-linear, with the Attention-Gated U-Net yielding larger improve-
ments. Furthermore, we find that these benefits also bring along robust-
ness degradations on clinical data sets, particularly in out-of-domain sce-
narios. These results suggest a dependency between task complexity and
the choice/design of noise-resilient skip-connections, indicating the need
for careful consideration while using these skip-connections.
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1 Introduction

Due to the broad success of U-Nets [17] for image segmentation, it has become
the go-to architecture in the medical image computing community. Since its
creation in 2015, much research has been dedicated to exploring variants and
improvements over the standard base model [3]. However, Isensee et al. [12]
showed with their not-new-U-Net (nnU-Net) that the success of the U-Net relies
on a well-prepared data pipeline incorporating appropriate data normalization,
class balancing checks, and preprocessing, rather than on architecture changes.
Arguably the two most important challenges at present for medical image seg-
mentation are generalization and robustness. A lack of generalization decreases
the performance levels of a model on data sets not well characterized by the
training data set, while poor robustness appears when models under-perform on
data sets presenting noise or other corruptions [13]. Modern neural networks have
been shown to be highly susceptible to distribution shifts and corruptions that
are modality-specific [6]. While the average accuracy of U-Net-based models has
increased over the years, it is evident from the literature that their robustness
level has not improved at the same rate [4,5,9].

One of the key elements of the U-Net are the skip-connections, which prop-
agate information directly (i.e., without further processing) from the encoding
to the decoding branch at different scales. Azad et al. [3] mention that this
novel design propagates essential high-resolution contextual information along
the network, which encourages the network to re-use the low-level representation
along with the high-context representation for accurate localization. Nonethe-
less, there is no clear evidence supporting this intuition and moreover, there is
limited knowledge in the literature describing to what extent skip-connections of
the U-Net are necessary, and what their interplay is in terms of model robustness
when they are subjected to different levels of task complexity.

Currently, the U-Net is used more as a “Swiss-army knife” architecture
across different image modalities and image quality ranges. In this paper, we
describe the interplay between skip-connections and their effective role of “trans-
ferring information” into the decoding branch of the U-Net for different degrees
of task complexity, based on controlled experiments conducted on synthetic
images of varying textures as well as on clinical data comprising Ultrasound
(US), Computed tomography (CT), and Magnetic Resonance Imaging (MRI).
In this regard, the work of [10] showed that neural networks are biased toward
texture information. Recently, [19,20] similarly showed the impact of texture
modifications on the performance and robustness of trained U-Net models. Con-
trary to these prior works analyzing the impact of data perturbation to model
performance (e.g. [6,13]), in this study we focus on analyzing the role of skip-
connections to model performance and its robustness. We hypothesize therefore
that skip-connections may not always lead to beneficial effects across varying
task complexities as measured with texture modifications. Our major contribu-
tions through this paper are:
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(i) We describe a novel analysis pipeline to evaluate the robustness of image
segmentation models as a function of the difference in texture between fore-
ground and background.

(ii) We confirm the hypothesis that severing these skip-connections could lead
to more robust models, especially in the case of out-of-domain (OOD) test
data. Furthermore, we show that severing skip-connections could work bet-
ter than filtering feature maps from the encoder with attention-gating.

(iii) Finally, we also demonstrate failure modes of using skip-connections, where
robustness across texture variations appear to be sacrificed in the pursuit
of improvements within domain.

2 Materials and Methods

2.1 Experiment Design

Figure 1 describes our experimental setup to assess the impact of skip-
connections in U-Net-like architectures under varying levels of task complexity.

Given a set of N pairs of labeled training images {(I, S)i : 1 ≤ i ≤ N}, I ∈
R

H×W and S ∈ Z : {0, 1}H×W , corresponding ground-truth segmentation, a
deep learning segmentation model M(I) �→ S is commonly updated by mini-
mizing a standard loss term, such as the binary cross entropy or dice loss. To

Fig. 1. Experimental design to evaluate the role of U-Net’s skip-connections under
different levels of task complexity. Given training images with controllable background
(BG) and foreground (FG) textures, three variants of the U-Net were trained featuring
no skip-connections (NoSkipU-Net), standard U-Net (U-Net) [17], and Attention-Gated
U-Net (AGU-Net) [18], each characterizing a different strategy (zeroing information
through skips, identity transform and filtering information through skips, respectively).
Each model was trained with different levels of texture similarity between background
and foreground, based on the Kullback-Leibler divergence of Local Binary Pattern
(LBP) histograms for foreground and background regions. For each level of foreground-
to-background texture similarity, the performance for each model was recorded in-
domain, and robustness was measured with out-of-domain texture similarities.
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evaluate how the model behaves at varying task complexities, we construct train-
ing data sets where each training sample is subjected to a linear transformation
where its foreground is blended with the background: I(x | Z(x) = 1) = αI(x |
Z(x) = 1) + (1 − α)I(x | Z(x) = 0).

By increasing α from zero to one, more of the foreground texture is added
in the foreground mask, which otherwise is made up of the background tex-
ture (See Fig. 2), while the background itself is unimpacted. We then quantify
the similarity between foreground and background regions by measuring the
Kullback-Leibler divergence between their local-binary-pattern (LBP) [16] his-
tograms. We selected LBP since it is a commonly used and benchmarked texture
descriptor in machine learning applications [8,15].

T S = KL(H(L(I)BG)||H(L(I)FG) (1)
L(I)BG = LBP (I(x | Z(x) = 0) (2)
L(I)FG = LBP (I(x | Z(x) = 1) (3)

where T S refers to the level of texture similarity, H() corresponds to histogram,
and L(I){BG,FG} refers to LBP calculated for BG or FG. The LBP histogram
was computed using a 3×3 neighbourhood with 8 points around each pixel in the
image. Three U-Net models were trained featuring three different skip-connection
strategies: NoSkipU-Net, U-Net, and AGU-Net, representing the absence of skip-
connections, the use of an identity transform (i.e., information through skips
is kept as is), and filtering information via attention through skip-connections,
respectively. Models were trained at different levels of T S between the foreground
and background regions, determined based on the Kullback-Leibler divergence
of Local Binary Pattern (LBP) histograms, Eq. 1. For each level of α used to
create a training set, we trained a model to be evaluated on a synthetic test set
using the same α to measure within-domain performance and across a range of
α, to measure their out-of-domain robustness.

Next, using Eq. 1 and ground truth labels, we computed the T S of images
from the test set of the medical data sets and applied corruptions by way of
noise or blurring in order to increase and decrease T S depending on the imaging
modality being analyzed. Then we evaluated the robustness of these models to
texture changes in these data sets. We did this at two levels of task complexity
(easier - where T S is higher, and harder, where T S is lower) and different from
the original T S. We report all model performances using dice scores.

2.2 Description of Data

Synthetic Textures: We took two representative grayscale textures from the
synthetic toy data set described in [11] and used them as the background
and foreground patterns. These patterns were chosen such that the T S val-
ues matched the range of medical data sets described next. We also generated
synthetic segmentation masks using bezier curves setup such that the curva-
ture and size of the foreground simulate clinical image segmentation problems.
Examples of such images are shown in Fig. 2. We generated 100 such image-mask
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Fig. 2. Generation of synthetic data samples as a function of blending foreground tex-
ture into the background. Numbers in the legend indicate the proportion of foreground
blended within the foreground mask.

pairs at 9 levels (for α ∈ {0.1, 0.2, ..., 0.9}), so that we create training data sets
at various task complexities. These images are generated by randomly cropping
the grayscale textures to 256 × 256 pixels. 70 of these were used as the training
set, 10 were reserved for validation, and the rest of the 20 formed the test set,
identically split for all task complexities. Figure 2 show kernel density estimates
of each of these 9 data sets along the texture similarity axis. The curve in orange
(α = 0.1) indicates that the foreground mask in this set contains only 10% of the
actual foreground texture and 90% of the background texture blended together.
This represents a situation where it is texturally hard for humans as well as for
segmentation models. The data set in green (α = 0.9) shows the reverse ratio
- the foreground region now contains 90% of the foreground texture, thereby
making it an easier task to segment.

Medical Data Sets: We tested the three variants of the U-Net architecture on
three medical binary segmentation data sets: a Breast Ultrasound [1], a spleen
CT and a heart MRI data set [2]. The breast ultrasound data set contained 647
images, 400 of which were used as training, 100 as validation and 147 as the test
set. We used the benign and malignant categories in the breast ultrasound data
and excluded images with no foreground to segment (i.e. the “normal” category).
The spleen data set contained 899 images, 601 of which were used as training,
82 as validation and 216 as test set images. The heart data set contained 829
images, 563 of which were used as training, 146 as validation, and 120 as test set
images. We selected 2D axial slices from the spleen, and sagittal slices from the
heart data sets, both of which were originally 3D volumes, such that there is at
least one pixel corresponding to the foreground. Care was taken to ensure that
2D slices were selected from 3D volumes and split at the patient level to avoid
cross-contamination of images across training/test splits.
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Fig. 3. Medical data test sets on the texture similarity (T S) axis with in-domain
(dashed gray), easier task (green, low similarity) and harder task (red, high similarity)
distributions. Three modalities tested include US, CT, and MR, whose T S are in the
same range as synthetic data in Fig. 2.

To vary T S of images in the test set, and to evaluate the robustness of the
U-Net variants, speckle noise with variance 0.1 was added to both the foreground
and background. This made the textures more similar, hence lowered T S, and
essentially rendered them harder to segment. This is shown in the red boxes
in Fig. 3. We also created another test set with textures that are less similar
by blurring the background using a Gaussian kernel of variance 3.0 while not
blurring the foreground pixels. These are shown in the green boxes in Fig. 3,
where it can be seen they are easier to segment.

2.3 Model Architecture and Training Settings

The network architectures were created using MONAI [7] v1.1 and were all
trained with random weight initialization. The U-Net was implemented with one
input and output channel, with input image size set to 256 × 256 pixels across
all experiments. The model had five levels with 16, 32, 64, 128, 256 channels each
for synthetic experiments and six levels (an additional level with 512 channels)
for medical image experiments, all intermediate channels with a stride of 2.
The ReLU activation was used, and no residual units were included. To reduce
stochasticity, no dropout was used in any variant.

The NoSkipU-Net was identical to the U-Net except for severed skip-
connections. This led to the number of channels in the decoder to be smaller
as there is no concatenation from the corresponding encoder level. The AGU-
Net was setup to be the same as the U-Net, except with attention gating through
the skip-connections.

The training parameters were kept constant across compared models for fair
comparison. Our experiments1 were implemented in Python 3.10.4 using the
PyTorch implementation of the adam [14] optimizer. We set the learning rate
to be 1e−3 for synthetic experiments (and 1e−2 for medical image experiments),
maintaining it constant without using a learning rate scheduler. No early stop-
ping criteria were used while training, and all models were allowed to train to 100

1 Code to reproduce this is at https://github.com/amithjkamath/to skip or not..

https://github.com/amithjkamath/to_skip_or_not.


308 A. Kamath et al.

epochs. We trained our models to optimize the dice loss, and saved the model
with the best validation dice (evaluated once every two epochs) for inference on
the test set.

We did not perform any data augmentation that could change the scale of
the image content, thereby also changing the texture characteristics. Therefore,
we only do a random rotation by 90 degrees with a probability of 0.5 for training,
and no other augmentations. We also refrained from fine-tuning hyperparameters
and did not perform any ensembling as our study design is not meant to achieve
the best possible performance metric as much as it attempts to reliably compare
performance across architecture variants while keeping confounding factors to a
minimum. We therefore trained each model using the same random seeds (three
times) and report the dice score statistics. Training and testing were performed
on an NVIDIA A5000 GPU with 24 GB RAM and CUDA version 11.4.

3 Results

3.1 On Synthetic Texture Variants

In-domain (Performance): Figure 4 (left) indicates the relative improvement
in dice scores between the three U-Net variants using the NoSkipU-Net as the
baseline. To make the interpretation easier, the α value is used as a proxy for
T S on the horizontal axis. It is worth noting that for α values > 0.3, there is
negligible difference between the dice score performances of all the U-Net vari-
ants, indicating their ability with or without the skip-connections to learn the
distributions of the foreground and background textures at that level of task
complexity. Below α values of 0.3, the benefits of using attention gating in the
skip-connections start to appear. This indicates that the benefit of attention-
gating as a function of complexity is non-linear: models do not benefit from
skip-connections at lower ranges of task complexity, but at larger ones, filter-
ing the information flowing through the skip connections is important. What is
interesting is also how the standard U-Net performance is noisy compared to
NoSkipU-Net, indicating that passing through the entire encoder feature map
to be concatenated with the decoder feature maps may not always be beneficial.

Out-of-Domain (Robustness): Rows in Fig. 4 (right) includes a heatmap to
represent the α values that the model was trained on, and columns correspond to
the α value it was tested on. The entries in the matrix are normalized dice score
differences between AGU-Net and NoSkipU-Net (comparisons between standard
U-Net and NoSkipU-Net show similar trends). The diagonal entries here corre-
spond to the AGU-Net plot in Fig. 4 (left). For α values 0.3 and 0.4 in training
and 0.9 on testing (corresponding to an out-of-domain testing scenario), the
NoSkipU-Net performs better than the AGU-Net, indicating that there indeed
are situations where skip-connections cause more harm than benefit.
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Fig. 4. Relative performance in-domain (left) across U-Net variants, and out-of-domain
robustness metrics (right) for AGU-Net versus NoSkipU-Net.

3.2 On Medical Image Textures

In-Domain (performance): Looking at the “In-domain” rows in Table 1, on
all three data sets, the AGU-Net outperforms both the other variants. How-
ever, the relative improvements in performance vary across modalities, with the
performance differences on CT being the most stark. On the Ultrasound data
set, the NoSkipU-Net performs as well as the standard U-Net, supporting our
hypothesis that skip-connections may not always be beneficial.

Out-of-Domain (Robustness): Focusing on the rows “Harder” and “Easier”
in Table 1, we observe for the Ultrasound data set that the AGU-Net improves in
the easier task, but declines in performance in the harder one. The drop in per-
formance is most pronounced for the U-Net, but moderate for the NoSkipU-Net.
For the spleen data set, both the AGU-Net and the standard U-Net demonstrate
severe drop in performance in the harder case. However, AGU-Net is better and

Table 1. Mean (standard deviation) of Dice scores for each of hard, in-domain and
easy textures on the Breast (Ultrasound), Spleen (CT) and Heart (MR) data sets. Best
performing model at each texture level is highlighted in bold.

Data set Texture level AGU-Net U-Net NoSkipU-Net

Breast (Ultrasound) Harder 0.645 (0.291) 0.723 (0.281) 0.735 (0.268)

In-domain 0.795 (0.206) 0.762 (0.261) 0.761 (0.258)

Easier 0.799 (0.200) 0.735 (0.244) 0.748 (0.243)

Spleen (CT) Harder 0.310 (0.226) 0.074 (0.152) 0.558 (0.265)

In-domain 0.927 (0.092) 0.745 (0.275) 0.606 (0.265)

Easier 0.809 (0.201) 0.394 (0.354) 0.486 (0.292)

Heart (MRI) Harder 0.139 (0.242) 0.500 (0.316) 0.815 (0.126)

In-domain 0.929 (0.055) 0.900 (0.080) 0.833 (0.111)

Easier 0.889 (0.073) 0.805 (0.129) 0.823 (0.103)
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the standard U-Net is worse than the NoSkipU-Net in the easier texture situa-
tions. The heart data set shows the same trend as in the spleen data set.

4 Discussion and Conclusion

Through extensive experiments using synthetic texture images at various levels
of complexity and validating these findings on medical image data sets from
three different modalities, we show in this paper that the use of skip-connections
can both be beneficial as well as harmful depending on what can be traded off:
robustness or performance. A limitation of our work is that we vary only the fore-
ground in synthetic experiments but background variations could demonstrate
unexpected asymmetric behavior. We envision the proposed analysis pipeline
to be useful in quality assurance frameworks where U-Net variants could be
compared to analyse potential failure modes.

References

1. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound
images. Data Brief 28, 104863 (2020)

2. Antonelli, M., et al.: The medical segmentation decathlon. Nature Commun. 13(1),
4128 (2022)

3. Azad, R., et al.: Medical image segmentation review: the success of u-net. arXiv
preprint arXiv:2211.14830 (2022)

4. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor
segmentation, progression assessment, and overall survival prediction in the brats
challenge. arXiv preprint arXiv:1811.02629 (2018)

5. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-
structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med.
Imaging 37(11), 2514–2525 (2018)

6. Boone, L., et al.: Rood-MRI: Benchmarking the robustness of deep learning seg-
mentation models to out-of-distribution and corrupted data in MRI. arXiv preprint
arXiv:2203.06060 (2022)

7. Cardoso, M.J., et al.: Monai: An open-source framework for deep learning in health-
care. arXiv preprint arXiv:2211.02701 (2022)

8. Doshi, N.P., Schaefer, G.: A comprehensive benchmark of local binary pattern algo-
rithms for texture retrieval. In: Proceedings of the 21st International Conference
on Pattern Recognition (ICPR2012), pp. 2760–2763. IEEE (2012)

9. Galati, F., Ourselin, S., Zuluaga, M.A.: From accuracy to reliability and robustness
in cardiac magnetic resonance image segmentation: a review. Appl. Sci. 12(8), 3936
(2022)

10. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.:
Imagenet-trained cnns are biased towards texture; increasing shape bias improves
accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)

11. Hoyer, L., Munoz, M., Katiyar, P., Khoreva, A., Fischer, V.: Grid saliency for
context explanations of semantic segmentation. Adv. Neural Inform. Process. Syst.
32 (2019)

http://arxiv.org/abs/2211.14830
http://arxiv.org/abs/1811.02629
http://arxiv.org/abs/2203.06060
http://arxiv.org/abs/2211.02701
http://arxiv.org/abs/1811.12231


Do We Really Need that Skip-Connection? 311

12. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nat. Methods 18(2), 203–211 (2021)

13. Kamann, C., Rother, C.: Benchmarking the robustness of semantic segmentation
models with respect to common corruptions. Int. J. Comput. Vision 129(2), 462–
483 (2021)

14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

15. Liu, L., Fieguth, P., Wang, X., Pietikäinen, M., Hu, D.: Evaluation of LBP and
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