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ABSTRACT
Radiotherapy is a critical component of treatment for brain
tumors. Inter-expert variability, differences in protocols, and
human errors in segmentation of organ-at-risk (OAR) and tar-
get volume contours may necessitate re-planning treatment.
This is time-consuming, significantly reduces the efficiency
of radiation oncology teams, and hampers timely intervention
to curb tumor growth. Hence, automated quality assurance
of segmentation results hold much potential. However, such a
quality assurance method must be fast and have good levels of
sensitivity to radiation dose changes due to contour variations.
In this paper, we evaluated a Cascaded 3D UNet deep neu-
ral network for dose prediction in brain tumors. Using met-
rics defined in the openKBP challenge, we report a promis-
ing mean dose score or mean absolute error (MAE) of 0.906
and a mean Dose Volume Histogram (DVH) score of 1.942,
between predicted versus reference 3D dose volumes on 20
clinical test cases. We further tested the sensitivity of these
dose predictions to realistic inter-expert variability in segmen-
tation of the left optic nerve, chosen due to its clinical rele-
vance. We found that the predicted DVH curves for such vari-
ations match well with the reference, average prediction dose
MAE of 2.039 was close to average inter-expert dose MAE of
2.115, and the correlation coefficient between the predicted
and reference dose differences was 0.926, indicating strong
sensitivity to contour variations. These encouraging results
show the potential of employing such models within a broader
automated quality assurance system in the radiotherapy plan-
ning workflow. Code to reproduce this is available at https:
//github.com/amithjkamath/deepdosesens

Index Terms— Radiotherapy, Treatment Planning, Deep
Learning, U-Net, Automated Dose Prediction.

1. INTRODUCTION

Aggressive tumors like glioblastoma account for 45% of all
malignant primary brain tumors [1]. Current treatment is a
combination of surgery, adjuvant radiotherapy (RT), and con-
comitant and adjuvant chemotherapy [2]. The aim of RT plan-

ning is to conform dose to the target volume (i.e., tumor or
resection cavity, with adjacent areas of potential microscopic
spread) while sparing organs-at-risk (OAR). This limits nor-
mal tissue toxicity while ensuring optimal tumor control [3].

It is hence critical to have an accurate segmentation of
the anatomy to achieve this objective. Radiation oncologists
draw contours around OAR and target volumes, either manu-
ally or semi-automatically. This process however can take up
to seven hours per patient [4]. In a multi-institutional delin-
eation study among radiation oncologists, incorrect target vol-
ume segmentation has been reported to have caused 25% of
non-compliant treatment plans [5]. Target volume and OAR
segmentation are hence amongst the most time-consuming
yet error-prone steps in the RT process. Efforts have hence
been made to create segmentation standards and develop RT
Quality Assurance (RTQA) systems [6].

Fig. 1. Visualizing inter-expert variability in OAR contours
of brainstem in cyan (left). Orange and yellow contours are
around the tumor target volume. Overlaid heat map indicates
dose. Various plausible left optic nerve segmentation (right)
lead to changes in dose delivered.

Impact of segmentation variability: Fig. 1 (left) shows
overlapping cyan lines representing potential choices of
brainstem contours due to inter-expert variability. The plan-
ning target volume is represented in orange, and the clinical
target volume in yellow. A heat map indicating RT dose
distribution (color wash) for a treatment plan in Gray (red:
high, blue: low dose) is overlaid for the dose context. Vari-
ations in these contours are most critical in the border of the
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higher dose area, where the dose gradient is most steep, while
less critical elsewhere. Fig. 1 (right) shows 10 examples
of plausible optic nerve (left) contours. Over-contouring,
where volumes are larger than the ‘true’ extent result in (i)
overestimating the OAR dose since less area of the OAR lies
within high-dose region, and (ii) potentially under-dosing the
tumor target volume, to spare the OAR from excess dose.
This negatively impacting tumor control. Conversely, under-
contouring i.e. missing ‘true’ areas of the OAR, would result
in a under-estimation of the actual dose. This leads to excess
toxicity.

Treatment dose plan computation is currently done inde-
pendently after the contouring step, by medical physics ex-
perts. If this dose is not protocol compliant, reviewing any
potentially incorrect contours and re-computing adds on to
delays. This time between image acquisition and RT planning
completion is reportedly 9.63 days on average [7]. This has
motivated the use of deep learning for online and accurate RT
dose predictions [8]. When such models are reliable, it could
prevent re-planning by evaluating contour quality prior to or
simultaneously with planning. However, to the best of our
knowledge, the sensitivity of these deep learning models to
local contour variations has not previously been analyzed.

Hypothesis and Contributions: Our main hypothesis is
that a deep learning dose prediction model that provides near-
instant dosimetry is also sensitive to local contour changes,
thereby being an efficient means of segmentation quality as-
surance. The main benefit of using a deep learning dose pre-
diction model is that it is near-instant (inference time of 15
seconds on a GPU). This enables an interactive segmentation
process guided by dose estimates where contours are edited
immediately based on dose compliance, as opposed to rely-
ing on post-facto dose evaluations leading to delays. To make
this feasible in clinical practice, reliable sensitivity of such
models to local changes in contours is essential.

We test this sensitivity by constructing simulated expert
variations in contours and evaluating the similarity of dose
predictions from such models to a reference plan. Our contri-
butions in this paper are therefore threefold:

• Based on a data set of 100 clinical cases, we show that
a Cascaded 3D (C3D) UNet dose prediction model [9]
achieves a mean dose score of 0.906 and mean DVH score
of 1.942, indicating strong potential usage in treatment
planning. To the best of our knowledge, this is the first
such analysis on dose predictions for glioblastoma.

• Based on a per-OAR (a total of 13) analysis of dose and
DVH scores, we find that model performance depends on
both size (larger is worse) and proximity to tumor target
volumes (closer is worse).

• We further analyze the sensitivity of dose predictions to
small yet realistic contour changes of the left optic nerve,
selected due to its clinical relevance and sensitivity to ra-
diation. We show a strong correlation of 0.921 between
predicted dose versus reference dose differences.

2. MATERIALS AND METHODS

Data: Our data set included imaging and contour data from
100 subjects who were diagnosed with glioblastoma. This
included CT imaging data, along with associated binary seg-
mentation masks of 13 OARs (see full list in Table. 1) as
well as the Planning Target Volume. Each of these subjects
also had a reference dose plan, calculated using a standard-
ized clinical protocol with Eclipse (Varian Medical Systems
Inc., Palo Alto, USA). This reference was a double arc co-
planar volumetric modulated arc therapy (VMAT) plan with
6 mega volt flattening filter free beams, optimized (Varian
photon optimizer version 15.6.05) to deliver 30 times 2 Gray
while maximally sparing the OARs. The dose was calculated
with the AAA algorithm [10], normalized so that 100% of the
prescribed dose covers 50% of the target volume. Sixty ran-
domly chosen subjects formed the training set, 15 were used
as validation (five samples excluded due to missing contours)
and the rest of the 20 were used as the test set.

Model: We used a two-level C3D U-Net [9] as the dose
prediction network (i.e, the input to the second U-Net is the
output of the first concatenated with the input to the first U-
Net). The model input was a normalized CT volume and bi-
nary segmentation masks for each of the 13 OARs and target
volume, and predicted a continuous valued dose volume (up-
scaled from [0, 1] to 0 to 70 Gray) of the same dimension as
the input. The loss was computed as

Loss = 0.5 ∗ L1(reference,A) + L1(reference,B) (1)

where A and B were the outputs of the first and second U-
Nets respectively, reference was the reference dose and L1
refers to the L1 loss. All volumes were resampled to 1283

voxels, due to GPU memory constraints. The hyperparam-
eters for training the C3D model were unchanged from the
original implementation [9], except the number of input bi-
nary masks was updated to 14, to match the number of OARs
in our data set. The weights were randomly initialized using
the ‘He’ method. Training ran for 80000 iterations and the
model with the best validation dose score was saved. All ex-
periments were run with PyTorch 1.12 on an NVIDIA RTX
A5000 GPU, and each training run took 24 hours. We trained
the model five times with the same hyperparameter set but
different random seed initialization to ensure reliable conver-
gence.

Metrics: We adopted the dose and DVH score as evalua-
tion metrics, from openKBP [8], an international challenge
designed for head and neck tumors. Dose scores indicate
the mean absolute error (MAE) of predicted versus reference
dose within a mask (either body, brain, or an OAR). DVH
scores are the average of the MAE between prediction and
reference for mean and 0.1CC dose of OARs, and the aver-
age of MAE for 1st, 95th and 99th percentile of the dose for
tumor target volume, also computed within their masks.

Sensitivity experiments: To analyze the sensitivity of the
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trained model to inter-expert variability in segmentation, we
manually modified the left optic nerve OAR for a single sub-
ject in the test set, to create ten variations (as shown in Fig.
1 (right)), validated by radiation oncologists for plausibility.
For each of these, a new reference dose was computed using
the same settings as used for the training data. The left op-
tic nerve was chosen because of its proximity to the tumor
target, resulting in large dose changes even for small contour
changes. We then compared the predicted (Pi) and reference
dose (Ri) qualitatively with DVH curves, and quantitatively
by analyzing the difference in mean OAR dose between ref-
erence and predicted dose, for nine variations against a refer-
ence (index 0 without loss of generality).

3. RESULTS

Over five training runs, we report a mean dose score of 0.906
(std. 0.009), and a mean DVH score of 1.942 (std. 0.041) on
20 test subjects, which was in the same range as the winning
entry [9] of the openKBP challenge. For subsequent analysis,
we used the best performing model (out of five) with a dose
score of 0.891 and DVH score of 1.919.

Fig. 2. Comparison of dose predictions: Reference (left),
model prediction (middle) (range of these values are from 0 to
70 Gray), and differences (right) (range of these differences is
−15 to 15 Gray). For the difference image (right), darker blue
regions are underestimates, and darker red are overestimates.

Fig. 2 demonstrates the dose prediction in the axial plane.
The model tracked the reference well and avoided higher
dose in the eye region (the two blue streaks at the top in
Fig. 2), while also effectively enveloping the shape of the
tumor target. The difference between the two (right panel)
consist mostly of radial streaks which were hardware specific
artifacts that were not clinically pertinent to our assessment.
Across the 20 test set subjects, the dose score varied between
0.470 and 2.167, where higher scores are typically due to
larger tumor target volumes, because of higher overall dose
to the entire anatomy. The DVH score varied between 0.451
and 4.203.

Table 1 shows the per-OAR results as mean (standard
deviation) of dose and DVH scores. Larger OARs like the
brainstem yielded better metrics, while smaller e.g., lacrimal
glands are worse, leading to more over/under-estimates.
Proximity to tumor target volume was also an important

Table 1. Mean (std.) of dose and DVH scores for 13 OARs
in 20 test dose predictions. Lower values are better.

OAR Dose Score DVH Score
Brainstem 1.399 (1.392) 2.025 (1.746)
Chiasm 2.985 (2.418) 2.798 (2.469)
Cochlea L 1.856 (4.728) 1.036 (2.347)
Cochlea R 2.433 (5.109) 1.406 (2.673)
Eye L 1.487 (2.194) 1.707 (2.517)
Eye R 2.210 (3.939) 2.836 (4.832)
Hippocampus L 2.101 (1.743) 1.976 (1.618)
Hippocampus R 2.601 (2.945) 2.381 (2.166)
Lacrimal Gland L 1.448 (1.320) 1.617 (1.404)
Lacrimal Gland R 1.938 (2.011) 1.912 (2.069)
Optic Nerve L 2.121 (2.464) 2.475 (3.122)
Optic Nerve R 2.266 (2.342) 2.072 (2.135)
Pituitary 1.889 (1.780) 1.932 (1.689)
Overall 0.891 (0.376) 1.919 (1.216)

Table 2. Sensitivity analysis: Ri is the reference mean dose
and Pi is the predicted mean dose for index ‘i’, both for optic
nerve left. DSC(i) is the Dice Similarity Coefficient between
index ‘i’ and ‘0’. Dose difference (∆D) reported in Gray.

Index (i) ∆D: |Ri - R0| ↓ ∆D: |Pi - P0| DSC(i)
1 0.145 0.418 0.325
2 0.283 0.222 0.627
3 0.357 1.032 0.783
4 0.435 0.519 0.363
5 2.089 3.171 0.590
6 2.402 2.487 0.509
7 3.027 1.483 0.197
8 4.815 5.436 0.612
9 7.591 5.625 0.229
Mean 2.115 2.039 0.523

factor in the dose score, where closer OARs had higher
scores. Dose differences within tumor target volumes were
nonetheless always under 2.5 Gray, which was less than 5%
of prescribed dose.

Sensitivity analysis: Table. 2 shows the difference in the
mean dose for the reference plans (second column), predicted
plans (third column) and the corresponding Dice Similarity
Coefficient (DSC) (fourth column) between a reference con-
tour and nine variations of the left optic nerve. The contours
are indexed in ascending order of the difference in mean refer-
ence dose (column two). The difference in the predicted dose
tracked the difference in reference well, while the DSC trends
were harder to use for making contour quality decisions. For
example, the contour with index 8 could be considered rea-
sonable when looking only at DSC. But, the predicted dose
showed that it is not as good dosimetrically, as index 1 having
a lower DSC.

The average difference in the mean reference dose (∆D:
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|Ri - R0|) was 2.115, while the same for predicted dose (∆D:
|Pi - P0|) was 2.039. The correlation coefficient between ref-
erence and predicted dose differences across these contour
variations was a strong 0.926, while that with the DSC was
−0.471. Furthermore, Fig. 3 shows the similarity in DVH
curves to qualitatively compare reference and predicted doses
for four representative variations. These evaluations confirm
that the prediction model reliably tracked dose changes across
contour variations. This demonstrates the utility of dose pre-
diction models during contouring so that edits are based on
clinically relevant dosimetry rather than the current practice
of using just image-based anatomy and geometry.

3 5

86

Fig. 3. Comparison of Dose Volume Histograms (DVH) for
Optic Nerve Left - for four representative realistic contour
variations (index matches those in Table. 2). A smaller gap
between the two curves indicates better results.

Discussion: In this paper, we showed with experiments
on a data set of 100 clinical glioblastoma cases that our dose
prediction model has a mean dose error of less than 1 Gray
on a test set of 20 clinical cases. This model was sufficiently
sensitive to contour changes with a strong correlation while
tracking dose changes, helping make better-informed contour
editing decisions. However, a limitation is that separate mod-
els need to be trained for every tumor location, delivery ma-
chine, and planning software. We plan to build on this initial
result to devise further experiments focusing on sensitivity.
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tal (University Hospital Bern). Ethical approval was obtained
from the regional ethics committee of the Canton of Bern.
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