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Abstract— Treatment for glioblastoma, an aggressive brain
tumour usually relies on radiotherapy. This involves planning
how to achieve the desired radiation dose distribution, which is
known as treatment planning. Treatment planning is impacted
by human errors, inter-expert variability in segmenting (or
outlining) the tumor target and organs-at-risk, and differences
in segmentation protocols. Erroneous segmentations translate
to erroneous dose distributions, and hence sub-optimal clinical
outcomes. Reviewing segmentations is time-intensive, signifi-
cantly reduces the efficiency of radiation oncology teams, and
hence restricts timely radiotherapy interventions to limit tumor
growth. Moreover, to date, radiation oncologists review and
correct segmentations without information on how potential
corrections might affect radiation dose distributions, lead-
ing to an ineffective and suboptimal segmentation correction
workflow. In this paper, we introduce an automated deep-
learning based method: atomic surface transformations for
radiotherapy quality assurance (ASTRA), that predicts the po-
tential impact of local segmentation variations on radiotherapy
dose predictions, thereby serving as an effective dose-aware
sensitivity map of segmentation variations. On a dataset of 100
glioblastoma patients, we show how the proposed approach
enables assessment and visualization of areas of organs-at-
risk being most susceptible to dose changes, providing clini-
cians with a dose-informed mechanism to review and correct
segmentations for radiation therapy planning. These initial
results suggest strong potential for employing such methods
within a broader automated quality assurance system in the
radiotherapy planning workflow. Code to reproduce this is
available at https://github.com/amithjkamath/astra
Clinical Relevance: ASTRA shows promise in indicating what
regions of the OARs are more likely to impact the distribution
of radiation dose.

Index Terms— Radiotherapy, Treatment Planning, Deep
Learning, U-Net, Automated Quality Assurance.

I. INTRODUCTION

Approximately 45% of all malignant primary brain tumors
are accounted for by aggressive tumors such as glioblastoma
[1]. Treatment consists of surgery, adjuvant radiotherapy
(RT), and concomitant and adjuvant chemotherapy [2]. RT
planning aims to conform the dose to the target volume (i.e.,
tumor or resection cavity, with adjacent areas of potential
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microscopic spread) while sparing organs-at-risk (OAR),
thereby ensuring optimal tumor control and limiting normal
tissue toxicity [3]. Accurate segmentation of the tumor target
volumes and OARs is critical to achieving this objective.
Radiation oncologists or dosimetrists draw contours around
OAR and tumor target volumes, either manually or semi-
automatically. This is time-consuming and can take up to
seven hours per patient in the head and neck anatomy [4].
In a multi-institutional delineation study among radiation
oncologists, incorrect target volume segmentation has been
reported to have caused 25% of non-compliant treatment
plans [5]. Tumour target volume and OAR segmentation are
amongst the most error-prone and time-consuming steps in
the RT planning process. This has led to efforts to create
segmentation standards and develop RT Quality Assurance
(RTQA) systems [6].

Fig. 1. Visualizing variations in segmentation: are variations at locations
A and B equally impactful from a RT perspective? To date, radiation
oncologists review and correct segmentations without information on how
potential corrections might affect radiation dose distributions, leading to an
ineffective and suboptimal segmentation correction workflow.

Motivation for visualizing impact of local variations:
Fig. 1 shows multiple cyan lines representing different brain-
stem segmentations performed by several expert radiation
oncologists. The clinical target volume is shown in yellow,
and the planning target volume in orange. The underlying
heat map indicates the dose distribution (color wash) for a
treatment plan in units of Gray (red: high, blue: low dose)
and provides the dose context. If OAR volumes are drawn
larger than their actual extent, it leads to overestimating
the OAR dose and potentially under-dosing the tumor target
volume to spare the OAR from excess dose. This negatively



impacts tumor control. Conversely, missing the actual extent
of the OAR (under-segmentation) would result in an under-
estimation of the true dose. This leads to excess toxicity to
the OAR.

Treatment dose plan computation is currently done by
medical physics experts and is a separate step in the RT
process. Treatment delays occur if this dose is not protocol
compliant and necessitates re-computation and reviewing any
potentially incorrect segmentation. This time between image
acquisition and RT planning completion is reported to be
9.63 days on average [7]. It is unknown beforehand if local
corrections made at a specific region of the segmentation
lead to better or worse dosimetric outcomes. As re-planning
and dosimetric assessment are both time-consuming, they
demand faster workflows. To address this, deep learning-
based dose prediction models were proposed in a head &
neck cancer challenge [8]. Recently, in [9], we presented
the first such model for glioblastoma. In this paper, we
introduce an automated deep-learning-based method called
‘atomic surface transformations’ for radiotherapy quality
assurance (ASTRA) that predicts the potential impact of
local segmentation variations on RT dose predictions in the
form of a sensitivity map for faster review of dosimetric
effects of local segmentation changes. We believe this can
help prioritize review efforts on the most critical areas.

Hypothesis and Contributions: Our hypothesis is that
a deep learning dose prediction model offering near-instant
dosimetry can aid radiation oncologists to focus their review
efforts on locations where segmentation variations are dosi-
metrically most critical.

The proposed approach identifies locations of the OARs
that most contribute to variations in dose impact, presenting
radiation oncologists with an assessment that highlights the
relative significance of local segmentation accuracies.

We demonstrate this using a novel method called ASTRA,
which performs voxel-wise local transformations in a high-
throughput manner across the OAR’s surface, to then com-
pute the mean absolute difference between the dose predicted
with and without transformations to estimate the dosimetric
impact of local segmentation changes. Our contributions in
this paper are threefold:

• First, we introduce and show representative visualiza-
tions with ASTRA - modeled as spheres added onto the
surface of the OAR segmentation, to evaluate how these
local variations impact radiation dose computations.

• Then, we analyze the sensitivity of dose predictions
to atomic surface transformations (with over 2000 in-
ference predictions made on 10 test subjects each)
and compute correlations with the smallest distance-
to-target volume and local dose gradient. We observe
stronger correlation between dose changes and distance-
to-target (on larger OARs), and a weaker correlation
with local dose gradient magnitude (across most OARs).

• Finally, we show how the dose changes are impacted
by the size of the transformation - using three different
sizes of spheres to simulate segmentation changes of
varying magnitudes. We show that the sensitivity map

is robust to changes in this parameter.

II. MATERIALS AND METHODS

Data: Our data set included imaging and segmentation
data from 100 patients diagnosed with glioblastoma. This
included CT imaging data, and binary segmentation masks
of 13 OARs as well as the Planning Target Volume. Each
of these subjects also had a reference dose plan, calculated
using a standardized clinical protocol with Eclipse (Varian
Medical Systems Inc., Palo Alto, USA). This reference was
a double arc co-planar volumetric modulated arc therapy
(VMAT) plan with 6 mega volt flattening filter free beams,
optimized (Varian photon optimizer version 15.6.05) to de-
liver 30 times 2 Gray while maximally sparing the OARs.
Sixty randomly chosen subjects formed the training set,
15 were used as validation (five samples excluded due to
missing segmentations) and the rest of the 20 were used as
the test set.

Model: We used a two-level C3D U-Net [10] as the dose
prediction network. The model input was a normalized CT
volume and binary segmentation masks for each of the 13
OARs and target volume, and predicted a continuous-valued
dose volume (up-scaled from [0, 1] to 0 to 70 Gray) of the
same dimension as the input. The loss was computed as a
weighted sum of L1 losses between outputs of the first and
second U-Nets versus the reference dose. All volumes were
resampled to 1283 voxels, due to GPU memory constraints.
As indicated in [9], this model had a mean absolute error
(MAE) of 0.906 Gray, making it suitable for this work.
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Fig. 2. How are sensitivity maps constructed from ‘atomic surface
transformations’? We use a Deep Learning based dose prediction inference
model sampled uniformly at each perturbed point on the surface of each
OAR.

What are Atomic Surface Transformations: Fig. 2
describes the process of generating ‘atomic surface transfor-
mations’ to estimate the relative impact of local variations in
segmentation to overall dose predictions. From the baseline
segmentation an initial dose prediction is generated. Then,
a sphere with a radius of 3 (in voxel units, equivalent to
approximately 7.5 mm in the axial plane) is added to a single
point on the surface of a single OAR, yielding a perturbed
segmentation, on which a new dose prediction is generated.
The mean absolute difference between these dose predictions



TABLE I
SENSITIVITY TO SEGMENTATION CHANGES PER OAR MEASURED AS

MEAN ABSOLUTE DOSE DIFFERENCE (IN GRAY) IN THE BRAIN,
AVERAGED OVER ALL THE TRANSFORMATION POINTS ON ITS SURFACE.

ID Brainstem Eye L Eye R Hipp. L Hipp. R
(a) 0.0069 0.0115 0.0092 0.1041 0.0819
(b) 0.0163 0.0485 0.0593 0.3737 0.2710
(c) 0.0097 0.0419 0.0286 0.3085 0.2626
(d) 0.0191 0.0613 0.0514 0.3673 0.3151

is computed and recorded at the center of the corresponding
sphere. This is repeated over a uniformly sampled set of
points on the OAR’s surface, yielding a sensitivity map, as
shown in Fig. 3.

Sensitivity experiments: Beyond constructing the sensi-
tivity maps using ‘atomic surface transformations’, we run
two experiments to evaluate the ability of sensitivity maps
to describe dose-sensitive areas of segmentation changes.
We first look at the correlation between the mean average
dose difference due to an atomic surface transformation
with the minimum distance of the transformation location
to the tumor target volume. We expect that points closer
to the tumor target volume will be more highly impacted
by dose differences, indicating their relative importance
to the segmentation quality. The second experiment is to
compute the correlation of dose differences against the local
magnitude of the dose gradient. The hypothesis here is that
steeper dose gradients indicate regions where dose estimates
have to be sensitive to segmentation changes, leading to a
positive correlation.

Transformation size experiments: Next, we investigate
what happens when the size of the atomic surface transfor-
mations change - and how, if at all, would it impact dose
predictions. The size in physical units of each voxel is gen-
erally in the range of 2.7 mm in the axial plane and 2 mm in
the transverse direction. We experiment with transformations
of radii 3, 5, 7 (in voxel units) on the brainstem of two test
set subjects.

III. RESULTS

Visualizing Atomic Surface Transformations: Fig. 3
includes four examples of visualizing the relative importance
of local regions on the surface of segmentation for its impact
on dose prediction. The tumor target volume (represented
in red) is displayed as an isosurface. The sensitivity map
is overlaid on the surfaces of five OARs: brainstem, eye
(left and right) and hippocampus (left and right). The colors
indicate the mean absolute dose difference in the brain region
due to a transformation at that location, and are measured in
Gray. This is done using the MATLAB® Medical Imaging
Toolbox. Table. I indicates the average mean absolute dose
difference per OAR for the same four cases in Fig. 3.

Fig. 3 (a) shows a relatively small tumor target volume
far from the entire OAR (about 3 cm). The most impactful
points on the OARs are indeed the ones that are closer to
the tumor target, while the magnitude of these changes are
small (maximum of 0.168). Fig. 3 (b) shows a larger tumor

target, with a wider distribution of dose differences across
the surfaces of the OARs. The maximum mean absolute dose
difference is also higher at 0.609 on the left hippocampus.
The yellow arrow indicates a region on the surface of the
brainstem that is away from the tumor target, yet has more
impact on dose than points above it closer to the tumor target.

Fig. 3 (c) has a tumor target with a complex shape,
leading to higher overall mean absolute dose differences.
The yellow arrow indicates a region at the edge of the left
hippocampus to be the most impactful, as it likely lies on
critical beam angles. Fig. 3 (d) shows how the map changes
when the tumor is closer to the OARs. Note the yellow arrow
indicating the inferior parts of the eye more sensitive than
superior, which differs from other cases. Another interesting
point is both the hippocampi have a higher average mean
absolute dose difference (see Table. I) even though the
tumor target volume being close to only one of them. These
observations are non-trivial and demonstrate the utility of
this approach.

Sensitivity analysis: We demonstrate these results on ten
test set subjects, featuring more than 2000 transformation
points (more points on larger OARs like Brainstem and
Eye) across all 13 OARs per subject. Table. II shows the
correlation between the smallest distance to tumor target vol-
ume from the point of transformation and the mean average
dose difference caused due to atomic surface transformations.
Note that for larger OARs, like brainstem and eyes, the
correlation is more strongly negative, indicating that points
that are closer to the tumor target volume are more impacted
by the transformations from a dose difference perspective.
The correlation was found to be lower for smaller OARs
like the cochlea or the lacrimal glands because the extent of
these OARs does not vary much with respect to the distance
from the tumor target.

A similar analysis was done to compute the correlation
between local dose gradient magnitude versus the mean
average dose difference. Results show a lower correlation
than correlations obtained for distance-to-targets. However,
as expected, there is still a positive overall correlation,
confirming that dose estimates are sensitive to segmentation
changes in locations where dose gradients are higher in
magnitude.

Transformation size analysis: Fig. 4 shows the impact of
changing the radius of the atomic surface transformation in
the range 3, 5 and 7. The dose differences correlate well by
location (0.949 between radius 3 and 5, and 0.939 between
5 and 7), indicating the stability of finding important regions
across this parameter.

Discussion: In this paper, we demonstrated with experi-
ments on a test set of ten subjects with more than 20000
transformations at various points on the surfaces of OARs
(each being an inference run of our deep learning-based dose
prediction model) that the proposed ‘atomic surface trans-
formation’ method can identify locations on segmentation
boundaries that most impact dose computation. This would
not have been practically feasible to compute with pre-deep
learning methods. A limitation of this setup is that separate



Fig. 3. Visualizing atomic surface transformations: demonstrated using selected OARs. Tumor target volume is shown in red; brighter yellow regions
overlaid on OAR segmentations are most impactful on dose predictions, while darker blue regions describe the lowest impact. (a) to (d) demonstrate
increasingly interesting situations: simple; large tumor; complex tumor shape; and tumor close to hippocampus and brainstem.

TABLE II
CORRELATION BETWEEN DOSE DIFFERENCE AND MINIMUM DISTANCE

TO TUMOR TARGET (XCORR - DIST), AND LOCAL GRADIENT OF DOSE

(XCORR - GRAD). AVERAGE SIZE OF THE OAR (IN VOXEL UNITS)
INCLUDED FOR REFERENCE.

OAR Size XCorr (dist) XCorr (grad)
Brainstem 2133.14 -0.39 0.22
Chiasm 48.71 -0.20 0.05
Cochlea L 8.14 -0.17 0.18
Cochlea R 8.42 -0.33 0.18
Eye L 637.42 -0.76 0.06
Eye R 628.14 -0.63 0.01
Hippocampus L 195.00 -0.35 0.41
Hippocampus R 206.85 -0.14 0.50
Lacrimal Gland L 78.57 0.58 0.39
Lacrimal Gland R 80.28 0.01 -0.22
Optic Nerve L 55.28 -0.03 0.05
Optic Nerve R 63.42 0.29 -0.15
Pituitary 61.00 -0.26 0.26

Fig. 4. When radius of atomic surface transformation is varied, the dose
impact scales appropriately: results on representative brainstem with more
than 900 atomic surface transformations. Radius measured in voxel units.

models need to be trained for every tumor location, delivery
machine, and planning software. We deem this to be minor in
practice, though, but also a target of potential future research.

Through this work, we hope to assist the clinical workflow
of reviewing segmentations by drawing the attention of
radiation oncologists to specific local regions of highest
sensitivity to the RT plan. We believe clinicians would
benefit from more detailed feedback in the form of sensitivity
maps rather than a single numeric score. Next, we hope to
improve the interpretation of the visualization and link it with
dose constraints, such that locations, where transformations

cause changes beyond the maximum dose limits for each
OAR, could be highlighted. In the longer term, we plan to
build on this further to create an automated dosimetry-aware
segmentation quality assurance system.
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