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Background and Objective: Deep learning enables tremendous progress in medical image analysis. One 

driving force of this progress are open-source frameworks like TensorFlow and PyTorch. However, these 

frameworks rarely address issues specific to the domain of medical image analysis, such as 3-D data han- 

dling and distance metrics for evaluation. pymia, an open-source Python package, tries to address these 

issues by providing flexible data handling and evaluation independent of the deep learning framework. 

Methods: The pymia package provides data handling and evaluation functionalities. The data handling 

allows flexible medical image handling in every commonly used format (e.g., 2-D, 2.5-D, and 3-D; full- 

or patch-wise). Even data beyond images like demographics or clinical reports can easily be integrated 

into deep learning pipelines. The evaluation allows stand-alone result calculation and reporting, as well as 

performance monitoring during training using a vast amount of domain-specific metrics for segmentation, 

reconstruction, and regression. 

Results: The pymia package is highly flexible, allows for fast prototyping, and reduces the burden of im- 

plementing data handling routines and evaluation methods. While data handling and evaluation are inde- 

pendent of the deep learning framework used, they can easily be integrated into TensorFlow and PyTorch 

pipelines. The developed package was successfully used in a variety of research projects for segmentation, 

reconstruction, and regression. 

Conclusions: The pymia package fills the gap of current deep learning frameworks regarding data handling 

and evaluation in medical image analysis. It is available at https://github.com/rundherum/pymia and can 

directly be installed from the Python Package Index using pip install pymia . 
© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Deep learning has a tremendous impact on medical image anal- 

sis tasks like classification, segmentation, and reconstruction from 

015 onwards [1–4] . This impact is mainly due to methodologi- 

al developments like the AlexNet [5] or the U-Net [6] , dedicated 

ardware (graphics processing units, GPUs), increased data avail- 

bility, and open-source deep learning frameworks. In fact, open- 

ource deep learning frameworks can be seen as one of the main 
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riving forces leading to the wider adoption of deep learning in 

he medical image analysis community [1] . Current frameworks 

ike TensorFlow [7] and PyTorch [8] allow researches to implement 

ethods rather than implementing low-level GPU operations. Nev- 

rtheless, the adoption of deep learning methods, usually originat- 

ng from the computer vision community, is often hindered by the 

-D nature of medical images, making, in particular, the data han- 

ling and evaluation very domain-specific and cumbersome. 

A few open-source projects addressing medical image analy- 

is with deep learning exist. The most prominent project is likely 

iftyNet [9] , which enables fast development of medical image 

nalysis methods based on the TensorFlow framework. Among oth- 

rs, it provides implementations of training routines, neural net- 

ork architectures, and loss functions. Unfortunately, the project 
under the CC BY-NC-ND license 
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Fig. 1. The pymia package in the deep learning environment. The data package enables creation of a dataset from raw data. Extraction of the data from this dataset is 

possible in nearly every desired format (2-D, 3-D; full- or patch-wise) for feeding to a neural network. The prediction of the neural network can, if necessary, be assembled 

back to the original size before the evaluation. The evaluation package allows the evaluation of predictions against references using a vast amount of metrics. It can be used 

stand-alone (solid) or for performance monitoring during training (dashed). 
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s not actively maintained anymore as of April 2020 2 . Similarly to 

iftyNet, the deep learning toolkit (DLTK) [10] also provides im- 

lementations of common neural network architectures based on 

ensorFlow. But the last updates to the project date over a year 

ack and it is incompatible with version 2 of TensorFlow, which 

uggests reduced or no active development. A PyTorch-based pack- 

ge is MedicalTorch [11] with overlapping but reduced functional- 

ty as NiftyNet and DLTK. A more recent package is TorchIO [12] , 

hich provides pre-processing and data augmentation routines for 

edical images, as well as 3-D patch-based data handling within 

he scope of the PyTorch framework. MONAI (Medical Open Net- 

ork for AI) 3 is a PyTorch-based framework for deep learning in 

ealthcare imaging. It is the predecessor of NiftyNet, and simi- 

arly, MONAI provides training routines, neural network architec- 

ures, and loss functions enabling entire deep learning pipelines 

rom data loading to saving. Another framework is DeepNeuro [13] , 

hich provides a templating language for designing medial im- 

ge analysis pipelines and a model deployment system based on 

ensorFlow. In summary, multiple open-source projects aim at fa- 

ilitating deep learning-based medical image analysis by provid- 

ng out-of-the-box training routines and neural network architec- 

ures. To date, TorchIO, MONAI, and DeepNeuro seem to be ac- 

ively developed and the most prominent projects. Unfortunately, 

ll projects rely on one particular deep learning framework (Ten- 

orFlow or PyTorch), making it potentially inflexible for fast switch 

o another framework. 

The evaluation of results in medical image analysis is depen- 

ent on domain-specific metrics, also due to the physical proper- 

ies of medical images such as the spacing between pixels. Promi- 

ent metrics are, for instance, the Dice coefficient [14] or the Haus- 

orff distance [15] for segmentation, and the peak signal-to-noise 

atio or the structural similarity index measure [16] for image re- 

onstruction. Such metrics are rarely found to be implemented in 

pen-source deep learning frameworks, nor do the projects in- 

roduced in the last paragraph provide (exhaustive) implementa- 

ions of metrics. Therefore, metrics are often taken from multiple 

ndependent projects. Notable projects covering metrics are cer- 

ainly the Insight Toolkit (ITK) [17] with its Python variant Sim- 
2 https://github.com/NifTK/NiftyNet 
3 https://monai.io/ 

d  

2 
leITK [18] covering common segmentation metrics. Furthermore, 

he evaluate segmentation tool [19] provides an extensive imple- 

entation of segmentation metrics 4 . However, the project is C++- 

ased, making it impractical to use with the current Python-based 

eep learning. A Python-based package is medpy 5 , which features 

 small set of segmentation metrics. And, metrics beyond seg- 

entation can be found in the Python packages scikit-image [20] , 

cikit-learn [21] , and SciPy [22] . Overall, a single Python package 

overing an exhaustive amount of metrics for segmentation, recon- 

truction, and regression in medical image analysis is lacking. 

We believe that deep learning framework-agnostic data han- 

ling and evaluation is essential for medical image analysis re- 

earch. In data handling, flexibility is highly desirable, meaning a 

imple and fast switch from, e.g., 2-D to 3-D processing, should be 

ossible. For evaluation, performance monitoring during method 

evelopment, and result calculation and reporting for further sta- 

istical analyses and visualization, encompassing domain-specific 

etrics with aspects like image spacing, is desirable. Ideally, the 

valuation is completely decoupled from the deep learning frame- 

orks such that it can be used for evaluation scripts only. Gen- 

rally for prototyping, rewriting code when methods are adopted 

rom open-source methods implemented in an arbitrary frame- 

ork should not be necessary. Rather, the relevant code (i.e., the 

odel, loss function, and optimizer), should be copied into an 

xisting data handling and evaluation pipeline with minor to no 

daptations of the existing code. 

We present pymia, an open-source Python (py) package for 

eep learning-based medical image analysis (mia). The package ad- 

resses two main parts of deep learning pipelines: data handling 

nd evaluation. The package is independent of the deep learning 

ramework used but can easily be integrated into TensorFlow and 

yTorch pipelines. Therefore, pymia is highly flexible, allows for 

ast prototyping, and facilitates implementing data handling and 

valuation. 

. Methods 

The intended use of pymia in the deep learning environment is 

epicted in Fig. 1 . Its main components are the data and the eval-
4 https://github.com/Visceral-Project/EvaluateSegmentation 
5 https://loli.github.io/medpy/ 
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Fig. 2. Overview of the three main components of the data package. Arrows represent data flow, and the boxes represent class signatures. 
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ation package. The data package is used to extract data (images, 

abels, demography, etc.) from a dataset in the desired format (2- 

, 3-D; full- or patch-wise) for feeding to a neural network. The 

utput of the neural network is then assembled back to the orig- 

nal format before extraction, if necessary. The evaluation package 

rovides both evaluation routines as well as metrics to assess pre- 

ictions against references. These can be used both for stand-alone 

esult calculation and reporting, and for monitoring of the training 

rogress. 

.1. Data package 

The purpose of the data package is to provide flexible, format 

ndependent, and fast access to data. First, flexible because the data 

hould be accessible in various ways. Meaning that 3-D medical 

ata like magnetic resonance (MR) or computed tomography (CT) 

mages could be processed in 2-D, 3-D, or 2.5-D (i.e., the three 

natomical planes axial, coronal, and sagittal) and further in its 

ull or reduced spatial extent, i.e., as so-called patches 6 Second, 

he more format-independent the data access, the easier becomes 

rototyping and experimenting with clinical data beyond medical 

mages. Meaning that demographic information, patient records, 

r even more uncommon formats such as electroencephalogram 

EEG) data, laboratory results, point clouds, or meshes should be 

ccessible. Third, fast because the data access should not slow 

own the training of the neural network, i.e., not resulting in idle 

PU time. The three main components of the data package are cre- 
6 Although in 3-D a (sub)volume would be a more appropriate term, it is often 

eferred as a (3-D) patch in the literature. 

fi

a

c

3 
tion, extraction, and assembly ( Fig. 2 ), which are described here- 

fter. 

Creation. A dataset is first created from the raw data, which can 

e seen as a database holding all information available or required 

or the training of a neural network. This dataset is a HDF5 (hi- 

rarchical data format version 5) file. The HDF format [23] allows 

ultiple different data types in one file and enables fast access of 

hunks of data without the need to load the data in its entirety 

e.g., loading of a 2-D image slice from a 3-D image). The creation 

f a dataset is managed by the Traverser class, which processes 

he data of every subject (case) iteratively. It employs Load to 

oad the raw data from the file system and Callback classes to 

rite the required information to the dataset. Transform classes 

an be used to apply modifications to the data, e.g., an intensity 

ormalization. By separating the concerns of the loading, writ- 

ng, and transforming, maximal flexibility in the dataset creation is 

chieved. For the ease of use, default Callback and Load classes 

re implemented, which cover the most fundamental cases. By de- 

ign, the dataset should only be created once and should, thus, 

ontain as much information as possible. It might be suitable to 

reate three distinct datasets for the training, validation, and test- 

ng subjects. 

Extraction. Once the dataset is created, it can be used for 

he training (or testing) routine. Data extraction from the dataset 

s managed by the PymiaDatasource class, which provides 

 flexible interface for retrieving data, or chunks of data, to 

orm training samples. An IndexingStrategy is used to de- 

ne how the data is indexed, meaning accessing, for instance, 

n image slice or a 3-D patch of an 3-D image. Extractor 
lasses extract the data from the dataset, and Transform classes 
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Table 1 

Overview of use cases for data handling and the corresponding classes to use. Slice: 2-D image slice of 

a 3-D image; Slab: Multiple consecutive 2-D image slices; 2.5-D: 2-D image slices in all three anatomical 

planes; Patch (equal): 3-D patch for a neural network with equal input and output size; Patch (padded): 

3-D patch for a neural network with larger input than output size (overlapping inputs); Raw format: entire 

3-D/2-D image. 

Class signatures and implementations 

Use case IndexingStrategy Extractor Assembler 

Slice SliceIndexing DataExtractor SubjectAssembler 
Slab PatchIndexing DataExtractor SubjectAssembler 
2.5-D SliceIndexing DataExtractor PlaneSubjectAssembler 
Patch (equal) PatchWiseIndexing DataExtractor SubjectAssembler 
Patch (padded) PatchWiseIndexing PadDataExtractor SubjectAssembler 
Raw format EmptyIndexing DataExtractor - 
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an be used to alter the extracted data. Processing medical im- 

ges in chunks is typically required in deep learning due to 

he size of the images and the limitations in GPU memory. The 

ndexingStrategy provides a signature for any kind of chunks, 

.g., 2-D image slices ( SliceIndexing class) or 3-D patches of 

rbitrary size ( PatchWiseIndexing class). It is sufficient to sim- 

ly exchange the IndexingStrategy if, for instance, another in- 

exing is desired. For each type of data in the dataset, a specific 

xtractor is used, e.g., a DataExtractor to extract the im- 

ge data or a SubjectExtractor to extract the identification 

f a subject. In a sense, an Extractor is the reading counter- 

art to a Callback for writing during the dataset creation. Since 

xtractor s are the first instance interacting with the data, they 

an also be used to perform specific data handling, such as padding 

 PadDataExtractor class) or selecting specific channels (e.g., 

ifferent MR images) of the data ( SelectiveDataExtractor 
lass). Finally, the extracted data can be altered via Transform 
lasses. Often, these are used to adapt the data for usage with a 

eural network (e.g., channel permutations, dimension modifica- 

ions, or intensity modifications) and to alter the data for training 

urposes (e.g., data augmentation, masking). 

Assembly. The output of a neural network usually needs to be 

ssembled back to the original format for evaluation and storage, 

specially for validation and testing. For instance, a 3-D image in- 

tead of separate 2-D image slices are desired when chunks of data 

re predicted. The Assembler class manages the assembly of the 

redicted neural network outputs by using the identical indexing 

hat was employed to extract the data by the PymiaDatasource 
lass. 

.1.1. Flexibility & extendability 

The modular design of the data package aims at providing high 

exibility and extendability to as many use cases as possible. The 

exibility is illustrated in Table 1 , with use cases of data handling. 

ell-defined interfaces facilitate the extendability of creation, ex- 

raction, and assembly. For the creation of the dataset, new data 

ormats (e.g., EEG, laboratory results) can be handled by a cus- 

om Load and might require custom Callback and Extractor 
mplementations. Further, current indexing possibilities can easily 

e extended with a custom IndexingStrategy . Likewise, one 

an add customized data modifications by implementing a specific 

ransform . 

.1.2. Metadata dataset 

The data is ideally written to a dataset, as described before- 

and. However, there might be use cases such as a large amount 

f data or the use of very large patch sizes (or even entire 3-D im-

ges), which might question the usefulness of creating a dataset, 

.e., ultimately only saving the data in another format. Usage of 

he data package without the creation of a dataset while having 
4 
he same flexibility as with a dataset is not possible. However, the 

inimum required information in a dataset is fairly small such 

hat the data package can be used as intended. Only the metadata 

escribing the subject identifiers, the file paths, and the shapes 

size) of the image data need to be saved into the dataset, result- 

ng in a metadata dataset. The PymiaDatasource class can then 

e parametrized to load the data from the file system instead from 

he dataset. The shapes are required such that the flexibility with 

he IndexingStrategy classes is retained. 

.1.3. Reproducibility & privacy 

Reproducibility and privacy might be two important aspects 

hen creating a dataset. Regarding reproducibility, creating a 

ataset allows writing the names and paths of the files stored in 

he dataset, which in many cases might be sufficient for repro- 

ucibility. For additional reproducibility, it would also be possible 

o store, for example, the hash value of the raw files, which would 

llow to verify at any time if a certain raw file was used to cre-

te and/or is contained in the dataset. Regarding privacy, as simple 

s it is to add additional information like the hash value, as sim- 

le can data be omitted when creating the dataset. For example, 

atasets can be created with image data only, and subject identi- 

ers could simply be anonymized. Additionally, the concept of the 

ransformation ( Transform classes) would allow to apply image 

nonymization methods when creating the dataset, e.g., a defacing 

ransform for head images. 

.2. Evaluation package 

The purpose of the evaluation package is domain-specific evalu- 

tion for medical image analysis. Therefore a variety of metrics for 

mage segmentation, image reconstruction, and regression are in- 

luded. The functionalities of the evaluation package allow stand- 

lone result calculation and reporting, or performance monitor- 

ng during the training progress independent of the deep learn- 

ng framework. The concept of the evaluation package is illustrated 

n Fig. 3 . The metrics inherit from Metric and can be used with

he Evaluator class to evaluate predictions against references. 

or instance, the SegmentationEvaluator class can be used 

o compare a prediction with a reference label image by calcu- 

ating the metric(s) for every label one is interested in. The re- 

ults can then be passed to a Writer to report the results. Cur- 

ently, a CSVWriter class, writing results to a comma-separated 

alues (CSV) file, and a ConsoleWriter class, writing results 

o the console, are implemented. Further, statistics over all eval- 

ated subjects (and labels) can be calculated and written by using 

 CSVStatisticsWriter or a ConsoleStatisticsWriter . 
n both cases, the statistical functions can be arbitrary, with the 

nly condition being to take a list of values and to return a scalar 

alue (e.g., the mean or the standard deviation). 
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Table 2 

Overview of the currently implemented metrics in pymia. Categorical metrics can be used for image segmentation and continuous 

metrics for image reconstruction and regression. The abbreviations are used for reporting and can be adapted upon instantiating 

the metrics. A reference is given where appropriate. 

Category Metric Abbreviation Remarks 

Categorical Dice coefficient [14] DICE - 

Jaccard coefficient [25] JACRD - 

Sensitivity SNSVTY - 

Specificity SPCFTY - 

Fallout FALLOUT - 

False negative rate FNR - 

Accuracy ACURCY - 

Precision PRCISON - 

True positive TP - 

False positive FP - 

True negative TN - 

False negative FN - 

F-measure FMEASR βdefinable 

Global consistency error [26] GCOERR - 

Volume similarity [27] VOLSMTY - 

Rand index [28] RNDIND - 

Adjusted rand index [29] ADJRIND - 

Mutual information MUTINF - 

Variation of information [30] VARINFO - 

Interclass correlation [31] ICCORR - 

Probabilistic distance [32] PROBDST - 

Cohen Kappa coefficient [33] KAPPA - 

Area under curve [34] AUC - 

Hausdorff distance [15] HDRFDST percentile definable 

Average distance AVGDIST - 

Mahalanobis distance [35] MAHLNBS - 

Surface overlap [36] SURFOVLP - 

Surface Dice overlap [36] SURFDICE - 

Area AREA for reference or prediction, image slice definable 

Volume VOL for reference or prediction 

Continuous Coefficient of determination R2 - 

Mean absolute error MAE - 

Mean squared error MSE - 

Root mean squared error RMSE - 

Normalized root mean squared error NRMSE - 

Peak signal-to-noise ratio PSNR - 

Structural similarity index measure [16] SSIM - 

Fig. 3. Overview of the evaluation package. Arrows represent data flow, and the 

boxes represent class signatures. 
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7 https://github.com/rundherum/pymia 
8 https://pymia.readthedocs.io/en/latest/ 
A variety of metrics are implemented ( Table 2 ), which are cat- 

gorized into categorical, i.e., for image segmentation, and con- 

inuous, i.e., for image reconstruction and regression. All metrics 

re implemented such that they work with at least 2-D and 3-D 

ata, and if appropriate, also with lower or higher dimensions. Fur- 

her, image spacing is considered whenever adequate (e.g., for dis- 

ance metrics). The categorical data metrics are selected based on 

aha and Hanbury [19] . The continuous data metrics are inspired 

y other Python packages like scikit-image [20] , scikit-learn [21] , 

nd SciPy [22] . Image reconstruction-specific metrics follow the 

astMRI challenge [24] . The reader is referred to these references 
5 
or metric descriptions, mathematical definitions, and guidelines 

n how to select appropriate metrics. 

.3. Platform and dependencies 

pymia is implemented in Python (Python Software Foundation, 

ilmington, DA, U.S.) and requires version 3.6 or higher. It de- 

ends on the following packages: h5py, NumPy, scikit-image, SciPy, 

nd SimpleITK. To use the data package with a deep learning 

ramework, either PyTorch or TensorFlow is required further. Unit 

ests are implemented using pytest. To build the documentation, 

phinx, Read the Docs Sphinx Theme, Sphinx-copybutton, and nb- 

phinx are required. 

. Results 

pymia is hosted on the Python Package Index (PyPI) for easy in- 

tallation of the latest version using the command pip install 
ymia . The code is publicly available on GitHub 7 under the terms 

f the Apache 2.0 license. The documentation is hosted on Read 

he Docs 8 and contains descriptions of the classes and functions. 

t the time of submission of this article, pymia is at release 0.3.1. 

Several code examples demonstrate the indented use of pymia 

n small parts covering isolated functionalities. All examples 

https://github.com/rundherum/pymia
https://pymia.readthedocs.io/en/latest/


A. Jungo, O. Scheidegger, M. Reyes et al. Computer Methods and Programs in Biomedicine 198 (2021) 105796 

Fig. 4. Exemplary HDF5 dataset with four subjects. The dataset consists of image data ( images , labels , and mask groups), numerical data (age and GPA), and the gender 

of the subjects. The dimension of the images group is Z × Y × X × C = 181 × 217 × 181 × 2 , where C = 2 represents the channel dimension, i.e., the concatenated T1- and 

T2-weighted MR images. The labels and mask groups have the same dimensions, but C = 1 . Alongside the data, meta-information is stored in the dataset. The open-source 

software HDFView 3.1.0 was used to open the dataset. 
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re available on GitHub ( https://github.com/rundherum/pymia/ 

ree/master/examples/ ) or directly rendered in the documenta- 

ion ( https://pymia.readthedocs.io/en/latest/examples.html ). In all 

xamples, MR images of the head of four subjects from the Human 

onnectome Project (HCP) [37] are used. Each subject has four 3- 

 images (in the MetaImage and Nifty format) and demographic 

nformation provided as a text file. The images are a T1-weighted 

R image, a T2-weighted MR image, a label image (ground truth), 

nd a brain mask image. The demographic information is artifi- 

ially created age, gender, and grade point average (GPA). The la- 

el images contain annotations of five brain structures (white mat- 

er, gray matter, hippocampus, amygdala, and thalamus), automati- 

ally segmented by FreeSurfer 5.3 [38,39] . Therefore, the examples 

imic the problem of medical image segmentation of brain tissues. 

he next sections shortly summarize the examples that cover dedi- 

ated functionalities of pymia. In addition, training example scripts 

or the segmentation of brain tissues using a U-Net [6] in Tensor- 

low and PyTorch, including training with data augmentation, eval- 

ation, and logging, can be found on GitHub. 

.1. Data handling 

The example Creation of a dataset illustrates how to create a 

DF5 dataset. Fig. 4 shows the structure of the dataset resulting 

rom the example data. The root is separated into data and meta 
roups. The data group contains the concatenated T1- and T2- 

eighted MR images ( images group), the label image ( labels 
roup), the brain mask ( mask group), the concatenated age and 

PA ( numerical group), and the gender ( gender group). Note 

hat each group consists of four entries as the example data has 

our subjects. The dimension of the images group is Z × Y × X ×
6 
 = 181 × 217 × 181 × 2 , where Crepresents the channel dimen- 

ion, i.e., the concatenated T1- and T2-weighted MR images. The 

abels group and the mask group have the same dimensions, 

ut C = 1 . The numerical group is of dimension 2 (age and GPA)

nd the gender group of dimension 1. The meta group contains 

n entry with the subject identifiers ( subjects ), the file paths 

 files group), the physical image information like direction, ori- 

in, and spacing ( info group), the file identifiers ( names group), 

nd shape information ( shape group). The file identifiers in this 

xample are T1, T2, GT, MASK, AGE, GPA, and GENDER. They allow 

o associate the dimensions in the data group with the data type, 

.g., that the MR images are concatenated in the order T1- and T2- 

eighted and not the other way around. 

The example Data extraction and assembly illustrates how to use 

ymia in a typical deep learning loop over the data samples. More 

pecifically, it shows the case where 2-D image slices are extracted 

rom a dataset in order to feed it to a neural network before as- 

embling the predictions back to 3-D images. It also covers extract- 

ng 3-D patches and loading the data directly from the file system 

nstead from a dataset (use case described in Section 2.1.2 ). 

Using pymia, we benchmarked the performance of different 

ays of data loading: i) loading from a HDF5 dataset, ii) loading 

ompressed MetaImages, iii) loading uncompressed MetaImages, 

nd iv) loading NumPy files. The latter three ways load the data 

irectly from the file system ( Section 2.1.2 ). We further compared 

hree loading strategies: i) entire 3-D image, ii) 3-D patches of size 

4 × 84 × 84 , and iii) 2-D image slices. An artificial dataset was 

reated with n = 25 subjects, each with a T1- and T2-weighted MR 

mage of the example data (size of 181 × 217 × 181 ). The loading 

imes for one sample (i.e., concatenated 3-D images, concatenated 

-D patches, and concatenated 2-D image slices) were averaged 

https://github.com/rundherum/pymia/tree/master/examples/
https://pymia.readthedocs.io/en/latest/examples.html
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Fig. 5. Benchmark of the loading times of one sample for three loading variants and 

four methods. The bars represent the mean loading time ± the standard deviation. 

Fig. 6. CSV output of the evaluation example. Each line represents an evaluation 

result, here the Dice coefficient (DICE), 95 th Hausdorff distance (HDRFDST95), and 

volume similarity (VOLSMTY) of a subject and label (e.g., gray matter of Subject_1). 
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ver five entire runs over the dataset 9 . The mean and standard de- 

iation of the loading times are shown in Fig. 5 . Clearly, the HDF5

ataset is the fastest loading method independent of the loading 

ariant, followed by NumPy, uncompressed MetaImage, and com- 

ressed MetaImage. For the latter three methods, the loading times 

re almost equal for each loading strategy because loading the en- 

ire 3-D image is always necessary even if only a 3-D patch or a 

-D image slice needs to be loaded. 

.2. Evaluation 

The example Evaluation of results illustrates how to evaluate 

egmentation results. A written CSV file with the evaluation results 

s shown in Fig. 6 . 

The example Logging the training progress illustrates how to use 

he evaluation package to log the performance of a neural network 

uring the training process. The evaluation results are passed to 

he TensorBoard by the framework-specific functions of TensorFlow 

nd PyTorch. Therefore, the evolution of the metrics (e.g., the mean 
9 Desktop computer with Ubuntu 18.04 LTS, 3.2 GHz Intel Core i7-3930K, 64 GB 

emory, Samsung EVO 850 500 GB SSD 

t

a

b

a

7 
ice coefficient) over the epochs during the training process is eas- 

ly observable. 

. Discussion 

We developed pymia, a Python package for deep learning- 

ased research in medical image analysis. pymia addresses flex- 

ble domain-specific data handling and evaluation, a gap of ex- 

sting open-source projects, and especially current deep learning 

rameworks. The development emphasized independence to the 

eep learning frameworks, which allows for simplified adoptions 

f open-source methods (e.g., a novel model presented in a paper) 

ndependent of the framework without rewriting the entire data 

andling and evaluation. Therefore, fast prototyping is possible as 

ew methods can easily be tested without the need to worry about 

he framework used. 

The data package enables very flexible and fast access to med- 

cal data. The flexibility manifests in the simple change from, e.g., 

-D to 3-D; full- or patch-wise ( Table 1 ). Even non-imaging data 

an easily be integrated. The modular design ensures flexibility of 

he data package, enabling extension and handling of custom data 

ormats. Empirically, the data loading, relying on a HDF5 dataset, 

as measured to be faster than other common loading methods 

 Fig. 5 ). Therefore, the data package smoothly integrates into the 

ramework-specific training routines of the current deep learning 

nvironment. 

The evaluation package provides a simple way to evaluate pre- 

ictions against references with a considerable amount of metrics 

or medical image analysis covering segmentation, reconstruction, 

nd regression ( Table 2 ). It can either be used stand-alone or in

onjunction with a deep learning framework for performance mon- 

toring (e.g., logging to the TensorBoard). Writers allow to save the 

valuation results in the commonly used CSV format. The saved 

SV files can easily be loaded into common statistical software for 

tatistical analysis and visualization. For instance, it could also be 

sed with the challengeR framework [40] for analyzing and visual- 

zing the results of biomedical challenges. 

pymia was successfully used for multiple research projects in 

edical image analysis, demonstrating its versatility. For medical 

mage segmentation, pymia was applied to 2-D segmentation of 

eripheral nerves in thigh MR [41] , 2-D segmentation of skin le- 

ions [42] , 2.5-D [43] and slab-based segmentation of brain tu- 

ors [44] from MR images, and 2.5-D brain tumor resection cav- 

ty segmentation [45–47] . For image reconstruction, pymia was 

sed for reconstruction of MR fingerprinting [48–50] , demonstrat- 

ng the handling of large 5-D tensors ( 350 × 350 × 5 × 175 × 2 ). In

egression, pymia was applied to survival prediction of brain tu- 

or patients in the 2017 BRATS challenge [43] (2 nd rank in the 2017 

RATS overall survival prediction challenge) and 2018 BRATS chal- 

enge where non-imaging data was used alongside MR images [51] . 

astly, even 3-D point cloud data was handled by pymia for the 

efinement of peripheral nerve segmentation [52] . Most of these 

ublications have public code available and can serve as an addi- 

ional point of reference complementing the pymia documentation. 

ue to the experience with these diverse projects, we consider the 

urrent state of the pymia package as stable and useful for deep 

earning-based research in medical image analysis. Indeed, pymia 

ould also be applied in other domains such as video processing 

r industrial manufacturing. Future plans include mainly extending 

he examples, increasing code coverage by unit tests, and ensuring 

ompatibility with future versions of the most used deep learning 

rameworks. With a growing user base, however, there will cer- 

ainly emerge feature requests, but we aim at keeping simplicity 

nd modularity in mind for future releases. For instance, it would 

e beyond the scope of the project to implement neural network 

rchitectures and loss functions as projects like MONAI and Deep- 
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euro do. However, stronger integration of projects like TorchIO 

nd batchgenerators [53] for data augmentation would certainly be 

nteresting and valuable for the intended use of pymia. 

In conclusion, pymia was developed to fill the gaps of existing 

eep learning frameworks with regards to medical image analysis. 

he data package facilitates the handling of medical data indepen- 

ent of the used deep learning framework. The evaluation pack- 

ge allows the evaluation of results using the prevalent metrics in 

edical imaging or performance monitoring during method devel- 

pment. 
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