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Abstract. In this paper we propose a new approach for spatially-varying
registration using Gaussian process priors. The method is based on the
idea of spectral tempering, i.e. the spectrum of the Gaussian process
is modified depending on a user defined tempering function. The result
is a non-stationary Gaussian process, which induces different amount
of smoothness in different areas. In contrast to most other schemes for
spatially-varying registration, our approach does not require any change
in the registration algorithm itself, but only affects the prior model.
Thus we can obtain spatially-varying versions of any registration method
whose deformation prior can be formulated in terms of a Gaussian pro-
cess. This includes for example most spline-based models, but also sta-
tistical shape or deformation models. We present results for the problem
of atlas based skull-registration of cone beam CT images. These datasets
are difficult to register as they contain a large amount of noise around
the teeth. We show that with our method we can become robust against
noise, but still obtain accurate correspondence where the data is clean.

1 Introduction

Methods for spatially-varying registration have recently gained a lot of atten-
tion. While traditional registration methods assume a deformation model that
remains constant over the entire object domain, these methods allow for different
regularization properties in different regions. Thus, they can be used to differen-
tiate between tissue types or to regularize more strongly in areas where the data
is noisy. In this work we propose a new scheme for spatially-varying registration
based on non-stationary Gaussian process models. The basic method underly-
ing our approach is a registration method proposed by Lüthi et al. [7]. In their
work, all prior assumptions about the deformation fields u for the registration
is specified in terms of a Gaussian process u ∼ GP(µ, k), with mean µ and co-
variance function (or kernel) k. This prior information is incorporated into the
registration method by means of the reproducing kernel Hilbert space (RKHS)
norm ‖·‖k. The actual registration is performed by minimizing the functional:

min
u
D[IR, IT , u] + γ‖u‖2k. (1)
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D is a distance measure between the reference and target image IR, IT : Ω → IR
with the dimension d, Ω ∈ IRd and γ ∈ IR+ is a regularization weight. The main
contribution of our work is to obtain a flexible class of spatially-varying registra-
tion algorithms by using a spectral tempering scheme, proposed by Pintore and
Holmes [8]. It is based on the simple idea, that for any given Gaussian process
GP(µ, k) we can obtain a new, non-stationary Gaussian process GP(µ, k′), by
evolving the spectrum of k over space. This will effectively dampen or strengthen
“high frequency” components in different areas, depending on a user defined
tempering function η. Using the new kernel k′ in (1) makes the registration
spatially-varying, without affecting any other aspect of the registration method.

To show the versatility of our approach, we perform simple experiments on
synthetic 2D images using different deformation models. We apply our method
to the problem of establishing correspondence between a template skull and a set
of target skulls which were extracted from CBCT data. These datasets exhibit
a lot of noise and metal artifacts around the teeth and are difficult to register
with standard methods. Our qualitative and quantitative evaluation shows that
increasing the regularization strength in the noisy areas greatly improves the
registration results.

Related work: Several different approaches to spatially-varying registration have
been proposed in the literature [4, 1, 12, 3, 11]. The idea behind all of them is to
make the regularization strength dependent on the location. This can be achieved
by using a spatially-varying diffusion operator to smooth the deformation fields
[4, 1] or by explicitly modeling spatially-varying deformations [12, 3, 11]. The
difference to our method is that these all are incorporated directly into the
registration algorithm, whereas our method is specified solely in terms of the
prior model. Closest to our work is the work by [11], who also propose to achieve
spatial variation by using a non-stationary kernel and to use a regularizer based
on the RKHS norm. Their focus lies, however, on the algorithmic aspects of
registration and they discuss only a very simple non-stationary kernel, which
is based on partitioning the space into different regions, and assigning to each
region a kernel with different smoothness properties.

2 Background

2.1 Gaussian Processes, Mercer’s Expansion and Reproducing
Kernel Hilbert Spaces

Stochastic processes allow us to define probability distributions over a function
space. In the case of registration, we can use a stochastic process to model our
prior assumptions about the deformations u : Ω → IRd in a registration task. A
Gaussian process GP (µ, k) is a special stochastic process, which is completely
defined by its mean function µ : Ω → IRd and a covariance function (or kernel)
k : Ω×Ω → IRd×d. Note that since we are modeling deformation fields, each value
k(x, x′) is a d×d matrix, which specifies the correlation between all components
of u(x) and u(x′).
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Closely related to a Gaussian process GP(µ, k) is the reproducing kernel
Hilbert space (RKHS) spanned by the kernel k. One way to construct this space
is to start from the eigenfunction expansion of k. According to Mercer’s theorem
(see e.g. [9]), k has an expansion in terms of a orthonormal set of basis functions:

k(x, x′) =

∞∑
i=1

λiφi(x)φi(x
′)T , (2)

where (λi, φi) are the eigenvalue/eigenfunction pairs of the integral operator
Tkf(·) :=

∫
Ω
k(x, ·)f(x) dx. The RKHS is spanned by linear combinations of

these eigenfunctions: f(x) =
∑N
i=1 φi(x)αi, with φi : Ω → IRd, αi ∈ IR and∑n

i=1 α
2
i /λi <∞. The associated norm is defined by

‖f‖2k = 〈f, f〉k =

∞∑
i=1

α2
i

λi
. (3)

Note that the components corresponding to small eigenvalues contribute par-
ticularly strongly to the RKHS norm. As these are usually associated to high
frequency components, ‖f‖k is a measure of smoothness for f . The exact notion
of smoothness is defined by the kernel k.

2.2 Gaussian Process Registration using a Low-Rank GP Model

Gaussian process can be used to define a prior distribution p(u) ∼ GP (µ, k) of
possible deformation fields for a registration task. Defining a likelihood function
p(IT |IR, u) ∝ exp(−D[IR, IT , u]), where D is a similarity measure between the
images IT , IR, the registration problem can be cast as a MAP estimation problem
[2]:

arg max
u

p(u|IR, IT ) = arg max
u

p(u)p(IT |IR, u). (4)

A MAP solution to (4) can be found by solving a minimization problem in the
RKHS Fk defined by k (see e.g. [13] for details):

arg min
u∈Fk

D[IR, IT , u] + γ‖u‖2k. (5)

In order to minimize (5), Lüthi et al. [7] have proposed to perform a low rank
approximation of k from the leading n eigenfunctions in (2). This allows them
to obtain an approximate solution to (5) by solving the parametric problem

arg min
α1,...,αn

D[IR, IT , µ+

n∑
i=1

αiφi] + γ

n∑
i=1

α2
i

λi
. (6)

by standard optimization procedures.
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Fig. 1: Functions sampled from a Gaussian process (GP (0, e−‖x−y‖
2/20)) whose

spectrum has been tempered using η. The functions are much smoother in areas
where η is high.

3 Gaussian Processes for Spatially-Varying Registration

Using the registration approach discussed above, we can obtain a spatially-
varying registration method, by making the deformation model a non-stationary
Gaussian process. Many possibilities to define non-stationary kernels have been
proposed in the statistics and machine learning literature. We use an approach
proposed by Pintore and Holmes [8], which allows us to specify the degree of
regularization using a function η : Ω → IR defined over the image domain. The
main idea behind this method is to compute a Mercer expansion of a kernel

k(x, x′) =

n∑
i=1

λiφi(x)φi(x
′)T

and to define a new kernel function

k′(x, x′) =

n∑
i=1

λ
η(x)/2
i λ

η(x′)/2
i φi(x)φi(x

′)T (7)

where the spectrum (i.e. the eigenvalues λi) is changed such that it varies over
the space. By choosing 0 < η(x) < 1, components corresponding to small eigen-
values will have more influence at x, while choosing η(x) > 1 will dampen their
influence. Figure 1 illustrates this behavior for a simple 1D case. This tempering
approach is quite natural for many registration models. If a translation-invariant
kernel is used, such as the Gaussian kernel, the eigenfunctions are Fourier basis
functions and hence the tempering approach will dampen high frequency com-
ponents. When a kernel has been estimated from data using PCA, such as for
statical shape or deformation models, this approach will dampen the components
corresponding to small variations in the data. A problem arises, however, when
this approach is used for registration: The tempering of the eigenvalues changes
the scale of the deformations. We therefore normalize the eigenvalues in (7) by

dividing by λ
η(x)/2
0 λ

η(x′)/2
0 with λ0 as the largest eigenvalue.



Spatially Varying Registration using Gaussian Processes. 5

The spatially-varying tempering function η : Ω → R was created by placing
control points on the image domain Ω. In regions where we want to keep the
global regularization term η(x) has the value 1.0, which leaves the spectrum un-
changed. We manually assigned higher values to regions where we want to damp
the higher frequencies and therefore enforce low frequency deformations. After-
wards a smooth function was created by interpolating the points with Gaussian
kernel regression and a B-spline kernel.

3.1 A Note on the Implementation

The implementation of this method is straight-forward. From a numerical point
of view, the only challenge is to compute the eigenfunctions of the kernel. For
this, we use the Nyström method (see e.g. [9], Chapter 4). As we are applying
this method together with a registration approach that itself performs a low-
rank approximation of the kernel, it is sufficient to compute the same number of
eigenfunctions as are used for the registration. Usually, a few hundred eigenfunc-
tions are sufficient to obtain a good approximation. The actual implementation
is done using the statismo framework [6], which also contains an implementation
of the Gaussian process registration method.

4 Results

We first illustrate our method using a simple toy example. The goal is to register
the reference and target image shown in Figure 2. As a deformation model we
use a zero-mean Gaussian process with a Gaussian Kernel. We see that a normal
registration changes the shape of the inner rectangle. If we dampen the high
frequencies in this inner rectangle, by choosing η = 14 the inner shape remains
rectangular and the registration result is improved.

4.1 Model Based Segmentation of CBCT Skull Images

To evaluate the proposed approach on a medical application, four CBCT scans of
patients undergoing cranio-maxillofacial (CMF) surgery were employed. Appro-

(a) Reference (b) Target (c) stationary (d) spatially-varying

Fig. 2: Toy example: Comparison of the results for a stationary and spatially-
varying registration. The spatially-varying version is regularized more strongly
inside the rectangle, and therefore preserves the shape much better.
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(a) CBCT image (b) Gaussian

(c) B-Spline (d) Statistical model

Fig. 3: Registration of skulls from CBCT data: (a) shows a slice through the
image and a reconstruction of the surface that was obtained using threshold
segmentation. (b) - (d) show registration results obtained using different defor-
mation models. The left images show a normal registration, while in the right
images a spatially-varying registration has been used.

priate segmentation of the maxilla, mandible and skull is a crucial step in CMF
surgical planning and simulation. Typically for these patients metal artifacts sur-
rounding the teeth area are a challenge, as a compromise between data quality
fitting (risk of overfitting) and a-priori information (risk of over-regularization)
needs to be made. In the following we show that the spatially-varying registration
scheme is more robust towards outliers than the standard stationary registration
approach. To perform model fitting on a new unseen image, we adopt the fol-
lowing approach: An initial estimate of the segmentation is generated via image
thresholding. From this we compute a distance image to which we fit an atlas
skull surface, using the Gaussian process registration approach [7]. We run the
registration with three different deformation models. 1) A zero-mean Gaussian
process with a Gaussian kernel, 2) a zero-mean Gaussian process with a B-spline
kernel 3) A statistical shape model (PCA model) of the skull build from 48 ex-
ample datasets. The left images in Figure 3 shows the result for these models.
We see that for all three deformation models, the teeth are unnaturally distorted
from the noise. The images on the right in Figure 3 show the same results with
our spatially-varying registration (with η = 1.5 around the teeth and η = 1
otherwise). Clearly, the teeth look much more natural. In Figure 4a we see a
numerical comparison of the mean error for all 4 cases. The error of the spatial
adaptive method is lower for all the models. In Figure 4 the average error is
depicted when the regularization weight γ in (1) is increased. As expected, the
effect of the spatial adaption is only visible when the regularization weight is
small. When the regularization weight is increased, both results will correspond
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more and more to the mean of the Gaussian process, and hence become very
similar.
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Fig. 4: A quantitative evaluation: In the left figure we see a numerical compar-
ison of the mean error for all 3 cases. The mean error is an overall (i.e. entire
skull surface) average distance error computed between the registered models
and manually segmented results. The right plot shows the error for when the
regularization weight is increased.

5 Discussion

In this paper we have shown how we can obtain a method for spatially-varying
registration, by combining 1) A registration method that allows us to specify a
deformation prior using a Gaussian process, 2) A method to make a given Gaus-
sian process non-stationary by adapting its spectrum. The degree of smoothness
that is induced by the Gaussian process can be specified using a tempering func-
tion. To define this tempering function we have proposed to specify the desired
value at a few given points, and then to interpolate these points to define the
function on the full registration domain. While this approach is easy, a more
convenient approach could be implemented by using a learning scheme, similar
to the ones proposed in [3, 12]. The tempering function either can be defined
manually by an expert or also be inferred from data. In a first scenario the
function is built by including a distance measure to the current target image
and optimize control points of the function η with subject to local differences.
[12] published a method to infer the regularization parameters directly from the
data. A further possibility is the definition of the tempering function by taking
systematic misregistrations into account. A spatially varying tempering function
is a solution to compensate for the error [5]. In another possible scenario, tissue
properties are learned from the data to include a variation of elasticity in the
reference [10]. Our experiments have shown that our approach can significantly
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improve a registration, by enabling us to choose the smoothness based on the
image characteristics. Indeed, we believe that the possibility to make a method
spatially-varying is important for obtaining better correspondence in difficult
registration tasks. As our method is able to work with many different deforma-
tion models, taking advantage of spatially-varying registration becomes feasible
for many registration problems. To make its application easy, we have made the
implementation available as part of the statismo framework [6].
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7. Lüthi, M., Jud, C., Vetter, T.: A unified approach to shape model fitting and non-
rigid registration. In: Machine Learning in Medical Imaging, pp. 66–73. Springer
(2013)

8. Pintore, A., Holmes, C.: Spatially adaptive non-stationary covariance functions
via spatially adaptive spectra. http:\\ www. stats. ox. ac. uk cholmes\ Reports\
spectral tempering. pdf (2004)

9. Rasmussen, C.E., Williams, C.K.: Gaussian processes for machine learning.
Springer (2006)

10. Ruan, D., Fessler, J.a., Roberson, M., Balter, J., Kessler, M.: Nonrigid Registration
Using Regularization that Accomodates Local Tissue Rigidity. In: Proc. Of SPIE.
Medical Imaging: Image Processing. vol. 6144 (2006)

11. Schmah, T., Risser, L., Vialard, F.X.: Left-invariant metrics for diffeomorphic im-
age registration with spatially-varying regularisation. In: Medical Image Comput-
ing and Computer-Assisted Intervention–MICCAI 2013, Springer (2013)

12. Simpson, I.J.A., Woolrich, M.W., Cardoso, M.J., Cash, D.M., Modat, M., Schn-
abel, J.A., Ourselin, S.: A Bayesian Approach for Spatially Adaptive Regularisation
in Non-rigid Registration (2013)

13. Wahba, G.: Spline models for observational data. Society for Industrial Mathemat-
ics (1990)


