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a b s t r a c t 

Knowledge about the thickness of the cortical bone is of high interest for fracture risk assessment. Most 

finite element model solutions overlook this information because of the coarse resolution of the CT im- 

ages. To circumvent this limitation, a three-steps approach is proposed. 1) Two initial surface meshes 

approximating the outer and inner cortical surfaces are generated via a shape regression based on mor- 

phometric features and statistical shape model parameters. 2) The meshes are then corrected locally 

using a supervised learning model build from image features extracted from pairs of QCT (0.3-1 mm 

resolution) and HRpQCT images (82 μm resolution). As the resulting meshes better follow the cortical 

surfaces, the cortical thickness can be estimated at sub-voxel precision. 3) The meshes are finally regu- 

larized by a Gaussian process model featuring a two-kernel model, which seamlessly enables smoothness 

and shape-awareness priors during regularization. The resulting meshes yield high-quality mesh element 

properties, suitable for construction of tetrahedral meshes and finite element simulations. This pipeline 

was applied to 36 pairs of proximal femurs (17 males, 19 females, 76 ± 12 years) scanned under QCT and 

HRpQCT modalities. On a set of leave-one-out experiments, we quantified accuracy (root mean square er- 

ror = 0.36 ± 0.29 mm ) and robustness (Hausdorff distance = 3.90 ± 1.57 mm ) of the outer surface meshes. 

The error in the estimated cortical thickness (0.05 ± 0.40 mm ), and the tetrahedral mesh quality (aspect 

ratio = 1.4 ± 0.02) are also reported. The proposed pipeline produces finite element meshes with patient- 

specific bone shape and sub-voxel cortical thickness directly from CT scans. It also ensures that the nodes 

and elements numbering remains consistent and independent of the morphology, which is a distinct ad- 

vantage in population studies. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Hip fracture is a common injury among the elderly popula-

tion ( Cauley, 2013 ). Associated with high morbidity and mortal-

ity rates, such incident in hip fractures are particularly debilitat-

ing, often leads to a loss of independence and are responsible for

substantial health-care costs ( Cauley et al., 2016 ). Aside from alter-

ations of the trabecular structure and density ( Taghizadeh et al.,

2017 ), mounting evidence suggests that the fracture risk is also

largely amplified by the local thinning of the cortex resulting from

osteoporosis ( Mayhew et al., 2005; Poole et al., 2017 ). Unfortu-

nately, the current diagnosis of osteoporosis rests on DXA (dual

X-rays absorptiometry), which is bi-dimensional, includes indis-

tinctly cortical and trabecular bone regions and sometimes results

in patient being erroneously considered not at risk ( Stone et al.,
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003 ). Alternatively, quantitative computer tomography (QCT) pro-

ides distinct 3D information for each bone region. Performed at

he hip, QCT is an alternative diagnostic tool ( Engelke et al., 2015 )

hat can also be used for generating patient-specific finite element

FE) models ( Zysset et al., 2015 ). FE models are computer simu-

ations used to perform mechanical tests virtually. They allow a

on-invasive evaluation of bone strength, which is the force re-

uired to fracture the bone. The Food and Drug Administration

leared the use of FEA-derived bone strength calculations (Virtu-

st, O.N.Diagnostics, Berkeley, CA, USA) as a class II medical device

or estimating fracture risk assessment and monitoring treatment

fficacy ( Keaveny, 2017 ). However, several technical challenges hin-

er direct application of FEA for clinical use. Main factors are sum-

arized below, and represent the main motivation of the pre-

ented work. 

Generating a patient-specific FE model with accurate geometry

nd cortical thickness is a complex engineering task. The standard

ork-flow starts with the segmentation of both trabecular and cor-

ical regions. Ex vivo studies showed that this step can be done

https://doi.org/10.1016/j.media.2018.11.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2018.11.001&domain=pdf
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Table 1 

Morphometric features used as input variables for 

coarse shape regression (Step 1). Fig. 1 offers for an il- 

lustration of the underlying internal coordinate system 

used to extract these features. 

Distance Min.Cross.Area Angle 

FHC-FNC FNC Plane CCD 

FHC-MP NEP Plane 

FNC-MP SDP Plane 

FNC-SDP 

Femoral Head Diameter 
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ccurately from high-resolution peripheral QCT (HRpQCT, 61-82

m voxel size) ( Pahr and Zysset, 2009 ). However on QCT images,

he segmentation is prone to errors because of partial volume ef-

ects arising from the coarser voxel size. In that case, there is no

lear boundary between bone regions ( Peleg et al., 2014 ). The cor-

ex is often thinner than the point spread function of the CT scan-

er and may not even be visible ( Treece et al., 2012 ). The finite ele-

ent mesh is then generated from the segmentation masks, which

re also challenging because of the thin cortex, and the need to

ield a volumetric mesh guaranteeing an appropriate number of

lements and element quality for FE analysis to converge ( Arbenz

nd Flaig, 2008; Liu et al., 2007 ). 

Despite previous contributions to bone strength ( Luisier et al.,

014 ) and fracture risk analysis ( Treece et al., 2015 ), most FE mod-

ls do not include a realistic cortical shell ( Bucki et al., 2010;

auchard et al., 2016; Maquer et al., 2016 ). This is even more

urprising considering the amount of studies that have focused

n measuring cortical thickness from QCT images ( Prevrhal et al.,

999; 2003; Pakdel et al., 2012; Treece et al., 2010; 2012; Humbert

t al., 2016; Treece and Gee, 2015 ). Except from ( Carballido-Gamio

t al., 2015 ), the lack of a unified framework combining accurate FE

odelling and cortical thickness estimation hinders the adoption

f FE-based diagnosis into clinical routine of osteoporosis ( Engelke

t al., 2016; Zysset et al., 2015 ). 

Accordingly, the aim of this work is to develop a framework

or generating high quality meshes for bones from QCT images

ncluding a cortical thickness estimated at sub-voxel accuracy. To

his end we present a three-step approach: 1) Two initial surface

eshes approximating the outer and inner cortical surfaces are

enerated via a shape regression based on morphometric features

nd statistical shape model parameters. 2) The meshes are then

orrected locally using a supervised learning model build from im-

ge features extracted from pairs of QCT (0.3-1 mm resolution) and

RpQCT images (82 μm resolution). As the resulting meshes bet-

er follow the cortical surfaces, the cortical thickness can be esti-

ated at sub-voxel precision. 3) The meshes are finally regularized

y a Gaussian process model featuring a two-kernel model, which

eamlessly enables smoothness and shape-awareness priors during

egularization. We demonstrate its performance on a leave-one-out

LOO) study based on an ex vivo database of 72 proximal femurs

canned with QCT and HRpQCT modalities. 

The paper is organised as follows, in Section 2 we outline the

roposed framework. In Section 3 , dataset, experimental set-up

nd results are presented. In Section 4 results are discussed and

nally, Section 5 ends conclusions and outlook. 

. Methodology 

An overview of the proposed approach is given in Fig. 1 . Each

tep is described in details in the following sections. 

.1. Step 1: Coarse shape regression 

Shape regression using supervised learning have already been

roposed ( Zhou and Comaniciu, 2007; Lindner et al., 2015 ). In

hose studies, the shape is represented either using generative

arametric models or explicitly through landmarks position. Para-

etric models have the advantage of yielding a compact shape

epresentation featuring desired properties, such as shape smooth-

ess and node-to-node correspondences ( Shahim et al., 2013 ). In

rder to produce a coarse, but robust estimation of the bone

natomy, and based on our previous experience in ( Chandran et al.,

015 ) for trabecular bone prediction from QCT images, we cast our

olution to the shape regression as a multi-output extra-tree re-

ression problem ( Dumont and Marée, 2009; Marée et al., 2013 ),

here an input feature vector v is mapped to an output response
 . Compared to previous registration-based approaches, such as

eformable models, atlas-based, Active Shape Models, the motiva-

ion behind a regression-based approach is to enable a fast and

ptimization-free coarse shape estimation. In addition, as it is

ased on a compact parametric shape descriptor, the risk of over-

tting is lessened considerably. Moreover, it is suitable for practical

se as the parametric shape descriptors are derived from distin-

uishable femoral landmarks. 

As input features, we adopt a set of morphometric features ex-

racted from an internal coordinate system ( Fig. 2 ) due to their ro-

ustness and simplicity of extraction (see Appendix A ). Those fea-

ures are subsequently computed on the QCT image. The redun-

ancy of the features is evaluated via a Principal Component Anal-

sis (PCA), leading to a final input feature vector v = (v 1 , .., v m 

) ∈
 

m (m = 9 in our experiments) as shown in Table 1 . 

To model the output response, each shape is represented by

 ∈ R 

c parameters of a Statistical Shape Model (SSM) including 

he inner and outer meshes by projecting the shape onto the SSM

pace with c principal components, leading to an output response

ector w = (w 1 , .., w c ) , w i = αi 

√ 

d i (see Section 2.1.1 for details of

he SSM model). We remark that for our purpose (shape regres-

ion), the compactness of this type of model is suitable for super-

ised learning where the number of samples is limited in compari-

on to the dimensionality of each sample (curse of dimensionality).

onsequently, given a training set SR = {〈 v (i ) , w 

(i ) 〉| i = 1 , ..., f |} for

he multi-output regression problem, we follow the hypothesis h 1 :

 �→ w that maps from a space of features v to the space of re-

ponses w . 

The multi-output extra-tree algorithm builds an ensemble of T

egression trees and requires no bootstrap sampling ( Geurts et al.,

006; Marée et al., 2013; Dumont and Marée, 2009 ). To split the

odes of the tree, K alternate input features v 1 , ..., v K among the m

umber of features are randomly selected. In order to choose the

est set of features for each K alternate input, a score based on

q. 1 is calculated. The score maximising the variance reduction

maximum score) is then chosen to split the node. Considering D

s the set of samples at the current splitting node, the score mea-

ure is defined as: 

core (c i , D ) = 

v ar ( w | D ) − | D l | | D | v ar ( w | D l ) − | D r | 
| D | v ar ( w | D r ) 

v ar( w | D ) 
. (1) 

v ar( w | D ) = 

1 

| D | 
| D | ∑ 

i =1 

∥∥∥∥∥w 

i − 1 

| D | 
| D | ∑ 

i =1 

w 

i 

∥∥∥∥∥

2 

, 

here c i corresponds to the cut-point, D l and D r denote the left

nd right samples of the split node. For each node, the cut-point

 i value is uniformly drawn from the range [ v D 
min 

, v D max ] . Each node

f the tree is recursively split until it reaches the minimum sample

ize n min . Once the tree is grown, the leaf is assigned with a vector

ˆ 
 L , which is obtained as the average of the target vector values

 

( i ) associated to the samples falling in that leaf D L ( Eq. 2 ). The

stimates of each tree is then aggregated by arithmetic average to
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Fig. 1. Overview of the three steps that compose the proposed approach. First (Step 1), a coarse shape regression is performed via supervised learning based on morpho- 

metric features and parameters of a statistical shape model (SSM) of the proximal femur. This step yields two surface meshes that only approximate the trabecular and 

cortical bone regions. Those surface meshes are composed of triangle elements connected via nodes. Then (Step 2), local corrections are performed on the nodal positions 

via a supervised learning based on image features extracted from the QCT and corresponding HRpQCT images during the training phase. The corrected meshes now present 

a rough aspect but fit the bone regions, enabling accurate estimation of cortical thickness. In Step 3, the meshes are finally regularised after projecting the corrected meshes 

onto the space of a Gaussian process model featuring a two-kernel model, enabling smooth and shape-awareness priors. To highlight the improvement between the steps, 

the surface meshes (red: outer cortical surface, purple: inner cortical surface as the interface with the trabecular bone) are superimposed on the QCT image. 

Fig. 2. Implicit coordinate system of the human proximal femur. Left : Coronal view. Right: Sagittal view. Acronyms: FHC - Femoral Head Center, FNC - Femoral Neck Center, 

NMP - Neck-axis Mid Point, NEP - Neck-axis End Point, SMP - Shaft-axis Mid Point, MP - Mid Point, SDP - Shaft-axis End Point. Adapted from ( Chandran et al., 2015; 2017 ). 
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yield a final prediction: 

ˆ w L = 

1 

| D L | 
| D L | ∑ 

i =1 

w 

i . (2)

For any new test image, an internal coordinate system is first con-

structed and the mean shape is aligned to it, as the same coordi-

nate system has been predefined on it. This is a strong feature as

no registration, involving optimization, is therefore necessary (we

hence refer to this as “registration-free”). Morphometric features

are then extracted ( Table 1 ) and the shape regression is performed

with the predicted model parameters h 1 ( v 
( test ) ): v ( test ) �→ w 

( test ) . The

resulting surface mesh from this step can then be obtained as

s step1 = μ + 

∑ c 
i =1 w 

(test) 
i 

u i , and yields a coarse shape estimation,

that can be regarded as an initialisation, since local regions of the

surface mesh s step1 do not accurately fit the inner and outer corti-
al surfaces, hence the further need for a step where local correc-

ions and thickness estimation take place. 

.1.1. Offline step: PCA-based Statistical Shape Model 

In this section we provide details on the construction of the

SM model used in step 1. For shape representation in step 1, we

dopted a PCA-based Statistical Shape Model (SSM) ( Cootes et al.,

995 ). Initially, inner surface meshes were constructed from seg-

ented inner masks of the HRpCT images. Then, for each, the cor-

esponding outer surface mesh nodes were found by projecting

ine profile in the normal direction to the inner surface and using

he segmented outer mask of the HRpQCT image. When needed

anual corrections were performed to prevent the line profiles

rom crossing. This resulted in two-layered surface meshes rep-

esenting the inner and outer cortex. Finally, all the two-layered
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urface meshes of the femoral population { �(1) , ...., �( n ) } were

ligned to a common coordinate system based on the femur’s mor-

hology as shown in Fig. 2 . The Frobenius norm of the stretch ten-

or of the local gradient was selected to quantify the distance be-

ween the femurs of the population ( Chandran et al., 2017 ). Based

n those distances, the closest femur to the Frechet mean of the

opulation was chosen as the reference template mesh �( R ) . Each

hape �( i ) was then represented by a discrete set of nodes, i.e. 

(i ) = { x i k | x k ∈ R 

3 N , k = 1 , ...N} (3)

here N denotes the number of nodes. Dense node-to-node cor-

espondence between the surface meshes are established based

n non-rigid shape registration. The Gaussian process registration

ramework ( Lüthi et al., 2017 ), implemented in Scalismo ( Scalismo,

016 ) was used. Then, the coordinates for all k nodes are concate-

ated to one vector s that describes the shape: 

 

(i ) = { x i 1 x , x i 1 y , x i 1 z , ..., x i Nx , x 
i 
Ny , x 

i 
Nz } (4)

he mean shape s and its corresponding covariance matrix S is

iven by: 

(=) s := 

1 

n − 1 

n ∑ 

i =1 

s (i ) , �= S := 

1 

n − 1 

n ∑ 

i =1 

( s (i ) −s )( s (i ) −s ) T (5)

igen decomposition of � yields max (n − 1 , N) eigenvectors u i 

principal modes of variation) and eigenvalues d i (strength of the

ariations). Shapes from the PCA model can then be drawn as 

 = μ + 

n ∑ 

i =1 

αi 

√ 

d i u i (6) 

here α ∈ R 

n −1 represent the model parameters. 

.2. Step 2: Local outer and inner surface corrections and cortical 

hickness estimation 

To accurately estimate the outer and inner cortical surfaces,

 super-resolution strategy based on supervised learning is pro-

osed. Line intensity profiles are established between correspond-

ng nodes of the initial outer ( s step1 , ˜ q outer ∈ R 

3 ) and inner ( ̃  q inner ∈
 

3 ) meshes ( Fig. 3 c). The length of each line profile is represented

y the parameter l and centred on ( ̃  q outer + ˜ q inner ) / 2 . Inspired by

uper-resolution techniques ( Alexander et al., 2014; Lu et al., 2017 ),

e resample the line profile to match the voxel size of the HRpQCT

can (0.082 mm) via a linear interpolation 

1 , generating L samples

er line profile. On each sample, four features are extracted, i.e

ntensity values along with texture features such as energy, en-

ropy, and Haralick coefficients with two neighbourhoods ( Haralick

nd Shanmugam, 1973 ). We used backward sequential schemes for

electing these three texture features from a pool of texture fea-

ures ( Bouatmane et al., 2007 ). This resulted in a feature vector

p j ∈ R 

4 ×L . Similarly, the output response variables corresponding

o the locations of the outer and inner cortical interfaces are ex-

racted via the segmented mask from the corresponding HRpQCT

mages along each line profile ( Fig. 3 b) and are modelled as a vec-

or q = [ q inner , q outer ] ∈ R 

2 . 

Given a training set P Q = { 〈 p j 
(i ) , q j 

(i ) 〉| i = 1 , .., f, j = 1 , .., F | } ,
e cast the local correction as a multi-output regression prob-

em and seek an hypothesis h 2 : p �→ q . For a new test line profile,

he predicted response is h 2 ( p ( test ) ): p ( test ) �→ q ( test ) . Local corrections

re then defined by updating each nodal position ˜ q outer �→ q outer 

nd ˜ q inner �→ q inner and the cortical thickness is finally computed

s ‖ q ‖ . In order to maintain consistency between outer and inner

orrected surfaces, the minimum cortical thickness is set to 0.33
1 no benefits were found when using higher order interpolation 

d  

p  

g

m, which is the minimal observable bone thickness ( Treece and

ee, 2015 ). The multi-output regression provides a local response

t every node of the surface mesh, which results in a locally cor-

ected shape s step2 , and a highly accurate estimation of the cortical

hickness. 

From the two corrected surface meshes, A number of tools (e.g.

MSH (v2.12.0) ( Geuzaine and Remacle, 2009 )) can be used to pro-

uce tetrahedral meshes for FE analyses. However, since the refine-

ents occurred independently for every node, the corrected sur-

aces are not anymore smooth and may even self-intersect. This

ither makes the generation of tetrahedral meshes impossible or

esults in distorted tetrahedral elements, especially in areas with

hin cortex or high curvature (e.g. trochanteric fossa). Distorted el-

ments would be a cause of poor convergence for any subsequent

nite element analyses. A regularisation is thus conducted in Step

 to produce high quality surface meshes while preserving an ac-

urate patient-specific shape. 

.3. Step 3: Mesh regularization 

To create smooth, yet accurate meshes without having to re-

esh, we employ a Gaussian process model ( Lüthi et al., 2013 ) fea-

uring a larger amount of parameters compared to the rather com-

act PCA-based model used in Step 1. The large number of param-

ters enables highly-detailed shape descriptions, while maintaining

he desired smooth shape. However, unlike in Step 1, the Gaussian

rocess model is now employed as a fine and flexible shape reg-

larisation that features a smooth and a shape-aware prior. This

essens the curse of dimensionality or Hugues phenomenon occur-

ing for a fixed number of samples. 

The Gaussian process model is described by GP ( μ, k ) with μ the

ean deformation and a kernel function k ( x, x ′ ) describing the de-

ired smoothness features of the deformations. An interesting fea-

ure of the Gaussian process modelling is that kernels can be com-

ined in a straightforward manner. We thus combined a PCA-based

SM kernel k SSM 

with a Gaussian kernel k to generate a flexible

odel GP ( μSSM 

+ μ, k SSM 

+ k ) . We approximated the continuously

efined Gaussian process model to obtain a statistical shape model

ugmented with deformations, which are defined by the Gaussian

ernel. To model additional flexibility, we combine the statistical

hape model with additional non-informative deformations. In the

aussian process framework ( Lüthi et al., 2017 ) the type of defor-

ation can be defined using a kernel and include a large class of

eformations, such as splines and radial basis functions. The Gaus-

ian process is modeled continuously and is then low-rank approx-

mated to its principal components to receive a parametric rep-

esentation. The parameter C defines the amount of components

aken for the approximation. In principle, flexible models defined

or fine local deformations need more parameters (large C) because

f a higher degree of freedom. Smooth models without local defor-

ations can be approximated with a lower amount of basis func-

ions (small C). For instance, a large C parameter yields a strong

mooth shape prior and less dependency on the femoral shape

rior, whereas a small C parameter lessens the smoothness prior

nd favors the shape-awareness prior brought by the SSM kernel.

he final surface mesh s step3 is also expected to have a higher

esh quality (element aspect ratio and distortion) as compared to

he locally corrected surface s step2 because of local shape adapted

moothness. We remark that the estimated thickness ‖ q ‖ does not

eed to be re-estimated as in practice its overall variation is neg-

igible. The surface meshes resulting from Step 3 can now be used

irectly for generating tetrahedral meshes for finite element pur-

oses. While this is beyond the scope of this study, an example is

iven in Figs. 11 and 12 . 
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Fig. 3. Close-up on the local corrections performed in Step 2. a) The meshes produced in Step 1 for the inner and outer cortical surface are superimposed to the QCT image. 

The nodes clearly do no fit the QCT data and their position must be corrected. A local region of interest is highlighted in black b) The local corrections (i.e.discrepancies 

between triangle and circle symbols) are learnt from the HRpQCT image. First, line intensity profiles are defined between the nodes of the QCT-based meshes (red and purple 

triangles). Then, the nodes are moved along the line profiles at a subvoxel resolution (not shown in the figure) so as to match the cortex seen on the HRpQCT image and 

their position is updated (red and purple circles). (c) The original nodal position obtained on the QCT images is then corrected accordingly d) to mimic the cortical thickness 

learnt from the HRpQCT profile. 
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3. Experimental setup and results 

3.1. Preparation of the image data 

The study was performed on a set of QCT and HRpQCT im-

ages of human proximal femurs obtained from previous stud-

ies ( Dall’Ara et al., 2013; Luisier et al., 2014 ). Briefly, 36 pairs

(17 males, 19 females, 76 ± 12 years, range 46-96) were ob-

tained from donors after ethical approval by the Medical Uni-

versity of Vienna. Each femur was scanned with a calibration

phantom (BDC Phantom, QMR Gmbh, Germany) in a clinical QCT

(Brillance64, Phillips, Germany, intensity: 100 mA , voltage: 120

kV , voxel size: 0.33 × 0.33 × 1.00 mm 

3 ) and HRpQCT (Xtreme CT,

Scanco, Switzerland, intensity: 900 μA , voltage: 60 kVp , voxel size:

0.082 × 0.082 × 0.082 mm 

3 ). More information about the data are

provided in Appendix C.4 . 

The HRpQCT images were automatically segmented by thresh-

olding and two masks were generated for the cortical and tra-

becular regions using the “fill” algorithm described in ( Pahr and

Zysset, 2009 ) and manual corrections when necessary. A first sur-

face mesh was created from the inner trabecular mask using the

marching cube algorithm ( Lorensen and Cline, 1987 ) and was re-

sampled to a uniform triangle size and shape via Meshlab (v1.3.3).

The outer surface mesh was then created by displacing all the

nodes of the inner mesh along the normal of the corresponding tri-

angle surface to fit the outer cortical mask. The outer surface mesh

was then smoothed ( Taubin, 1995; Belyaev and Ohtake, 2003 ). The

h  
verage element size used for the present study was around 1 mm

ide length. The clinical QCT images were aligned to the corre-

ponding HRpQCT images based on the internal coordinate system

 Fig. 2 ) and rigid registration ( Klein et al., 2010 ) when necessary.

s a result, both QCT and HRpQCT images as well as the surface

eshes are all aligned on the space of the HRpQCT images. 

.2. Model hyper-parameters 

All parameters used in the present study were found heuristi-

ally through a grid-search on the parameter space ( Table 2 ). For

he SSM, the total number of nodes for �( R ) is 1 N = 18100 (9050

odes for both outer and inner surfaces). The right femurs of the

ataset were flipped resulting in 72 left femurs in total. Hence for

ach LOO study, an SSM was constructed from 70 femurs (leav-

ng out the corresponding contralateral shape as well). For the

hape regression (Step 1), the total number of samples for train-

ng 1 f was set to 70. The three hyper-parameters characterising the

hape regression model were: 1 K = 9 (the number of input fea-

ures), 1 n min = 2 (minimum sample size) and 

1 T = 40 (number

f trees). For the correction of the nodal positions (Step 2), the

ength of the line profile 2 l was set to 13.6mm. This results in a

otal number of (sub-voxel resolution) samples per line 2 L equal

o 165 (13.6mm/0.082mm). The total number of samples for the

raining 2 f was set to 70 and 

2 F was fixed to 9050 (nodes hav-

ng correspondence between outer and inner surfaces). The three

yper-parameters characterising the correction model were 2 K =



V. Chandran, G. Maquer and T. Gerig et al. / Medical Image Analysis 52 (2019) 42–55 47 

Table 2 

List of the hyper-parameters and heuristically computed values used in the present study. 

Hyper-parameter Value Description 

Step 1 1 K 9 Number of input features 
1 n min 2 Minimum sample size 
1 T 40 Number of trees 

Step 2 2 L 165 Number of sub-voxel resolution samples per line profile 
2 K 660 Number of input features 
2 n min 5 Minimum sample size 
2 T 80 Number of trees 

Step 3 3 C 400 Number of Gaussian model parameters 

Table 3 

Statistical description of the morphometric features of the femur population 

Morphometric Features Mean ± std Range 

Distance FHC-FNC( mm ) 26.7 ± 3.8 17.0-29.9 

Distance FHC-MP( mm ) 47.7 ± 5.9 40.6-66.4 

Distance FNC-MP( mm ) 25.6 ± 5.5 21.4-40.6 

Distance FNC-SDP( mm ) 67.6 ± 6.4 52.8-80.3 

Femoral Neck Min.Cross.Area( cm 

2 ) 8.9 ± 1.8 6.3-12.9 

NEP Min.Cross.Area( cm 

2 ) 17.8 ± 3.3 11.5-22.8 

SDP Min.Cross.Area( cm 

2 ) 8.3 ± 2.0 4.3-13.8 

Femoral Head Diameter( mm ) 46.4 ± 4.0 41.5-54.4 

CCD( °) 128 ± 7 112.5-143.1 
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Fig. 4. Respective importance of the morphometric features used in Step 1. 

a  

u  

t  

d

3

 

S  

s  

n  

t  

l  

p  

v  

t  

e  

e  

w  

t  

w  

o

 

t  

f  

t  

a  

t  

(  

n  

r

3

 

e  

e  

n  
60 (number of input features), 2 n min = 5 (minimum sample size)

nd 

2 T = 80 (number of trees). For the regularisation procedure

Step 3), the number of 3 C parameters for the Gaussian process

eformation model was set to 400. Several sensitivity analyses re-

arding hyper-parameters were performed, and explained below

or each step of the proposed approach. 

.3. Coarse shape regression (Step 1) 

Given the variability of the morphological features, as mea-

ured in our dataset (see Table 3 ), it was important to ensure that

he coarse shape regression (Step 1) was robust enough to en-

ble meaningful local corrections (Step 2). We therefore performed

hree different sensitivity analyses as detailed below. 

For the coarse shape regression, root mean square error (RMSE)

nd Hausdorff distance (HD) were evaluated to determine the in-

uence of the number of principal components of the SSM on the

ccuracy and the robustness of the outer mesh prediction. The set

f morphometric features was kept constant during the procedure

 Table 1 ). Based on a LOO strategy, we observed that increasing the

umber of modes did not significantly influence either RMSE or

D (paired Wilcoxon test, p > 0.5). Hence, the number of modes for

he rest of the study was thus set to 5 in order to have a compact

odel. Conversely, a severe reduction on the number of modes be-

ow 4 produced a negative influence on the RMSE and HD metrics.

On a second analysis, feature importance was evaluated based

n the variance measure of the multi-output extra tree regres-

or ( Geurts et al., 2006 ). The results are presented in Fig. 4 . The

emoral head diameter appears as the most important feature fol-

owed by the CCD angle. 

A third sensitivity analysis was performed to evaluate the im-

act of possible errors introduced during the extraction of morpho-

etric features (Step 1) on the RMSE and HD metrics. We adopted

 Monte-Carlo uniform sampling strategy where a large number of

0 perturbations were sampled assuming a Gaussian distribution

ith standard deviation (SD) of each feature ( Table 3 ). We sam-

led perturbations up to 2 ∗SD, which we think sufficiently mod-

ls potential and realistic deviations (given by sample population

tatistics, as opposed to random) on the extraction of morpholog-

cal features that are used by the system to infer shape. Based on

 LOO strategy, a multi-output regression was performed and the
ccuracy and robustness of the shape predictions were again eval-

ated in terms of RMSE ( Fig. 5 ) and HD ( Fig. 6 ). It can be noticed

hat RMSE and HD errors were only sensitive to the femoral head

iameter. 

.4. Cortical thickness estimation (Step 2) 

The error in the cortical thickness estimation produced after

tep 2 was defined as ‖ q GT ‖ − ‖ q ‖ , with ‖ q GT ‖ the thickness mea-

ured on the HRpQCT images (ground-truth) and ‖ q ‖ the thick-

ess estimated in Step 2. Both the thickness and its deviation from

he ground-truth were evaluated based on a LOO strategy. Fol-

owing ( Treece and Gee, 2015 ), we evaluated the ability of the

roposed approach to estimate the cortical thickness with sub-

oxel accuracy for three thickness ranges ( Fig. 7 ). A fairly good

hickness estimation accuracy was observed for thick cortical ar-

as (between 3 mm and 6 mm thick) with a mean ± std error

qual to −0 . 01 ± 0 . 38 mm . A slight over-estimation was measured

hen the cortex is the thinnest with a 0.11 ± 0.45 mm error for

he 0 . 33 mm − 1 mm range. Thickness errors were −0 . 01 ± 0 . 32 mm

hen thickness was between 1 mm and 3 mm and 0.05 ± 0.40 mm

verall. 

The 25th, 50th and 75th percentiles of the error in cortical

hickness estimation were calculated for each node of the mean

emur to illustrate their spatial distribution ( Fig. 8 ). In addition,

he average “ground-truth” thickness obtained from HRpQCT was

lso calculated for each node to represent the spatial variation of

he cortical thickness for the femoral population used in the study

 Fig. 8 a). Qualitative results reveal that estimating cortical thick-

ess is more challenging in the femoral head region (low thickness

ange). 

.5. Regularisation of the surface meshes (Step 3) 

For each step, we evaluated the mean aspect ratio of triangle el-

ments composing the meshes (the ratio of the longest and short-

st edge of the element), their accuracy (RMSE) and their robust-

ess (HD) to assess the improvements brought by Step 3. Fig. 9 b
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Fig. 5. Accuracy (RMSE-Root Mean Square Error) of the morphometric feature extraction performed in Step 1. Each boxplot corresponds to leave-one-out results on the 

studied population. Each feature was perturbed with an error corresponding to its standard deviation (SD) 
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confirms the expected result that the meshes resulting from Step

1 are the least accurate and least robust (RMSE = 1.70 ± 0.41 mm ;

HD = 5.97 ± 1.79 mm ). The aspect ratio of the elements generated by

Step 1 is very close to 1 (AS = 1.23 ± 0.01). An aspect ratio of 1 cor-

responds to a triangle element that is almost equilateral and less

prone to distortion if used in FE analyses. Step 2 greatly improved

both precision metrics (RMSE = 0.37 ± 0.12 mm ; HD = 3.61 ± 1.62 mm )

to the detriment of the aspect ratio (AS = 1.97 ± 0.07). After

Step 3, mesh accuracy, robustness and quality are improved

(RMSE = 0.36 ± 0.29 mm ; HD = 3.90 ± 1.57 mm , AS = 1.40 ± 0.02). 

4. Discussion 

The objective of this work was to introduce an approach for

generating automatically and without segmentation bone meshes

from QCT scans for finite element analyses. The proposed approach

consists of three steps: (i) shape regression based on morphome-

tric features to get a rough estimation of the surface meshes, (ii)

local corrections of the nodal positions based on supervised learn-

ing to fit at sub-voxel level the surface meshes to the bone surfaces

and improve the thickness information, and (iii) shape regularisa-

tion based on a Gaussian process framework to improve the quality

of the surface meshes. While being out of the scope of this work,

we remark that using available tools such as GMSH ( Geuzaine and

Remacle, 2009 ), reliable tetrahedral meshes accounting for the cor-

tical shell, can be created for FE analysis and analysis of bone

strength and fracture risk in patients. The proposed methodology

was applied on a representative and heterogeneous database of

72 human proximal femurs scanned with both clinical QCT and

HRpQCT modalities ( Dall’Ara et al., 2013; Luisier et al., 2014 ). 

4.1. General discussion 

Step 1 yields a coarse shape prediction based on morpho-

metric features extracted from the internal coordinate system of
ach proximal femur. This step has many advantages over other

pproaches based on shape atlases or statistical shape models.

irst, the extraction of the internal coordinate system is robust,

ast, easy, and well-tailored to manual interventions in a clin-

cal setup ( Chandran et al., 2015 ). Secondly, the procedure is

registration-free” as no optimization based on a registration met-

ic is required. This reduces the computational time, but also pro-

ides morphometric features that are independent from the posi-

ion and orientation of the bone, unlike point-distribution mod-

ls ( Blanc et al., 2012 ). A thorough sensitivity analysis was con-

ucted on the surface meshes resulting from Step 1. This is in our

pinion very important as to ensure that the complete pipeline is

obust and can be translated into practice. In this regard, our ex-

eriments on the number of modes to be retained for shape re-

ression suggests that five principal components suffices to have

 stable coarse shape regression. Including more modes of varia-

ion did not lead to any improvements, as higher modes describe

mall shape variations in shape. The quality of the predicted shape

lso depends on both the descriptive power of the features and

he sensitivity of the model to perturbations on the extracted fea-

ures. Our results demonstrate the importance of the femoral head

ize as a descriptive feature, along with a higher sensitivity of the

odel to any perturbations of this morphometric feature ( Figs. 5,

 top-left). Conversely, the model is less sensitive to perturbations

n other morphometric features. These two aspects suggest that

hape characterisation of the proximal femur is overall driven by

he femoral head, however, we cannot conclude that this feature

lone can be used in practice since our experiments were based

n the complete set of described morphometric features ( Table 1 ).

esides, a longer shaft than seen in our femurs might also be an

mportant feature. 

The local corrections step (Step 2) significantly improved the

hape accuracy of the s step1 meshes at the cost of a higher ele-

ent aspect ratio and a rough surface. These two aspects are crit-

cal if a volumetric mesh composed of tetrahedrons were to be
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Fig. 6. Robustness (HD-Hausdorff distance) of the morphometric feature extraction performed in Step 1. Each boxplot corresponds to leave-one-out results on the studied 

population. Each feature was perturbed with an error function using the standard deviation (SD) of each feature on the studied population. 

Fig. 7. The errors in the cortical bone thickness estimated from QCT for three thick- 

ness ranges. Dotted lines indicate sub-voxel accuracy. Positive and negative errors 

respectively correspond to under- and over- estimation. 
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enerated from the two surfaces meshes for finite element analy-

es. Thanks to the sub-voxel sampling and modeling through the

airs of HrpQCT and QCT images, the proposed approach yields

ub-voxel accurate cortical thickness estimations ( Fig. 7 ), especially

round the femoral neck region ( Fig. 8 ). In comparison, larger er-

ors were observed around the femoral head, which we remark

o be less relevant than the neck area, being the main region at

isk of fracture. The incorporation of a shape regularisation step

ased on a Gaussian process model in Step 3 combines the de-

ired a priori information such as shape smoothness and statis-

ical shape variability through kernels of different nature. Thanks

o such flexibility, the resulting meshes can easily respect the lo-

al bone morphology (a small kernel can be used locally for areas

f high curvature such as the trochanters, larger kernels for rather

mooth regions such as the shaft). The regularisation process im-

roves the quality of the meshes ( Fig. 9 c) while maintaining good

evels of accuracy ( Fig. 9 a-b). It is also fast and does not need any

ptimisation. 
In terms of overall computational efficiency, the machine learn-

ng training step of the proposed approach is the more time-

onsuming part, however this is performed in an offline manner

nd is only performed once. During testing, the proposed approach

elivers a patient-specific model with sub-voxel accuracy of corti-

al thickness estimation within 3 minutes on a 3.2 GHz Intel Core

7 processor. Out of the three steps, step 2 (cortical thickness es-

imation) is the more time-consuming one, as it extracts imaging

eatures for each line profile. Steps one and three are time-effective

perations in the order of 2min and milliseconds, respectively. 

.2. Comparison with other techniques 

In Treece and Gee (2015) , the authors compared several tech-

iques for cortical thickness estimation and reported the superior

erformance of their approach. As this study used the same dataset

s our work, we compared our results to theirs and found that

ur respective approaches compare favourably ( Treece and Gee,

015 ). In particular, the thickness errors arising from our method

ere of 0.11 ± 0.45 mm for the [ 0 . 33 mm − 1 mm ] thickness range,

0 . 01 ± 0 . 32 mm for the [1 mm - 3 mm ] range and −0 . 01 ± 0 . 38 mm

or the [3 mm - 6 mm ] range. On the very same dataset, Treece and

ee report thickness errors of −0 . 15 ± 0 . 23 mm, 0.12 ± 0.39 mm

nd 0.04 ± 0.25 mm . This finding is very encouraging, especially

onsidering that Treece and Gee’s approach has already been used

n clinical studies ( Treece et al., 2015; Poole et al., 2017 ) and clin-

cal trials ( Whitmarsh et al., 2016 ). Nonetheless, it is worth men-

ioning that this comparison is limited as we remark that the study

f Treece et al. ( Treece et al., 2015 ) utilized a ground-truth gener-

tion based on full width at half maximum (FWHM), while in our

tudy the HRpQCT images were semi-automatically segmented by

hresholding with manual corrections, and two masks were gen-

rated for the cortical and trabecular regions using the “fill” algo-

ithm described in ( Pahr and Zysset, 2009 ). 
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Fig. 8. Left and right views of the spatial distribution of the cortical thickness and its error on the reference template femur (see Section 2.1.1 , �( R ) ). (a) Average ground-truth 

thickness measured from HRpQCT images of the whole population. (b) 25 th percentile error, (c) 50 th percentile error, and (d) 75 th percentile error. 

Fig. 9. Evaluation of the a) accuracy (Root Mean Square Error - RMSE), (b) robustness (Hausdorff distance - HD) and (c) element quality (Mean Aspect Ratio) for the surface 

generated by each step of the presented approach. Each boxplot corresponds to leave-one-out results. 
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From our previous experience and extensive evaluation of

image-based registration approach involving rigid, affine and b-

spline registration for proximal femoral image analysis ( Chandran

et al., 2017 ), we noticed that, for this specific task where the cor-

tical thickness spans 0.3–3 mm, the results of the image registra-

tion are not accurate enough (average error superior to 3 mm) in

determining cortical thickness of the femur. In particular, in our

experience, obtaining accurate registration results for a bone cor-

tical thickness of less than 1 mm, which is important for biome-

chanical simulations, becomes a major challenge. Henceforth, we

selected a landmark-based approach since it was able to perform

at sub-voxel accurate cortical thickness prediction while keeping a

low algorithmic parametrization, which we esteem important for
urther clinical use of the proposed solution. Similarly, our experi-

nce showed that while an image registration approach could be

sed for extracting morphometric features, the error in the pre-

icted morphometric features lies within the upper limits used for

he sensitivity analysis. 

Due to its statistical nature, the accuracy of our machine learn-

ng approach depends on the quality of the training database,

hich needs to be representative and of sufficient quality. For ex-

mple, a predictive model built on another scanning protocol can

ntroduce errors in the prediction of cortical thickness unless it is

e-trained. The machine learning approach also requires pairs of

linical and high resolution images for the training. In compari-

on, most approaches are generative methods that work directly
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Fig. 10. Comparison of the accuracy (RMSE) of the inner and outer surfaces obtained after the regularisation by Gaussian process (Step 3) and a volume-preserving smoothing 

(Taubin algorithm). The parameters for the Taubin smoothing ( λ, μ) were obtained heuristically so as to match the aspect ratio achieved with the regularisation ( Fig. 9 c). 

The visual inspection on the mean femur of our population shows that, unlike regularised surfaces (a), surfaces treated by Taubin smoothing (b) tend to deviate from the 

cortical borders with high curvature. However, both perform similarly in regions of low curvature (c, d). An analysis over the whole population shows that higher accuracy 

is achieved with the proposed regularisation (e) than with Taubin’s smoothing (f). 
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n clinical images. Yet, they require nonetheless a fine-tuning of

he model parameters to get an optimal solution ( Pakdel et al.,

012 ), which must still be validated against a ground-truth pro-

ided by high resolution images ( Treece and Gee, 2015; Humbert

t al., 2016 ). 

It can be argued that the upsampling of the line profile to

RpQCT voxel size in Step 2 might result in redundant data. How-

ver, along with the intensity values, the super-resolution strategy

ses second-order texture features to capture the variability within

he neighbourhood of line profile and provides sub-voxel cortical

hickness accuracy similar to fine tuned generative methods ( Lu

t al., 2015; 2017 ). 

It is worth mentioning again that the purpose of most previ-

us works is mainly to measure cortical thickness ( Pakdel et al.,

012; Humbert et al., 2016; Treece and Gee, 2015; Zhang et al.,

016 ). As presented here, we do that as well, but also aimed at

enerating surface meshes that can be used for producing tetra-

edral meshes for FE analyses. Mesh generation from clinical im-

ges normally starts with a segmentation that often requires time-

onsuming manual corrections. As inaccuracies at that level would

ave consequences on a FE analysis ( Peleg et al., 2014 ), some au-

hors proposed to deconvolve the CT images so as to improve the

egmentation ( Falcinelli et al., 2016 ). Our study suggests that ap-

roaches based on machine learning are able to produce high-

uality meshes without such pre-processing step. 
Generative methods estimate cortical thickness along the line

rofile following the normals of the outer mesh. In principle, an

nner mesh could be generated by shifting inward the outer nodes

ccording to the measured thickness. Yet, the normals often cross

ach other in areas of high curvatures, leading locally to inter-

ecting mesh elements. This prevents the generation of tetrahedral

lements and FE analysis. We thus follow a different paradigm.

ur inner and outer surface meshes have nodal correspondence

Step 1) and the pairs of nodes are moved until the line pro-

le matches the cortical borders (Step 2), which maintains their

opology. 

The resulting surfaces from Step 2 are rough and must be reg-

larised (Step 3). A number of volume-preserving approaches ex-

sts (e.g. Taubin’s algorithm ( Taubin, 1995 )), but smoothing is then

one globally and in our experience with these methods, they

eeds to be tuned for each bone. Ultimately, this deteriorates the

urface accuracy and thickness estimation. On the other hand, the

egularisation that we propose adapts to the topology of the in-

er and outer surface meshes simultaneously (“shape-aware”). The

dea is to account for two types of priors, namely “we want a

mooth mesh” and “we want a correct bone shape”, which can be ob-

ained through the Gaussian process model proposed herein ( Lüthi

t al., 2013; Shahim et al., 2013; Lüthi et al., 2017 ). A comparison

etween our regularisation and a Taubin smoothing is available in

ig. 10 . 
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Fig. 11. Left and right views of the spatial distribution of the tetrahedral elements generated from a random pair of s step3 surface meshes. Their aspect ratio in the cortical 

(a) and trabecular (b) regions was evaluated. The measured value was 1.35 ± 0.05 in the cortex and 1.25 ± 0.03 in the trabecular bone. Those values correspond to high- 

quality elements and fall within the range used by Abaqus for FEA (1;10), 1 corresponding to the aspect ratio of a regular tetrahedron (best case) and 10 being the value for 

considering the element as degenerated (worst case). 

Fig. 12. A QCT scan (A) is used by our approach to generate surface meshes for the inner and outer cortical surfaces (B). (C) A tetrahedral mesh is built via GMSH, positioned 

and embedded (extra grey elements) as in the in vitro experiment. Axial loading is then conducted in Abaqus (v6.132, Simulia; Dassault Systemes, Velizy-Villacoublay, France), 

the mechanical behaviour the bony elements being simulated by a density (BV/TV)-based material model. (D) The simulated damage area matches the failure observed on 

the X-ray acquired after the experiment. 
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4.3. Summary of the strengths of the approach 

Our goal is to integrate an accurate cortical thickness estimation

in a mesh that can be used for finite element analyses. In regards

of the proposed solution, four assets are highlighted. 

First, the internal coordinate system for shape regression avoids

the need for an actual registration during the initialisation step

(“registration-free”). To form this coordinate system, few land-

marks are needed ( Chandran et al., 2017 ). We conducted a sen-

sitivity analysis to know how precise they have to be ( Figs. 5,6 ),

indicating suitability of the approach for clinical use. 

A second novelty is that the surface meshes produced in Step2

are “topology-preserving”. That means that the outer (respectively

inner) surface meshes generated for two individuals feature the

same topology, no matter which bone is being analysed. The spa-

tial comparisons of cortical thickness in large clinical studies can

thus be more reliable as there is a direct correspondence between

nodes/elements across the population. 

The third strength of the pipeline lies in the modularity of the

kernel design of the Gaussian process which allows combination

of different kernels in a straightforward manner. This flexibility

can be further explored by investigating other kernels or combina-

tions thereof, which can be used to model pathological anatomies

not known to a typical SSM-based kernel ( Lüthi et al., 2013;

2017 ). 
. Conclusion and future work 

Cortical bone thickness has been shown to contribute sig-

ificantly to the fracture risk ( Treece et al., 2015 ). Such infor-

ation can be captured from clinical images, but is hardly in-

luded in QCT-based finite element models. Our approach produces

opology-preserving finite element meshes with sub-voxel cortical

hickness estimation from CT data. It is automatic and registration-

ree, and its computation time makes it suitable for integration

nto a system for clinical use. 

In this study, the femur was chosen as an example of appli-

ation, but this can be extended to other anatomical sites pro-

ided that high-resolution CT images are also available (e.g. the

ertebra ( Pahr et al., 2014 ), the wrist ( Varga et al., 2009 ) or the

neecap ( Latypova et al., 2016 )). 

One important limitation of the present study is the fact that it

as conducted on in vitro images. This was necessary to build the

ipeline, as HRpQCT scans cannot at present be acquired in vivo

t the hip area. Future work includes evaluating its robustness (e.g

can-rescan) on in vivo CT data. 

Finally, to provide some insights as to what can be done with

his method, we produced a tetrahedral mesh from our surface

eshes and evaluated its quality ( Fig. 11 ). Since the femurs of our

atabase have not only been scanned, but also tested mechanically

ntil failure ( Dall’Ara et al., 2013 ), we checked that this mesh was
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Table C1 

Description of the dataset with age, gender, sides, aBMD values obtained by DXA 

for the total proximal femur ( Total ), femoral neck ( Neck ), trochanter ( Troch ), and 

intertrochanter ( Inter ) regions and osteoporotic status based on T-score. 

Donor Age Gender Side BMD Status 

Total Neck Troch Inter 

1 70 F L 0.527 0.488 0.411 0.571 Osteoporotic 

1 70 F R 0.449 0.419 0.326 0.521 Osteoporotic 

2 60 M L 0.607 0.594 0.43 0.723 Osteoporotic 

2 60 M R 0.655 0.614 0.498 0.748 Osteoporotic 

3 77 F L 0.645 0.483 0.407 0.821 Osteopenic 

3 77 F R 0.632 0.453 0.385 0.843 Osteopenic 

4 84 F L 0.428 0.31 0.302 0.541 Osteoporotic 

4 84 F R 0.442 0.339 0.272 0.574 Osteoporotic 

5 68 F L 0.892 0.783 0.822 0.972 Normal 

5 68 F R 0.822 0.699 0.677 0.94 Normal 

( continued on next page ) 
uitable for finite element analyses and compared the experimen-

al and simulated failure locations ( Fig. 12 ). This pipeline will be

xpanded in a future work to determine how cortical thickness im-

roves finite element predictions. 
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ppendix A. Construction of internal coordinate system 

An internal coordinate system of the femur was constructed as

hown in Fig. 2 . First, the center of the femoral head (FHC) is de-

ned by a mass center of a spherical region with maximal cross-

ection area. The neck axis is then computed by following the pro-

edure reported by Kang et al. ( Kang et al., 20 05; 20 03 ). In short,

he radius of the spherical region of the femoral head is enlarged

y 25%, and an initial neck center is defined. Using Powell’s opti-

ization ( Press et al., 2007 ), the center of the femoral neck (FNC)

s computed, and the neck axis is defined as the line between FHC

nd FNC (see Fig. 2 ). The intersection point between the neck axis

nd the lateral surface of the femur is defined as the neck-axis-

nd-point (NEP). Then, the mass center of slices distal to NEP are

omputed, followed by RANSAC fitting ( Fischler and Bolles, 1981 )

o define the shaft axis. Generally, as the neck and shaft axes do

ot intersect, a midpoint (MP) is defined as the shortest distance

etween the neck and shaft axes. The most distal point of the

haft axis is chosen as shaft-axis-distal-point (SDP). By connecting

DP, MP and FHC, the implicit coordinate system is constructed.

s morphological parameters we calculated known shape descrip-

ors of the femur, such as the caput-collum-diaphyseal angle (CCD),

emoral head diameter, and distances describing the femoral neck

natomy. 

ppendix B. Offline step: Gaussian process model 

For modeling the statistical shape models with and without ad-

itional flexibility we used the Gaussian process framework ( Lüthi

t al., 2017 ). In this approach a deformation model is defined on a

eference domain, such as a surface or a volume, using a Gaussian

rocess. More precisely let �(R ) ⊂ R 

3 be the reference surface and

 : �(R ) → R 

d a deformation field to deform the reference surface,

hereas a deformed shape is defined as 

T = { x + u (x ) | x ∈ �(R ) . (B.1)

We define a prior over the possible deformations using a Gaus-

ian process u ∼ GP ( μ, k ), where μ : �(R ) → R 

3 is a mean func-

ion and k : �(R ) × �(R ) → R 

3 ×3 is a covariance function. The mean

unction defines the average deformation from the reference that

e expect (which is typically the zero function, assuming that the

eference is an average shape) and the covariance function de-

nes the characteristics of the allowed deformations. The resulting

odel is a fully probabilistic model over femur shapes. 

We can turn this infinite dimensional problem into a tractable

ne by approximating the model using a truncated Karhunen-

oève expansion. This leads to a parametric model ˜ u (α, x ) of the
orm 

˜ 
 (α, x ) := μ(x ) + 

C ∑ 

i =1 

αi 

√ 

λi φi (x ) , αi ∼ N (0 , 1) , (B.2)

here λi ∈ R are weights and φi : �
(R ) → R 

3 corresponding basis

unction. A detailed discussion about the accuracy of the low-rank

pproximation and the amount of basis-functions can be found in

üthi et al. (2017) . 

1. Sample covariance kernel ( k ssm 

) 

As reported in ( Lüthi et al., 2017 ) that kernels can also be de-

cribed from training data. A Gaussian process GP ( μssm 

, k ssm 

) that

odels these characteristic deformations is obtained by estimating

he empirical mean 

ssm 

(x ) = 

1 

n 

n ∑ 

i =1 

u i (x ) (B.3)

nd covariance function 

 ssm 

(x, x ′ ) = 

1 

n 

n ∑ 

i =1 

(u i (x ) − μssm 

(x ))(u i (x ′ ) − μssm 

(x ′ )) T . (B.4)

2. Combining kernels 

The deformation prior is defined using a Gaussian process

 ∼ GP ( μ, k ) with a mean function μ and a covariance function k .

he approach allows to combine multiple kernels according to a

imple set of rules ( Lüthi et al., 2017 ). As one example, the sum of

wo kernels h ( x, x ′ ) and g ( x, x ′ ) gives a valid kernel again: 

 (x, x ′ ) = g(x, x ′ ) + h (x, x ′ ) (B.5)

As an example we combine k ( x, x ′ ) with k SSM 

( x, x ′ ) the follow-

ng: 

 ∼ GP ( μ + μSSM 

, k + k SSM 

) (B.6)

ppendix C. Data source: Additional information 

The femurs used in this study also underwent dual-energy X-

ay absorptiometry (Discovery QDR, Hologic Inc., USA) ( Dall’Ara

t al., 2016 ), which is the gold standard for screening osteoporosis.

alues of aBMD (areal BMD) were thus computed for the standard

egions of interest. The femurs were then categorised according to

heir BMD-based T-score as osteoporotic, osteopenic and normal.

ur dataset counts 28 osteoporotic femurs, 22 osteopenic femurs,

nd 20 normal femurs. We added this information in the following

able: 
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Table C1 ( continued ) 

6 60 M L 0.69 0.601 0.68 0.712 Osteopenic 

6 60 M R 0.706 0.641 0.648 0.754 Osteopenic 

7 80 M L 0.717 0.625 0.642 0.799 Osteopenic 

7 80 M R 0.738 0.558 0.666 0.829 Osteopenic 

8 79 M L 0.61 0.531 0.495 0.706 Osteopenic 

8 79 M R 0.677 0.55 0.491 0.819 Osteopenic 

9 87 F L 0.4 4 4 0.456 0.297 0.521 Osteoporotic 

9 87 F R 0.398 0.397 0.255 0.481 Osteoporotic 

10 96 F L 0.398 0.314 0.245 0.526 Osteoporotic 

10 96 F R 0.282 0.297 0.128 0.39 Osteoporotic 

11 66 F L 0.634 0.556 0.441 0.742 Osteoporotic 

11 66 F R 0.608 0.548 0.437 0.73 Osteoporotic 

12 65 M L DXA missing 

12 65 M R DXA missing 

13 69 M L 0.598 0.546 0.401 0.753 Osteoporotic 

13 69 M R 0.544 0.478 0.371 0.671 Osteoporotic 

14 89 M L 1.004 0.811 0.785 1.17 Normal 

14 89 M R 1.01 0.822 0.847 1.176 Normal 

15 91 M L 0.735 0.526 0.53 0.913 Osteopenic 

15 91 M R 0.727 0.533 0.548 0.891 Osteopenic 

16 73 F L 0.806 0.708 0.552 0.992 Osteopenic 

16 73 F R 0.787 0.696 0.555 0.97 Osteopenic 

17 73 M L 0.975 0.806 0.746 1.134 Normal 

17 73 M R 0.894 0.737 0.721 1.041 Normal 

18 67 M L 0.843 0.656 0.667 1.007 Normal 

18 67 M R 0.903 0.673 0.724 1.072 Normal 

19 71 M L 1.18 0.916 0.789 1.434 Normal 

19 71 M R 1.037 0.833 0.707 1.249 Normal 

20 88 M L 0.94 0.791 0.683 1.125 Normal 

20 88 M R 0.949 0.762 0.717 1.126 Normal 

21 81 F L 0.563 0.473 0.376 0.685 Osteoporotic 

21 81 F R 0.588 0.492 0.409 0.699 Osteoporotic 

22 85 M L 0.613 0.497 0.413 0.749 Osteoporotic 

22 85 M R 0.592 0.502 0.37 0.709 Osteoporotic 

23 74 F L 0.628 0.482 0.484 0.793 Osteoporotic 

23 74 F R 0.592 0.432 0.472 0.714 Osteoporotic 

24 87 F L 0.476 0.486 0.334 0.548 Osteoporotic 

24 87 F R 0.467 0.479 0.33 0.547 Osteoporotic 

25 64 F L 0.735 0.656 0.515 0.898 Osteopenic 

25 64 F R 0.767 0.685 0.554 0.934 Osteopenic 

26 80 M L 0.834 0.735 0.638 0.946 Osteopenic 

26 80 M R 0.768 0.698 0.607 0.867 Osteopenic 

27 67 M R 1.009 0.806 0.756 1.201 Normal 

27 67 M L 1.035 0.801 0.771 1.223 Normal 

28 93 F L 0.534 0.437 0.403 0.624 Osteoporotic 

28 93 F R 0.563 0.497 0.401 0.689 Osteoporotic 

29 88 F L 0.399 0.234 0.375 0.448 Osteoporotic 

29 88 F R 0.408 0.284 0.333 0.468 Osteoporotic 

30 88 F L 0.596 0.459 0.495 0.717 Osteoporotic 

30 88 F R 0.586 0.582 0.411 0.674 Osteoporotic 

31 59 M L 0.875 0.714 0.736 0.98 Normal 

31 59 M R 0.889 0.742 0.7 1.032 Normal 

32 79 M L 0.792 0.679 0.51 0.958 Osteopenic 

32 79 M R 0.763 0.703 0.487 0.918 Osteopenic 

33 70 F L 0.831 0.695 0.645 1.018 Normal 

33 70 F R 0.824 0.703 0.631 0.972 Normal 

34 89 F L 0.781 0.543 0.674 0.918 Osteopenic 

34 89 F R 0.733 0.597 0.622 0.84 Osteopenic 

35 88 F L 0.923 0.692 0.661 1.165 Normal 

35 88 F R 0.828 0.676 0.676 0.96 Normal 

36 46 F L 0.797 0.667 0.607 0.905 Osteopenic 

36 46 F R 0.775 0.681 0.6 0.881 Osteopenic 
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