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Abstract. Point Distribution Models (PDM) are some of the most popular 

shape description techniques in medical imaging. However, to create an accu-

rate shape model it is essential to have a representative sample of the underlying 

population, which is often challenging. This problem is particularly relevant as 

the dimensionality of the modeled structures increases, and becomes critical 

when dealing with complex 3D shapes. In this paper, we introduce a new gen-

eralized multiresolution hierarchical PDM (GMRH-PDM) able to efficiently 

address the high-dimension-low-sample-size challenge when modeling complex 

structures. Unlike previous approaches, our new and general framework extends 

hierarchical modeling to any type of structure (multi- and single-object shapes) 

allowing to describe efficiently the shape variability at different levels of reso-

lution. Importantly, the configuration of the algorithm is automatized thanks to 

the new agglomerative landmark clustering method presented here. Our new 

and automatic GMRH-PDM framework performed significantly better than 

classical approaches, and as well as the state-of-the-art with the best manual 

configuration. Evaluations have been studied for two different cases, the right 

kidney, and a multi-object case composed of eight subcortical structures. 
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1 Introduction 

Since their inception in the early 1990s, active shape models (ASM) [1] have prov-

en effective for addressing a number of problems where the target structures are con-

sistent in shape but poorly defined by image features, as is often the case in medical 

images. The success of point distribution models (PDM)-based matching approaches 

depends on an accurate description of the shape class, the expected shape instances, 

and their variations. While a limited number of examples may be sufficient when 

working with relatively simple objects, an adequately large training set is not always 

available as the dimensionality and complexity of the structures increase, as is usually 
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the case when working with 3D multi-object structures. This issue is known as the 

high-dimension-low-sample-size (HDLSS) problem. Trying to overcome this ques-

tion, some authors have proposed interesting versions of the classical PDM, exploit-

ing the possibilities of incorporating multiresolution-based hierarchical analysis to 

shape modeling. Davatzikos et al. [2] proposed the hierarchical decomposition of the 

shape into small pieces of information via the wavelet transform. However, whereas 

the independent modeling of these bands allows reducing the dimensionality of the 

problem, and thus the HDLSS effect, it also reduces the robustness of the model as 

shown in [3]. An interesting attempt to describe the interrelationships between objects 

at different scales statistically is the multiscale framework proposed by Lu et al. [4], 

using m-reps as the geometric representation of shapes. In spite of the valuable mul-

tiscale properties of m-reps, they are less intuitive than the landmarks-based represen-

tation used in PDMs, which is probably one of the simplest and most generic methods 

used to represent shapes. Yokota et al. [13] proposed an interesting hierarchical statis-

tical model of the femur and pelvis, imposing additional connectivity constraints to 

control the matching between different subparts. In the recent work of Cerrolaza et al. 

[3,5], a new multiresolution hierarchical variant of PDM (MRH-PDM) was intro-

duced, able to efficiently characterize the different inter-object relationships, as well 

as the particular locality of each element separately. Even though the potential of this 

new method in terms of accuracy and robustness improvement was successfully veri-

fied, there are two main drawbacks that limit its practical application. First, the ab-

sence of an automatic grouping approach can hinder its use when working with com-

plex data with a large number of objects. On the other hand, the hierarchical decom-

position is limited to multi-object structures, since no intra-object analysis is consid-

ered within the original framework.  

In this paper, we propose a new Generalized Multiresolutoin Hierarchical PDM 

(GMRH-PDM) that addresses these two important issues, automatic grouping and 

intra-object analysis. The new notation introduced in Section 2 extends the hierar-

chical modeling of PDM even to single-object structures, which leads to a more ver-

satile and generalizable framework. Finally, the configuration of the algorithm (i.e., 

the definition of clusters at each resolution) is automatized thanks to the new agglom-

erative landmark clustering approach described in Section 3. The performance of the 

new GMRH-PDM method is studied for two different cases, the right kidney, and a 

multi-object case composed of eight subcortical structures. 

2 Generalized Multiresolution Hierarchical PDM 

In this section we present a new generalization of the original MRH-PDM formula-

tion described by Cerrolaza et al. [3]. In their work the capability to model variability 

in subparts of a single object was limited, as they considered the single objects as the 

simplest structure to model at the finest resolution levels. Relaxing this condition, we 

go one step further in the development of hierarchical PDMs, introducing a more 

general framework where any possible grouping of landmarks is considered.  



Let   be the vector form of a 3D shape defined by     landmarks. In the general 

case of a multi-object shape composed of   (   ) single-object structures,    

(     ),   is defined by the concatenation of the 3 coordinates of the      

landmarks (   ∑  ) that define each object, i.e.   (       )
 . Using the mul-

ti-object generalization [5] of the matrix notation initially proposed by Lounsbery et 

al. [6], the multiresolution analysis of   can be formulated as: 

           (1) 

           (2) 

where     indicates the level of resolution (in particular     defines the finest 

level of resolution, and thus,     ), and    and    represent the analysis filters. 

Equation (1) implements the filtering and downsampling of     , providing a lower 

resolution version of it (i.e.,        , where      represents the number of 

landmarks at the resolution level  ), while     (2) captures the lost detail between    
and     . An optimal selection of these analysis filters guarantees that no information 

is lost during the process, being possible to reverse the analysis process with synthesis 

equation:               . Lounsbery et al. [6] provide a general multiresolution 

framework to compute the analysis and synthesis filters (        nd  ) for meshes 

with subdivision connectivity and arbitrary topology. In this work, we define the mul-

tiresolution domain using the octahedron as the reference mesh [8], with a 4-to-1 

splitting step, and a lifter butterfly scheme for triangular meshes [7]. 

With this method described above, it is possible to decompose any multi object 

structure into different levels of resolution. Whereas MRH-PDM established a specif-

ic division of the   objects into      disjoint subsets at each level or resolution 

(i.e., only complete objects can be part of a subset), here we propose a more general 

definition of the disjoint subsets allowing any type of groping between the total set of 

landmarks. Thus, at each level of resolution   we define a particular division of the 

   landmarks into    separate clusters, (  
       

 ) , where   
  (        ) is 

formed by the indices of the landmarks contained in this subset, and therefore, 

⋂   
   

  
    and ⋃   

   
    (     ). In addition, we impose the following condi-

tion. Suppose       
   ( ) represents the  -th element of the     -th subset defined at the 

 -1-th resolution level, and  ̂  
  be the propagation of    

  to  -1, then 

  
    
   ( )   ̂  

      
    
     ̂  

  (3) 

That is, two sets of landmarks that have been grouped separately at a specific level of 

resolution, should not be jointly modeled at finer levels; or equivalently, the clusters 

created in the resolution  -th derived from the fragmentation of clusters in resolution 

   -th (see Fig. 1). Despite the intuitive meaning of (3), there is a challenge yet to 

be resolved: the propagation of the clusters between two consecutive resolutions. Let 

   be a (     ) vector (i.e., the same size as   ) containing the labels of the subset 

to which each landmark of    belongs; i.e., if   ( )   
  then   ( )   . With this nota-

tion, we can estimate  ̂   , the propagation of the subdivision defined by    to the 

landmarks of the following resolution,   -1, by means of the synthesis matrix,   . 



3 Automatic Landmark Clustering Using Vector Fields 

In this section we introduce a new landmark clustering approach that allows to define 

automatically the division of the landmarks into separate clusters at each resolution. 

The clustering process was initially inspired by the work presented by Roy et al. [9], 

which was originally conducted for vector field segmentation of moving objects in 2D 

videos, and extended to 3D objects by Reyes et al. [10] to study the anatomical varia-

bility of single organs via principal factor analysis. Here we propose a more general 

approach based on the agglomerative hierarchical clustering method presented by 

Ward [11], where the criterion for choosing the pair of clusters to merge at each step 

is based on the minimum value of the tailored objective function:  

  ( )     ∫ .
|     |

|  |
/
  

 

    

|  |
     (  

∫   
 
 

∫   
 
 

)     ( ) (4) 

where       and    are real values such that ∑    .     represents a region or 

subdomain within the set of landmarks   we want to divide into an optimal set of 

clusters. The first component of (4) takes into account the colinearity between defor-

mation vectors within the domain   and the predominant vector direction    in  . 

Here, we define the deformation vector of landmark     ,    as the sum of the ei-

genvectors obtained via PDM over  , and weighted by their corresponding eigenval-

ues. Then          *‖  ‖+, and    is defined as the highest eigenvalue of the 

matrix  ( )  ∫    
 

 
  
   . The second term in (4) acts as a maximal area constraint. 

The aim of the third term,  ( ), defined as the Hausdorff distance between the ob-

jects that compose   normalized by the maximum distance among objects in  , is to 

promote the grouping of objects that are spatially close. When minimizing equation 

(4), it is desirable that the colinearity between deformation vectors be the dominant 

term in the generation of clusters, while the second and third term act as additional 

constraint to guarantee the consistency of the final results, i.e.    (     )   
From the f mily of p rtitions provided by W rd’s [11] algorithm, we define the op-

timal landmark division based on a tailored version of the Silhouette coefficient de-

fined below. Suppose landmark    is assigned to cluster   . Then, it is possible to 

define how well    is assigned to its cluster as     (  )   (     ), where       rep-

resents the cluster    after removing   . Thus, large    represents a high dissimilarity 

between    and     In the same way, we define the dissimilarity of    to any other clus-

ter   (   ) to which    is not member as       {    }, where        (     )  

 (  ), and       represents the union of    and   . Constraining the value of    and    

to the range ,   - by means of the logistic function,   ( ), we define the Silhouette 

coefficient for landmark   ,   , as  

   = 
  (  )   (  )

   *  (  )      (  )+
 (5) 

Since a value of    close to   means that    is appropriately clustered in   , the opti-

mal clustering of   will be the one that maximizes the average   . 



 

Fig. 1. Hierarchical configuration provided by the GMRH-PDM algorithm for the multi-object 

structure composed by eight subcortical structures. At each level of resolution the set of land-

marks depicted with the same color are modeled jointly via PDM. At resolution    the lateral 

ventricles are in magenta (  
 ) and navy (  

 ), the caudate nuclei in yellow (  
 ) and green (  

 ), 

the putamen in black (  
 ) and red (  

 ), and the globus pallidi in blue (  
 ) and cyan (  

 ). 

 

Fig. 2. (a) Hierarchical configuration obtained for the kidney model. At each level of resolution 

the area depicted with the same color is modeled jointly via PDM. (b) Deformation field de-

fined by the first mode of variation when modeling all the landmarks jointly. The clustering 

configurations proposed by GMRH-PDM (especially in resolutions    and   ) are able to iden-

tify areas affected by a similar deformation field. 

4 Shape Modeling via GMRH-PDM 

Let   be the vector form of any 3D structure (i.e., multi-object or single-object), 

whose multiresolution decomposition *                       + , can be ob-

tained using (1) and (2). Imposing the initial condition that      (i.e., a global 

statistical shape model of the whole set is built at the coarsest resolution in order to 

guarantee the coherent disposition of the elements), a new landmark subdivision 

scheme is calculated at resolution  -1 for each of the   subsets (  
          ) 

obtained at  . Every new subdivision is obtained automatically using the landmark 

clustering approach introduced in Section 3. Finally, an efficient statistical model of 

the shape is created building a different PDM for every   
    in which the structure 

has been divided, allowing to characterize different characteristics of the structure at 

each scale. Suppose now we want to use the new GMRH-PDM we just created to 

describe a new case,  , i.e., finding the best approximation of   in the subspace of 

allowed shapes described by the statistical model. Starting from the finest resolution, 

   is divided into the    subsets previously defined, each of which is corrected by 



the corresponding PDM. This process is repeated at each resolution until    . In the 

transition of each resolution, the high frequency component of the new constrained 

shape,  ̂ , will be used to recover the original resolution at the end of the process 

using the synthesis equation presented in Section 2. 

5 Results and Discussion 

To evaluate the performance of the new automatic GHMR-PDM approach we use two 

different datasets. First we use a set of 18 T1-weighted brain MRI volumes obtained 

from the Internet Brain Segmentation Repository (IBSR) [12] (pixel resolution 

               mm; volumes:              voxels). In particular, we work 

with a multi-object structure composed of eight subcortical structures (       ), 
corresponding to the left and right lateral ventricles, left and right caudate nuclei, left 

and right putamens, and left and right globus pallidi, respectively (Fig. 1). The per-

formance of the new GMRH-PDM is also tested over a single-object database. We 

use a proprietary dataset of right kidneys from 18 CT abdominal studies (pixel resolu-

tion:                mm;             voxels). Following the general 

guidelines described in Section 3, the three configuration parameters of GMRH-PDM, 

      and   , are set to 0.8, 0.1 and 0.1, respectively. Experimentally, we observed 

great similarity between the clusters obtained when   = [0.7 – 0.9] (using       
(    )  ). For       , the landmarks grouped into a single large cluster, being 

the second and third term of (4) which control the clusterization process. For        
landmarks are over-clustered due to the under-penalization of partitions.  

The resulting automatic configurations for the multi-object and single-object case 

are shown in Figs. 1 and 2 respectively. The behavior of the new modeling approach 

is compared with two alternative methods for the multi-object case: the classical PDM 

[1], and the previous multiresolution hierarchical approach, MRH-PDM, proposed in 

[3, 5]. In particular, we chose the configuration that exhibited best results from all the 

hierarchical configurations manually defined in [5]. Due to the inability of MRH-

PDM to deal with single-object structures, only PDM is considered in the comparison 

for the second/kidney data under study. The accuracy of the different methods to 

model new instances of the underlying population is evaluated in terms of the average 

landmark-to-landmark distance (L2L), and the Dice coefficient (DC), using leave-

one-out cross-validation. Table 1 shows the results obtained for the multi-object case. 

Compared with the classical PDM (avg. L2L error:           vox.; avg. DC: 

         ), both multiresolution hierarchical approaches provide substantial im-

provements in accuracy for all the subcortical structures. With the exception of globus 

pallidi, all improvements over PDM are statistically significant according to the Wil-

coxon signed rank test (p-value < 0.05 for all). Although the new GMRH-PDM per-

formed similarly to the previous hierarchical version, MRH-PDM, in terms of accura-

cy (avg. L2L error:            vs.            and avg. DC:           vs. 

         , respectively), it provides a significant advantage over the latter. The 

GMRH-PDM framework introduced in this paper is fully automatic, while the origi-

nal MRH-PDM requires the hierarchical configuration to be manually defined by the 



user. As the number of possible configurations can be considerably high when work-

ing with large number of objects, it is a nontrivial challenge to find an optimal one by 

simple manual supervised selection. Thanks to the landmark clustering approach pre-

sented in Section 3, GMRH-PDM is able to automatically provide an optimal hierar-

chical decomposition of the structure, while performing as well as the best manual 

configuration of MRH-PDM. But GMRH-PDM has an additional major advantage 

over MRH-PDM as it allows single-object and intra-object analysis. 

Table 1. Accuracy Evaluation. Landmark-to-l ndm rk (L2L) dist nce  nd Dice’s coefficient 

(DC) (average / standard deviation) for the three studied methods (PDM, MRH-PDM, and 

GMRH-PDM) over eight subcortical structures (       ) (see Fig. 1). (•)  marks significant 

improvements over classic PDM. 

L2L (vox.)                         Avg. 

PDM                                                                                           

MRH-PDM                                                                                                  

GMRH-PDM                                                                                                  

 

DC                         Avg. 

PDM                                                                                           

MRH-PDM                                                                                                  

GMRH-PDM                                                                                                  

 

The superiority of GMRH-PDM over PDM to model subparts in single-object 

structures was also proven in the kidney database. In this case, the average L2L errors 

were           vs.         , and the average DCs were           vs.      
     for GMRH-PDM and PDM, respectively (p-value = 0.03 and  0.02 respectively). 

The computational complexity of the new landmark clusterization is  (  ), taking 

     min. to process the most complex multi-object case with 8208 landmarks (code 

written in Matlab®).  However, this is not a determining factor for the practical appli-

cation of the method, since the clusterization can be performed off-line. 

6 Conclusions 

In this paper, we present a new Generalized Multiresolutoin Hierarchical PDM 

(GMRH-PDM) to address the high-dimension-low-sample-size challenge of great 

relevance when modeling complex structures with the classical PDM. The general 

framework introduced here creates different statistical models that allow to describe 

efficiently the variability of the shape at different levels of resolution. The new 

GMRH-PDM also tackles the two main drawbacks observed in previous hierarchical 

approaches: the difficulty of manually defining the hierarchical configuration that 

provides optimal performance, and the impossibility of dealing with single-object 

structures by considering entire objects as the minimum modeling unit. The general 

notation used in GMRH-PDM extends the hierarchical modeling of PDM to any set of 

landmarks, leading to a more versatile framework able to deal with all types of struc-



tures, even single-object shapes. Finally, the hierarchical configuration of the algo-

rithm is automatically defined by means of a new agglomerative landmark clustering 

approach, whose optimization is controlled by a tailored definition of the Silhouette 

coefficient. The algorithm is compared with two different alternatives, PDM and the 

MRH-PDM. The results show how the new automatic GMRH-PDM significantly 

outperform the classical PDM in terms of accuracy, while providing similar results to 

the best manual configuration of MRH-PDM. GMRH-PDM allows the automatic 

hierarchical modeling of structures, from the multi-object level to the inter- and intra-

object resolution, which can be of great interest in the context of full body computa-

tional anatomy.  In the near future, we plan to continue exploring this capability to 

study population variability and the temporal anatomical variability of organs. 
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