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a b s t r a c t

Point Distribution Models (PDM) are among the most popular shape description techniques and their use-

fulness has been demonstrated in a wide variety of medical imaging applications. However, to adequately

characterize the underlying modeled population it is essential to have a representative number of training

samples, which is not always possible. This problem is especially relevant as the complexity of the modeled

structure increases, being the modeling of ensembles of multiple 3D organs one of the most challenging

cases. In this paper, we introduce a new GEneralized Multi-resolution PDM (GEM-PDM) in the context of

multi-organ analysis able to efficiently characterize the different inter-object relations, as well as the par-

ticular locality of each object separately. Importantly, unlike previous approaches, the configuration of the

algorithm is automated thanks to a new agglomerative landmark clustering method proposed here, which

equally allows us to identify smaller anatomically significant regions within organs. The significant advan-

tage of the GEM-PDM method over two previous approaches (PDM and hierarchical PDM) in terms of shape

modeling accuracy and robustness to noise, has been successfully verified for two different databases of sets

of multiple organs: six subcortical brain structures, and seven abdominal organs. Finally, we propose the

integration of the new shape modeling framework into an active shape-model-based segmentation algo-

rithm. The resulting algorithm, named GEMA, provides a better overall performance than the two classical

approaches tested, ASM, and hierarchical ASM, when applied to the segmentation of 3D brain MRI.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

The segmentation and shape analysis of human organs is of cru-

ial importance to better design tools for diagnosis and treatment,

tudy diseases, and perform patient follow-up (Heimann and Meinzer,

009). Due to the inherent limitations of traditional bottom-up seg-

entation methods based solely on pixel-level information, the anal-

sis of organs in 3D radiological data calls for shape description

ethods capable of dealing with the high variability and complex-

ty of the human anatomy, and the presence of image inaccura-

ies (e.g., partial volume effects (González-Ballester et al., 2002),
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cclusions, image noise, or low contrast), as it is often the case of

edical images.

Several statistical shape models, such as deformable templates

Grenander et al., 1991) or spherical harmonic descriptors (Kelemen

t al., 1998), emerged at the end of the last century. The Point Dis-

ribution Model (PDM) proposed by Cootes et al. (1995) has been of

onsiderable research interest since its inception in the early 1990s,

nd its versatility and relative simplicity facilitated the emergence

f a large number of extensions of the original framework (Cootes

t al., 1994; Duta and Sonka, 1998; Hamarneh and Gustavsson, 2004;

ajamani et al., 2007). Traditionally, medical imaging and statistical

hape models have focused on single-organ applications. However,

ware of the importance of shifting from organ-based to organism-

ased approaches, there has been growing interest in the develop-

ent of more comprehensive models in recent years (Linguraru et al.,

012; Okada et al., 2008). An interesting property of PDMs is their

nherent capacity to model multi-object structures by concatenat-

ng the descriptors of all the objects and performing global statis-

ics on the resulting tuple. However, two major drawbacks limit its
shape modeling of multi-organ structures, Medical Image Analysis
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utility when working with structures of increased complexity. First,

PDMs do not respect object-based scale levels, lacking the ability to

explicitly describe important local geometric information, such as lo-

cality or inter-organ relations. Second, the models typically face the

high-dimension-low-sample-size (HDLSS) problem, which appears

when the number of parameters needed to accurately describe the

geometry is larger than the number of training samples available, as

it is the case in many medical imaging applications.

Trying to overcome the shortcomings of PDMs, some authors have

proposed interesting versions of the classical PDM, exploiting the

possibilities of incorporating multi-resolution hierarchical analysis

into shape modeling. Davatzikos et al. (2003) proposed a hierarchi-

cal decomposition of shape into small pieces of information via the

wavelet transform. However, whereas the independent modeling of

these bands allows reducing the dimensionality of the problem, and

thus the HDLSS effect, it also reduces the robustness of the model

as shown by Cerrolaza et al. (2012). An interesting attempt to de-

scribe the interrelations between objects at different scales statisti-

cally is the multi-scale framework proposed by Lu et al. (2007) using

m-reps as the geometric representation of shapes. In spite of the valu-

able multi-scale properties of m-reps, they are less intuitive than the

landmark-based representation used in PDMs, which is probably one

of the simplest and most generic methods used to represent shapes.

The inter-organ relation is also integrated into the framework pre-

sented by Okada et al. (2013), where the spatial correlations among

organs were encoded into a correlation graph. This information was

used to define the sequential segmentation of multiple organs in ab-

dominal Computer Tomography (CT) images. The aim of this hier-

archical approach was to improve the accuracy in segmenting more

challenging abdominal organs, such as the gallbladder and pancreas,

relying on the available segmentation of more stable organs surround-

ing them. However, the errors in the segmentation of the stable or-

gans are also propagated, and thus affecting the subsequent predic-

tions and segmentations due to the proposed sequential formulation.

Inter-organ relations were also incorporated in the method proposed

by Suzuki et al. (2012), whose atlas-based multi-organ segmentation

approach was able to automatically handle missing organs due to

surgical resection. In our previous work (Cerrolaza et al., 2012), we

proposed a new multi-resolution hierarchical variant of PDM (MRH-

PDM), able to efficiently characterize inter-object relations, as well

as the particular locality of each object separately. Even though the

potential of MRH-PDM was successfully verified in terms of accuracy

and robustness, the absence of an automatic grouping approach can

hinder its practical application when working with complex data with

a large number of objects. Another important limitation of MRH-PDM

was the limited capability to model the intra-object variability of

complex organs, considering the single objects as the simplest struc-

tures to model at the finest resolution level (i.e., each object modeled

separately).

In this paper, we present a new GEneralized Multi-resolution PDM

(GEM-PDM) to address the above limitations of MRH-PDM: intra-

object analysis, and automatic multi-resolution hierarchical decom-

position. Extending the original hierarchical modeling of PDM intro-

duced in Cerrolaza et al. (2012) to sub-parts of single-object structures

leads to a more versatile and generalizable multi-organ-, organ- and

sub-organ-based framework, able to model efficiently both, the inter-

and intra-organ variability. The configuration of the algorithm is built

around a new agglomerative landmark clustering approach, which

provides an automatic hierarchical decomposition of the multi-organ

structure under study. A first version of the framework described

here was recently presented in Cerrolaza et al. (2014), showing the

potential of GEM-PDM for the statistical modeling of 3D subcortical

structures. In the present work, we provide an additional and detailed

description of the method and conduct new tests that allow us to bet-

ter characterize the performance of the algorithm, and its value for

segmentation. In particular the behavior of GEM-PDM is evaluated in
Please cite this article as: J.J. Cerrolaza et al., Automatic multi-resolution

(2015), http://dx.doi.org/10.1016/j.media.2015.04.003
erms of shape modeling accuracy and noise robustness, and com-

ared with two popular alternatives, the classical PDM (Cootes et al.,

995) and the original hierarchical PDM (Davatzikos et al., 2003), us-

ng two different datasets for our experiments: sets of six brain sub-

ortical structures and groups of seven abdominal organs. Finally, we

lso analyze the performance of the new shape modeling framework

hen it is integrated into a new segmentation algorithm, termed here

Eneralized Multi-resolution Active shape model (GEMA).

. Multi-resolution decomposition of 3D structures

In this section, we introduce the concept of multi-resolution de-

omposition of 3D structures, which is one of the cornerstones of

he new GEM-PDM presented in Section 3. Wavelet-based multi-

esolution decomposition will allow us to efficiently model the inter-

bject relations and the local variations of each particular organ in a

omplex multi-object structure. For a detailed description of multi-

esolution analysis theory the reader is referred to the works pre-

ented by Finkelstein and Salesin (1994); Lounsbery et al. (1997);

tollnitz et al. (1996) for further information.

Let x be the vector form of a 3D shape defined by the con-

atenation of the three coordinates of the K ∈ N landmarks used to

escribe the structure. In the most general case of a multi-object

hape composed of M ∈ N single-object structures, the vector form

s x = (x1; . . . ; xM)T , where xj (1 � j � M) represents the jth object.

sing the multi-object generalization (Cerrolaza et al., 2012) of the

atrix notation initially proposed by Lounsbery et al. (1997), the

ulti-resolution analysis of x can be formulated as

r = Arxr−1 (1)

r = Brxr−1, (2)

here Ar and Br represent the analysis filters, and r ∈ N indicates

he level of resolution, with r = 0 being the finest one (i.e., x0 = x).

quation (1) implements the filtering and downsampling of xr−1,

roviding a lower resolution version of it, while (2) captures the lost

etail between xr−1 and xr . Ar and Br must be constructed so that the

riginal mesh can be recovered exactly from the low-resolution ver-

ion, xr, and the wavelet coefficients, zr . During these complementary

rocesses, the coarser version of the polyhedron is refined by subdi-

iding each triangle (assuming a triangular mesh is used) into four

ub-triangles by means of additional vertices at edge midpoints. The

esulting refined mesh is modified according to the wavelet coeffi-

ients previously obtained. These refining and modifying steps are

omputed by the synthesis equation

r−1 = Frxr + Grzr, (3)

here Fr and Gr represent the synthesis filters. In the work of

ounsbery et al. (1997), the authors describe a multi-resolution

ramework to obtain the analysis and synthesis filters for arbitrary

opological surfaces. Since all the organs considered in this paper

ave spherical topology, we define the multi-resolution domain us-

ng the octahedron as the reference mesh, with a 4-to-1 splitting step.

he wavelet transform was implemented using the lifting scheme and

butterfly predictor, as explained by Schroder and Sweldens (1995).

he method proposed by Praun and Hoppe (2003) is employed to

arameterize each structure onto an octahedron. Fig. 1 depicts the

ulti-resolution decomposition of a multi-organ shape composed by

ix subcortical structures.

. Generalized multi-resolution hierarchical PDM

With the method described in Section 2, it is possible to decom-

ose a multi-object structure into different levels of resolution, which

llows us to create specific statistical shape models characterizing
shape modeling of multi-organ structures, Medical Image Analysis
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Fig. 1. Example of the multi-resolution decomposition of a multi-object shape. From left to right, fine-to-coarse representations of six subcortical brain structures as they are

processed by the wavelet analysis filter, A.
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ifferent inter-object associations at each scale. Thus, the particu-

ars of each single object/organ can be modeled individually at the

nest resolution by different PDMs (e.g., one model for each organ)

see Figs. 3(d) and 4(d)). Then, as we move toward lower levels of

esolution, additional spatial restrictions can be imposed by means of

ore global shape models that attend to the inter-object relations not

odeled in previous resolutions (Figs. 3(a)–(c) and 4(b–c)). In partic-

lar, a global statistical shape model of the whole multi-object set

s built at the coarsest resolution in order to guarantee the coherent

isposition of the elements (Figs. 3(a) and 4(b)).

In the original MRH-PDM formulation described by Cerrolaza et al.

2012), single organs were considered as the simplest structures to

odel at the finest resolution levels, which limits the capability to

odel the variability in subparts of a single object. Relaxing this con-

ition, we go one step further in the development of hierarchical

DMs, introducing a general framework where any possible grouping

f landmarks is considered. Whereas MRH-PDM established a specific

ivision of the M objects into Mr ∈ N disjoint subsets at each level of

esolution (i.e., only complete objects can be part of a subset), here

e propose a general definition of the disjoint subsets. Thus, at each

evel of resolution r we define a particular division of the Kr landmarks

nto Mr separate clusters,
(
Sr

1, . . . , Sr
Mr

)
. Sr

s (s = 1, . . . , Mr) is formed by

he indices of the landmarks contained in this subset, and therefore,
Mr

s=1Sr
s = ∅ and ∪Mr

s=1Sr
s = (

1, . . . , Kr
)
. In addition, the following con-

ition is imposed. Suppose Sr−1
sr−1(i) represents the ith element of the

r − 1th subset defined at the r − 1th resolution level, and Ŝ
r
sr is the

ropagation of Sr
sr to r − 1, then

r−1
sr−1 (i) ∈ Ŝ

r

sr =⇒ ∀iS
r−1
sr−1(i) ∈ Ŝ

r

sr . (4)

That is, two sets of landmarks that have been grouped separately

t a specific level of resolution, should not be jointly modeled at finer

esolutions; or equivalently, the clusters created in the rth resolution

erive from the fragmentation of clusters in r + 1th resolution. Despite

he intuitive meaning of (4), there is a challenge yet to be resolved:

he propagation of the clusters between two consecutive resolutions.

et Lr be a (3Kr × 1) vector (i.e., the same size as xr) containing the

abels of the subset to which each landmark of xr belongs; i.e., if
r(i) ∈ Sr

s then Lr(i) = s. With this notation, we can estimate L̂
r−1

, the

ropagation of the subdivision defined by Lr to the landmarks of

he following resolution, r − 1. The estimation is done by means of

he synthesis matrix, Fr
, i.e., L̂

r−1 = 	FrLr
Mr

1 , where the 	·
b
a operator

ounds to the nearest integer in the range [a, b].

Once the multi-resolution configuration has been defined (pro-

ess described in Section 4), it is necessary to statistically model the

nderlying population of each subset via PDM

CA(Sr
s) → {

x
r
s, tr

s, Pr
s,�

r
s

}
, (5)

here xr
s represents the average vector of landmarks included in

r
s, and Pr

s and �r
s contain the tr

s main eigenvectors, and the corre-

ponding eigenvalues (λr
s,1, . . . , λr

s,tr
s
), respectively. The integration
Please cite this article as: J.J. Cerrolaza et al., Automatic multi-resolution

(2015), http://dx.doi.org/10.1016/j.media.2015.04.003
f GEM-PDM into a full segmentation framework is discussed in

ection 5.

. Automatic hierarchical decomposition

The number of possible hierarchical configurations can be con-

iderably high when working with complex structures composed by

ultiple objects. This makes the manual definition of an appropriate

onfiguration difficult and possibly subjective and irreproducible, as

uggested in Cerrolaza et al. (2012), and limits the practical utility

f the MRH-PDM. In this section we introduce a new landmark clus-

ering approach that allows us to automatically define the division

f landmarks into separate clusters at each resolution. The clustering

rocess was initially inspired by the work presented by Roy et al.

2006), which was originally conducted for vector field segmentation

f moving objects in 2D videos, and extended to 3D objects by Reyes

t al. (2009) to study the anatomical variability of single organs via

rincipal factor analysis. Here we propose a more general approach

ased on the agglomerative hierarchical clustering method presented

y Ward (1963). Ward’s approach is a general agglomerative hierar-

hical clustering procedure where, starting from an initial state in

hich all elements are considered as separate clusters, a pair of clus-

ers is chosen to merge at each step based on the optimal value of an

bjective function. Here we propose the following tailored objective

unction:

(�) = α1

∫
�

( |V� × Vi|
|Vi|

)2
Lmax

|Vi| di + α2

(
1 −

∫
� di∫
s di

)
+ α3H(�),

(6)

here α1, α2 and α3 are real values such that �αi = 1. � ⊆ S repre-

ents a region or subdomain within the set of landmarks S we want

o divide into an optimal set of clusters. In the context of shape mod-

ling, an optimal cluster of landmarks can be intuitively defined as

group of points with a similar variability pattern (i.e., deformation

ector). Thus, the first component of (6) takes into account the col-

nearity between deformation vectors within the domain �, Vi, and

he predominant vector direction V�. The notion of dominant direc-

ion of a set of vectors was originally proposed by Rao and Schunck

1989) and exploited by Roy et al. (2006) to identify regions of vectors

ith a similar direction (i.e., similar variability pattern). Fig. 2 illus-

rates this concept graphically for a 2D example. It can be observed

see Fig. 2(c)) how the colinearity between Vi and V�, defined by

he term |V� × Vi|/|Vi|, which can be rewritten as sin(θ�,i) where

�,i = ̂V�, Vi, is lower for those vectors with direction similar to V�

e.g., vectors within the region �). In the particular context of GEM-

DM, we define the deformation vector at landmark lr
i
∈ Sr

s (1 � i �
r) as

r
i =

∑tr
s

t=1 pr
s,t,i

λr
s,t∑tr

s

t=1 λr
s,t

, (7)
shape modeling of multi-organ structures, Medical Image Analysis
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Fig. 2. Dominant vector direction and colinearity. (a) Artificially generated grid of deformation vectors. Part of the vectors were generated randomly whereas those inside the

region � were generated from a normal distribution (std = 0.08 rad). (b) Dominant vector direction V� within the domain �. (c) Colinearity between Vi and V�: |V� × Vi|/|Vi|.
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where pr
s,t,i

is the corresponding displacement vector defined by

the tth eigenvector of PCA(Sr
s). The dominant direction Vr

s,� is

defined as the eigenvector associated with the highest eigenvalue

of the symmetric, positive, 3 × 3 matrix Mr
s(�) = ∫

� Vr
i (V

r
i )

T di, and

Lr
s,max = maxS

{‖Vr
i ‖|lri ∈ Sr

s

}
. If � contains landmarks with similar

deformation vectors, then any vector can represents the dominant

direction, and the first term in (6) is equal to zero. Even more in this

case, any subset of � has an energy equal to zero. Since our pur-

pose is to find the largest domain � containing vector with the same

direction (see Fig. 2), the second term in Eq. (6) acts as a maximal

area constraint to prevent the trivial solution where each landmark

is grouped independently.

The aim of the third term, H(�), defined as the Hausdorff distance

(Rockafellar and Wets, 2005) between the objects that compose �

normalized by the maximum distance among objects in S, is to pro-

mote the grouping of objects that are spatially close. When minimiz-

ing equation (6), it is desirable that the colinearity between deforma-

tion vectors be the dominant term in the generation of clusters, while

the second and third term act as additional constraints to guarantee

the consistency of the final results, i.e., α1 � (α2, α3). Starting with

the coarsest resolution, r = R, and imposing MR = 1 as additional

initial condition, the hierarchical configuration of GEM-PDM is ob-

tained by using Ward’s hierarchical clustering in each subset obtained

at r + 1.

From the family of partitions provided by Ward (1963) algorithm,

we define the optimal landmark division based on a tailored version

of the Silhouette coefficient (Rousseeuw, 1987) defined as follows.

Suppose that landmark li is assigned to cluster �i. Then, we define

how well li is assigned to its cluster as ai = J(�i)− J(�i\li
)), where �i\li

represents the cluster �i after removing li. Thus, large ai represents

a high dissimilarity between li and �i. In the same way, we define

the dissimilarity of li to any other cluster �j (j � i) to which li is

not member as bi = minbi, j, where bi,j = J(�j+li
)− J(�j), and �j+li

represents the union of li and �j. Constraining the values of ai and bi

to the range [0, 1] by means of the logistic function, LF(·), we define

the Silhouette coefficient for landmark li as

si = LF(bi)− LF(ai)

max {LF(bi), LF(ai)} . (8)

Since a value of si close to 1 means that li is appropriately clustered

in �i, the optimal clustering of S will be the one that maximizes the

average si. Note that the resolution superscript r, was omitted in (8)

for clarity. Figs. 3 and 4 show the landmark clusterization obtained at

each resolution for two different cases, the subcortical structures of

the brain and the set of abdominal organs, respectively.
Please cite this article as: J.J. Cerrolaza et al., Automatic multi-resolution

(2015), http://dx.doi.org/10.1016/j.media.2015.04.003
. Shape modeling via GEM-PDM

Once the hierarchical multi-resolution decomposition of the struc-

ure has been defined, GEM-PDM can be used to generate new in-

tances of the objects of interest (i.e., fitting the model to a new set of

oints that identify the potential location of the structure in a new im-

ge). In this section, we describe a coarse-to-fine approach to model

ew shapes via GEM-PDM. The potential inconsistency in the border

egions of adjacent patches is also addressed here. Finally, a step-by-

tep description of the shape modeling algorithm is presented.

.1. Coarse-to-fine shape modeling

Let x be the vector form of the multi-object structure under study,

hose multi-resolution hierarchical decomposition (i.e., hierarchical

andmark clusterization and statistical modeling) is obtained accord-

ng to the procedures described in the previous sections. Suppose that

ow we want to use the new GEM-PDM to describe a new case, y,

.e., finding the best approximation of y in the subspace of allowed

hapes described by the statistical model. Starting from the coarsest

esolution (r = R), yr is divided into the Mr subsets defined in Section 4

in particular, we impose the initial constraint MR = 1), each being

orrected by the corresponding PDM (5). The resulting constrained

hape, xr is combined with the original wavelet information, zr, to

reate yr−1 by means of the synthesis equation (3). This process is

epeated at each resolution until r = 0. Because the corrections im-

osed at r via PDM can be altered at the subsequent resolution, r −
, the above procedure is repeated iteratively until convergence or a

aximum number of iterations is reached.

.2. Inter-regions consistency

Along with its simplicity, another interesting property of PDM is

he capacity to correct potential inaccuracies in the target shape, y. In

ractice, y is typically obtained by means of some image-based match-

ng process (see Cootes et al. (1995) or van Ginneken et al. (2002) for

etails), which may contain significant inconsistencies due to the use

f over-simplistic appearance models, and the presence of noise or

rtifacts in the image. The creation of new appearance models being

ble to adequately characterize the texture of the organs of interest

s still a very active research field (Cheng et al., 2014; Islam et al.,

013; Rathore et al., 2011; Sukno et al., 2007; van Ginneken et al.,

002). Despite the possible inconsistency of the resulting shape, the

egitimacy of the final form is guaranteed by the shape model, pro-

iding the best approximation of y in the subspace of valid shapes.
shape modeling of multi-organ structures, Medical Image Analysis
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Fig. 3. Multi-resolution decomposition and hierarchical configuration provided by the GMRH-PDM algorithm for the multi-object structure composed by six subcortical structures

of the brain. At each level of resolution, the set of landmarks depicted with the same color are modeled jointly via PDM. At resolution x1 the lateral ventricles are in dark red (x1
1)

and yellow (x1
2), the caudate nuclei in navy (x1

3) and orange (x1
4), and the putamens in dark blue (x1

5) and cyan (x1
6). (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Fig. 4. Set of the abdominal structures considered in the study. (a) Identification of the seven structures under study. Each organ is depicted with a different color for representation

purpose. (b)–(f) Multi-resolution decomposition and hierarchical configuration for the multi-object structure composed by seven abdominal structures. At each level of resolution,

the set of landmarks depicted with the same color are modeled jointly via PDM. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

I

b

s

n

w

f

s

a

t

t

S

p

e

t

i

t

o

l

t

c

F

t

l

o

n GEM-PDM, relaxing the definition of the minimum unit than can

e modeled independently allows us to model complex multi-object

tructures more efficiently than traditional PDMs. As a result of this

ew paradigm, an organ can be divided into multiple sub-parts as

e move toward higher resolutions (see Figs. 2 and 3). Despite the

act that the coarse-to-fine multi-resolution modeling approach de-

cribed in Section 5.1 guarantees the general consistency of the set,

dditional constraints may be necessary in the border regions be-

ween patches in order to prevent the overlapping and to preserve

he relative position between landmarks. As it can be deduced from

ection 5.1, the consistency between adjacent regions, Sr
1 and Sr

2, is

artially handled at coarser resolutions since
(

Sr−1
1 , Sr−1

2

)
⊆ Ŝ

r
1. How-

ver, since no correction is performed on the wavelet term zr used
 P

Please cite this article as: J.J. Cerrolaza et al., Automatic multi-resolution

(2015), http://dx.doi.org/10.1016/j.media.2015.04.003
o estimate yr−1 from xr, it can generate some residual overlapping

naccuracies (see Fig. 5(a) and (b)).

Given Sr
s, we define the expansion of grade 1 of this region, Š

r

s,1, as

he union of Sr
s and those landmarks directly connected to the border

f the region; i.e., those landmarks that belong to the same triangu-

ar face (assuming we use triangulated meshes to represent objects)

han the border points of Sr
s, but not included in it. Recursively, Š

r

s,2

an be defined as the expansion of grade 1 of Š
r

s,1, and so on (see

ig. 5(c)). This allows us to define overlapping areas when creating

he statistical shape models for each region. The final location of those

andmarks included in more than one region is defined as the average

f the positions suggested by each expanded statistical model (i.e.,

CA(Š
r

s,2)), weighted by the distance function e−D2
, where D is the
shape modeling of multi-organ structures, Medical Image Analysis
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Fig. 5. Example of the inter-regions consistency preservation. (a) Example of two adjacent regions, Sr
1 and Sr

2. The arrows show the new position of the two highlighted landmarks

after the appearance model-based updating stage. (b) Inconsistency of the shape when using two independent shape models, PCA(Sr
1) and PCA(Sr

2). (c) Expansion of grade 1,

(Š
r

1,1, Š
r

2,1), and 2 (Š
r

1,2, Š
r

2,2), of regions Sr
1 and Sr

2. (d) New landmarks position using the weighted sum of the two expanded shape models (see Eq. (9)), i.e., PCA(Š
r

1,2) and PCA(Š
r

2,2).
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geodesic distance (Mitchell et al., 1987) to the original non-expanded

region, Sr
s (see Fig. 5(d). Suppose landmark l belongs to the expanded

regions Š
r

1,2 and Š
r

2,2, and that ľ1 and ľ2 are the new corrected posi-

tions for l proposed by the statistical shape models of Š
r

1,2 and Š
r

2,2,

respectively. Thus, the final location for l is defined as

l = w1 ľ1 + w2 ľ2 = e−D2
l,1 ľ1 + e−D2

l,2 ľ2

e−D2
l,1 + e−D2

l,2

, (9)

where Dl, 1 and Dl, 2 are the geodesic distance of l to the original Sr
1

and Sr
2, respectively. In our experience, working with expansions of

grade 1 or 2 is sufficient to guarantee satisfactory results.

5.3. Description of the algorithm

A step-by-step description of the new shape modeling algorithm

is detailed in Algorithm 1.

Input: y; \\ Target shape to model;

x0 = y; \\ Initialization;

while (not convergence) or (not max. iterations) do

x0 −→
{

xR, zR, zR−1, . . . , z1
}

; \\ Multi-resolution

decomposition using (1) and (2);

for r = R to 1 do

for s = 1 to Mr do

x̃rs

{s,d} =
{̃

xr(j) : j ∈ Š
r

s,d

}
; \\ Build the expansion of

grade d for each region ;

PDMr
s

(̃
xr

s,d

) = x̂r
s,d;

end

x̂r
s,d −→ x̂r

s; \\ Solve overlapping between regions using

geodesic distance;

x̂r = ∪Mr

s=1x̂r
s;

if r > 0 then

x̃r−1 = Frx̂r + Grzr; \\ Shape resolution updating

using (3);

end

end

x0 = x̃0;

end

Algorithm 1: GEM-PDM.

6. Results

In this section we present a set of experiments to analyze and

quantify the potential of the new hierarchical shape modeling frame-
Please cite this article as: J.J. Cerrolaza et al., Automatic multi-resolution

(2015), http://dx.doi.org/10.1016/j.media.2015.04.003
ork presented here to characterize the underlying population of

given set of training shapes and its ability to generate new valid

nstances. We also characterize the performance of the model in

erms of robustness and its capacity to adequately correct invalid

ases out of the subspace of allowed shapes. The behavior of GEM-

DM is compared with two alternative methods: the original PDM

roposed by Cootes et al. (1995), and one of the most popular hierar-

hical variants presented by Davatzikos et al. (2003), the hierarchical

DM (HPDM).To evaluate the utility of GEM-PDM in the context of

real segmentation task, GEM-PDM is also compared with the two

egmentation approaches based on PDM and HPDM, i.e., the classical

SM framework (Cootes et al., 1995; 1994), and the hierarchical ASM

HASM), respectively. Finally, we analyze the potential of GEM-PDM

or the study of anatomical variability within organs, and its correla-

ion with known anatomical deformations.

In our experiments, we use two different databases. First we use a

et of 18 T1-weighted brain MRI volumes obtained from the Internet

rain Segmentation Repository (IBSR) (IBSR, 2006) (pixel resolution

.94 × 0.94 × 1.5 mm; volumes: 256 × 256 × 128 voxels). In par-

icular, we work with a multi-object configuration composed of six

ubcortical structures, including the left and right lateral ventricles,

eft and right caudate nuclei, and left and right putamens (see Fig. 1).

e also use a proprietary database of 18 CT abdominal studies (pixel

esolution: 0.58 × 0.58 × 1.00 mm; volumes: 512 × 512 × 360 vox-

ls). In this case, the structure under study consists of 7 abdominal

rgans, including the liver, the gallbladder, the spleen, the pancreas,

he stomach, and the left and right kidneys (see Fig. 3(a)). In both

ases, the maximum resolution is defined by the lowest number of

andmarks necessary to represent the shapes of interest with an av-

rage point-to-surface error lower than 0.01 mm. Thus, we define a

ulti-resolution domain with 5 levels, i.e., RS = 4, using 1026 points to

escribe each organ at the finest resolution level. The dense point cor-

espondence between all shapes of the training sets was established

ia mesh-to-mesh registration (Heimann and Meinzer, 2009). In par-

icular, we use the shape context method proposed by Belongie et al.

2002), where regularized thin-plate splines are used to align two

hapes based on the point correspondences obtained from the shape

ontext descriptors (i.e., an expanded vector of features defined for

ach point).

.1. Hierarchical configuration

In GEM-PDM there are three configuration parameters that con-

rol the clusterization process, α1, α2 and α3 (see (6)). Following

he general guidelines described in Section 4, α1, α2 and α3, are set

o 0.8, 0.1 and 0.1, respectively. Experimentally, we observed great

imilarity between the clusters obtained when α1 � [0.7, 0.9] with
shape modeling of multi-organ structures, Medical Image Analysis
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Table 1

Subcortical brain structures – Shape modeling accuracy. ◦ marks statistically significant improvements over classic PDM; ∗ marks statistically

significant improvement over HPDM.; � marks statistically significant improvement over classic PDM and HPDM; (p-value < 0.05).

No noise added

LV RV LC RC LP RP Avg.

P2S (mm)

PDM 0.99 ± 0.21 1.04 ± 0.32 0.66 ± 0.14 0.70 ± 0.14 0.66 ± 0.15 0.66 ± 0.11 0.78 ± 0.25

HPDM 0.90 ± 0.16 1.03 ± 0.32 0.74 ± 0.15 0.72 ± 0.15 0.71 ± 0.17 0.69 ± 0.12 0.80 ± 0.22

GEM-PDM 0.82 ± 0.19� 0.81 ± 0.20� 0.59 ± 0.09� 0.68 ± 0.14� 0.59 ± 0.09◦ 0.59 ± 0.06� 0.68 ± 0.17�

DC

PDM 0.81 ± 0.05 0.80 ± 0.05 0.87 ± 0.03 0.86 ± 0.03 0.89 ± 0.03 0.89 ± 0.02 0.85 ± 0.05

HPDM 0.82 ± 0.04 0.80 ± 0.05 0.85 ± 0.03 0.85 ± 0.03 0.88 ± 0.03 0.89 ± 0.02 0.85 ± 0.04

GEM-PDM 0.84 ± 0.05� 0.84 ± 0.04� 0.88 ± 0.02∗ 0.87 ± 0.03 0.90 ± 0.01 0.91 ± 0.01� 0.87 ± 0.04�

Noise 5 mm

LV RV LC RC LP RP Avg.

P2S (mm)

PDM 1.00 ± 0.24 1.07 ± 0.33 0.67 ± 0.15 0.71 ± 0.15 0.67 ± 0.16 0.68 ± 0.11 0.80 ± 0.19

HPDM 1.90 ± 0.16 1.94 ± 0.35 1.36 ± 0.16 1.41 ± 0.10 1.35 ± 0.15 1.34 ± 0.11 1.55 ± 0.17

GEM-PDM 1.00 ± 0.18∗ 1.03 ± 0.25∗ 0.68 ± 0.13∗ 0.74 ± 0.13∗ 0.69 ± 0.15∗ 0.70 ± 0.15∗ 0.81 ± 0.16∗
DC

PDM 0.81 ± 0.05 0.80 ± 0.05 0.87 ± 0.03 0.86 ± 0.03 0.89 ± 0.03 0.89 ± 0.02 0.85 ± 0.04

HPDM 0.53 ± 0.08 0.52 ± 0.10 0.62 ± 0.05 0.59 ± 0.04 0.69 ± 0.05 0.70 ± 0.03 0.61 ± 0.06

GEM-PDM 0.81 ± 0.04∗ 0.80 ± 0.04∗ 0.86 ± 0.03∗ 0.85 ± 0.03∗ 0.89 ± 0.02∗ 0.89 ± 0.03∗ 0.85 ± 0.03∗
Noise 15 mm

LV RV LC RC LP RP Avg.

P2S (mm)

PDM 1.32 ± 0.07 1.43 ± 0.07 0.88 ± 0.04 0.99 ± 0.06 1.05 ± 0.03 1.00 ± 0.06 1.11 ± 0.0

HPDM 5.51 ± 0.06 5.15 ± 0.07 3.84 ± 0.03 3.89 ± 0.03 3.46 ± 0.03 3.38 ± 0.03 4.21 ± 0.04

GEM-PDM 1.18 ± 0.06� 1.28 ± 0.04� 0.73 ± 0.02� 0.82 ± 0.03� 0.73 ± 0.03� 0.81 ± 0.03� 0.92 ± 0.03�

DC

PDM 0.75 ± 0.30 0.74 ± 0.47 0.82 ± 0.19 0.81 ± 0.24 0.83 ± 0.30 0.84 ± 0.32 0.80 ± 0.30

HPDM 0.16 ± 0.67 0.16 ± 0.78 0.19 ± 0.46 0.19 ± 0.41 0.28 ± 0.28 0.29 ± 0.32 0.21 ± 0.49

GEM-PDM 0.77 ± 0.24∗ 0.74 ± 0.29∗ 0.85 ± 0.13� 0.83 ± 0.12� 0.88 ± 0.14� 0.87 ± 0.17∗ 0.82 ± 0.18�
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2 =α3 = (1 −α1)/2. Forα1 < 0.7, the landmarks grouped into a single

arge cluster, as the second and third term of (6) control the clusteri-

ation process. For α1 > 0.9, the landmarks were over-clustered due

o the under penalization of partitions. Imposing the initial constraint
R = 1, the resulting configurations for both databases are shown in

igs. 2 and 3. In the case of the subcortical structures of the brain, the

ierarchical configuration proposes the division of the organs into

wo groups at r = 3, coinciding with the left and right hemisphere of

he brain. At r = 2, adjacent objects are modeled together, and at r =
, each subcortical structure is considered independently. The subdi-

ision of each organ into smaller subsets of landmarks at r = 0 can be

bserved in Fig. 2(e).

After modeling together the whole set of abdominal organs at the

oarsest resolution, two groups were created at r = 3 for the left

n right abdomen: spleen, stomach, pancreas and left kidney, and

iver, gallbladder and right kidney, respectively. At r = 2 each or-

an was modeled independently. The subsets in which each organ is

ivided at finer resolutions are depicted in Fig. 3(e) and (f). The pos-

ible anatomical interpretation of some of these clusters is discussed

n Section 6.4. It is interesting to note how the individual organs of

nterest in both databases were automatically clustered at r = 1 and

= 2 for the brain and the abdominal databases, respectively, incorpo-

ating the modeling of each organ in the multi-resolution hierarchical

odel.

Like most of the agglomerative clustering approaches, the com-

lexity of the tailored version of Ward’s algorithm (Ward, 1963) pre-

ented in Section 4 is O(n3). In particular, the computational cost

f the hierarchical clustering was 100 min for both databases (im-

lementations based on Matlab R©R2014a 64-bits, using a 2.80 GHz

ntel R©Xeon R©with 16GB or RAM). Finally, note that the hierarchi-

al clustering process is a one-time offline process for each of the

atabases considered in the study.
Please cite this article as: J.J. Cerrolaza et al., Automatic multi-resolution

(2015), http://dx.doi.org/10.1016/j.media.2015.04.003
.2. Statistical shape modeling accuracy

The three statistical models under study, PDM, HPDM, and GEM-

DM, were built to explain 98% of the variability observed in the train-

ng set, restricting the deformation space around the mean shape to

wice the standard deviation in each deformation vector (i.e., each

igenvector). The resulting number of eigenvectors was different for

ach statistical shape model. The accuracy of the three methods to

odel new instances of the underlying population was evaluated

n terms of the symmetric point-to-surface distance (P2S) and Dice

oefficient (DC), using leave-one-out cross-validation. In particular,

hree different sets of shapes were used to characterize the capacity

f the models to generate new instances, as well as their robust-

ess, on each database: the original ground-truth (i.e., shapes), and

oisy shapes in which different levels of Gaussian noise were added

o each axis: zero-mean normal random noise with standard devia-

ion of 5 mm and 15 mm. The results obtained for the brain and the

bdominal databases are shown in Tables 1 and 2, respectively. Signif-

cance was assessed using the Wilcoxon rank sum test and a p-value

f 0.05.

When modeling images without noise added, it can be observed

hat the new GEM-PDM provides a significant improvement over the

wo alternative approaches, PDM and HPDM, for most of the subcor-

ical brain structures, obtaining an average P2S distance of 0.68 ±
.17 mm, and DC of 0.87 ± 0.04 (only the left putamen provided

p-value higher than 0.05). The significant advantage of GEM-PDM

ver PDM and HPDM was also validated for all the abdominal organs

onsidered (average P2S distance of 3.35 ± 1.19 mm and DC of 0.80

0.09), with the exception of the spleen, where both hierarchical

pproaches provided similar results.

The good performance of GEM-PDM is also appreciated when

orking with noisy shapes. In the case of the zero-mean normal noise
shape modeling of multi-organ structures, Medical Image Analysis
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Table 2

Abdominal Structures – Shape modeling accuracy. ◦ marks statistically significant improvements over classic PDM; ∗ marks statistically significant improvement

over HPDM.; � marks statistically significant improvement over classic PDM and HPDM; (p-value < 0.05).

No noise added

Spl. Pan. Liv. LKid. RKid. Gall. Stom. Avg.

P2S (mm)

PDM 5.60 ± 1.07 3.90 ± 1.33 4.68 ± 1.47 4.57 ± 1.65 5.96 ± 1.81 4.18 ± 1.50 4.50 ± 1.30 4.77 ± 1.59

HPDM 4.85 ± 1.19 4.02 ± 1.43 4.57 ± 1.32 4.28 ± 1.45 5.59 ± 1.82 4.18 ± 1.65 4.55 ± 1.31 4.58 ± 1.51

GEM-PDM 4.41 ± 0.66◦ 2.74 ± 0.88� 3.20 ± 1.30� 3.49 ± 1.18� 4.05 ± 1.14� 3.18 ± 0.99� 2.36 ± 0.80� 3.35 ± 1.19�

DC

PDM 0.83 ± 0.04 0.63 ± 0.14 0.73 ± 0.08 0.60 ± 0.13 0.74 ± 0.06 0.78 ± 0.07 0.76 ± 0.07 0.72 ± 0.12

HPDM 0.86 ± 0.03 0.62 ± 0.15 0.74 ± 0.08 0.61 ± 0.12 0.76 ± 0.06 0.78 ± 0.08 0.76 ± 0.07 0.73 ± 0.12

GEM-PDM 0.86 ± 0.02◦ 0.74 ± 0.09� 0.82 ± 0.08� 0.69 ± 0.10� 0.82 ± 0.04� 0.83 ± 0.05� 0.87 ± 0.04� 0.80 ± 0.09�

Noise 5 mm

Spl. Pan. Liv. LKid. RKid. Gall. Stom. Avg.

P2S (mm)

PDM 4.70 ± 1.45 4.62 ± 1.63 5.60 ± 1.11 4.37 ± 1.52 4.58 ± 1.33 3.84 ± 1.32 5.95 ± 1.83 4.81 ± 1.46

HPDM 4.43 ± 1.27 4.17 ± 1.18 5.73 ± 0.79 4.31 ± 1.48 4.56 ± 1.27 3.49 ± 1.15 5.61 ± 1.67 4.61 ± 1.26

GEM-PDM 4.32 ± 1.46◦ 4.42 ± 1.46∗ 5.20 ± 0.99◦ 4.12 ± 1.43 4.31 ± 1.32∗ 3.85 ± 1.28∗ 5.46 ± 1.75◦ 4.53 ± 1.38�

DC

PDM 0.73 ± 0.08 0.59 ± 0.13 0.82 ± 0.04 0.77 ± 0.08 0.75 ± 0.07 0.63 ± 0.13 0.73 ± 0.06 0.72 ± 0.08

HPDM 0.72 ± 0.07 0.59 ± 0.11 0.82 ± 0.02 0.76 ± 0.08 0.73 ± 0.07 0.61 ± 0.14 0.73 ± 0.07 0.71 ± 0.08

GEM-PDM 0.75 ± 0.08∗ 0.62 ± 0.12 0.84 ± 0.04� 0.77 ± 0.07 0.77 ± 0.07∗ 0.64 ± 0.13∗ 0.76 ± 0.05� 0.74 ± 0.08�

Noise 15 mm

Spl. Pan. Liv. LKid. RKid. Gall. Stom. Avg.

P2S (mm)

PDM 5.16 ± 1.52 4.72 ± 1.63 5.82 ± 1.04 4.30 ± 1.45 4.78 ± 4.21 4.12 ± 1.37 6.14 ± 1.70 5.00 ± 1.42

HPDM 5.11 ± 1.03 4.45 ± 1.13 7.55 ± 0.90 4.69 ± 1.01 4.95 ± 0.93 4.08 ± 0.67 6.62 ± 1.42 5.35 ± 1.01

GEM-PDM 4.40 ± 1.41� 4.41 ± 1.46◦ 5.32 ± 1.02� 4.17 ± 1.45 4.43 ± 1.39◦ 3.80 ± 1.23◦ 5.56 ± 1.79� 4.58 ± 1.39�

DC

PDM 0.70 ± 0.08 0.57 ± 0.13 0.82 ± 0.04 0.76 ± 0.08 0.74 ± 0.07 0.61 ± 0.14 0.73 ± 0.07 0.70 ± 0.09

HPDM 0.60 ± 0.06 0.46 ± 0.09 0.69 ± 0.04 0.66 ± 0.08 0.64 ± 0.07 0.46 ± 0.11 0.62 ± 0.10 0.59 ± 0.08

GEM-PDM 0.77 ± 0.08� 0.60 ± 0.12∗ 0.84 ± 0.04� 0.78 ± 0.07∗ 0.76 ± 0.07� 0.64 ± 0.13� 0.76 ± 0.06∗ 0.74 ± 0.08�
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with 5 mm of standard deviation, both GEM-PDM (P2S: 0.81 ± 0.16

mm; DC: 0.85 ± 0.03) and PDM (P2S: 0.80 ± 0.19 mm; DC: 0.85 ±
0.04) provide similar results for the brain database, and both signif-

icantly outperform HPDM (P2S: 1.55 ± 0.17 mm; DC: 0.61 ± 0.06).

For the abdominal structures GEM-PDM (P2S: 4.53 ± 1.38 mm, DC:

0.74 ± 0.08) provided significantly better results than the two alter-

native methods. In both databases, the performance of GEM-PDM was

significantly better than the two alternatives approaches for a noise

level of 15 mm.

As Cerrolaza et al. (2012) point out, the independent modeling

of the bands used in HPDM significantly reduces the robustness of

the model to noise, being especially sensitive to noisy cases. On the

other hand, the classical approach of PDM tends to over-restrict the

subspace of allowed shapes as a consequence of the HDLSS problem.

While this provides significant modeling robustness to noise by en-

suring that only valid shapes are generated even when dealing with

noisy data, it also restricts the capability of the model to generate new

instances. Thanks to the coarse-to-fine multi-resolution approach,

and the overlapping between adjacent regions defined in Section 5.2,

GEM-PDM is able to accurately model new instances of the under-

lying population, while equally guaranteeing the consistency of the

final shape.

It is interesting to note that in general, all methods provided a

greater shape modeling error for the abdominal cases than for the

brain structures. While the number of training samples was the same

in both cases, a higher variability, not only in the organ shape, but also

in the spatial relations between them, was observed in the abdom-

inal database, i.e., the HDLSS effect becomes more relevant. Despite

the limited number of samples available, it can be observed that the

new GEM-PDM outperformed the two alternative methods consid-

ered, PDM and HPDM. Finally, note that the P2S distance can be also
Please cite this article as: J.J. Cerrolaza et al., Automatic multi-resolution

(2015), http://dx.doi.org/10.1016/j.media.2015.04.003
ncreased by the larger size of the organs involved in the abdominal

atabase.

.3. Segmentation of 3D brain MRI

In this section, we analyze the integration of the new GEM-PDM

nto a segmentation framework. In particular, our example addresses

he segmentation of subcortical brain structures from MRI, one of

he first applications of the original hierarchical model presented by

errolaza et al. (2012). In this paper, the segmentation was limited to

D structures and the hierarchical configuration was defined manu-

lly. In this paper, we address the segmentation of 3D brain structures,

more interesting and challenging scenario, where to overcome the

nherent limitations of the original formulation by GEM-PDM (i.e.,

he difficulty of manually defining the hierarchical configuration that

rovides optimal performance, and the constraint of modeling entire

bjects at the finest resolution) becomes essential. Moreover, the new

EM-PDM can additionally model sub-organ structures, which was

ot possible in the original framework. The performance of the result-

ng GEneralized Multi-resolution Active shape model shape model

GEMA), is compared with the two segmentation approaches based

n PDM and HPDM, i.e., the classical ASM framework (Cootes et al.,

995; 1994), and the hierarchical ASM (HASM), respectively. To guide

he matching process to a new image, we used one of the classical

earch profile appearance models frequently used in the context of

SM (Cootes et al., 1995; 1994), defined by the mean and the co-

ariance matrix of the normalized first derivative of fixed-size gray

rofiles, normal to the boundary and centered at each landmark. The

ength of these profiles was set to 5 voxels, defining a search space

f 9 pixels. The initialization was obtained by means of 3D rigid im-

ge registration between a reference image from the training set and
shape modeling of multi-organ structures, Medical Image Analysis
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Table 3

Subcortical brain structures – Segmentation accuracy. ∗ marks statistically significant improvement over HPDM.; � marks statistically

significant improvement over classic PDM and HPDM; (p-value < 0.05).

No noise added

LV RV LC RC LP RP Avg.

P2S (mm)

PDM 1.35 ± 0.63 1.50 ± 0.69 0.77 ± 0.21 0.83 ± 0.21 0.73 ± 0.17 0.76 ± 0.11 0.99 ± 0.33

HPDM 1.64 ± 0.39 1.73 ± 0.47 1.33 ± 0.36 1.24 ± 0.33 1.46 ± 0.56 1.52 ± 0.47 1.49 ± 0.43

GEM-PDM 0.99 ± 0.19� 1.07 ± 0.30� 0.71 ± 0.15∗ 0.77 ± 0.17∗ 0.72 ± 0.16∗ 0.73 ± 0.07∗ 0.83 ± 0.17�

DC

PDM 0.76 ± 0.12 0.73 ± 0.13 0.85 ± 0.05 0.84 ± 0.04 0.88 ± 0.03 0.88 ± 0.02 0.82 ± 0.07

HPDM 0.64 ± 0.09 0.62 ± 0.10 0.68 ± 0.09 0.71 ± 0.08 0.72 ± 0.10 0.73 ± 0.08 0.68 ± 0.09

GEM-PDM 0.82 ± 0.05� 0.81 ± 0.05� 0.86 ± 0.03∗ 0.85 ± 0.03∗ 0.88 ± 0.02∗ 0.88 ± 0.01∗ 0.85 ± 0.03�

Fig. 6. Clusterization results of the spleen (a), the pancreas (b), and the left lateral ventricle (c) at the finest level of resolution used in this paper, and their qualitative relations to

anatomical sections of the organs.

t

m

m

A

H

o

s

0

a

a

a

m

G

p

m

t

H

d

p

p

t

o

c

u

6

i

g

p

t

a

d

b

a

t

t

he target image, using the sum of squared differences as similarity

easure (Crum et al., 2004; Myronenko, 2010). The resulting defor-

ation field was used to obtain the initial estimation of the shape.

ll parameters were identical between the compared methods: ASM,

ASM and GEMA, respectively.

Table 3 shows the accuracy of the three tested algorithms in terms

f P2S and DC, using the leave-one-out cross-validation. It can be ob-

erved how the new segmentation algorithm, GEMA (avg.P2S: 0.83 ±
.17 mm; avg.DC: 0.85 ± 0.03), provided a significantly better over-

ll performance in terms of both P2S and DC than the other two

lgorithms, ASM (avg.P2S: 0.99 ± 0.33 mm; avg.DC: 0.82 ± 0.07),

nd HASM (avg.P2S: 1.49 ± 0.43 mm; avg.DC: 0.68 ± 0.09). Even

ore, compared to the 2D case considered in Cerrolaza et al. (2012),

EMA provides better accuracy than the best manual configuration

roposed there (DC: 0.81 ± 0.07). It can be appreciated how the seg-

entations obtained with ASM and GEMA were generally better than

he ones provided by HASM. As discussed in Cerrolaza et al. (2012),

ASM is inefficient when dealing with the noisy shapes generated

uring the image-based matching process of a real segmentation

rocess.
Please cite this article as: J.J. Cerrolaza et al., Automatic multi-resolution

(2015), http://dx.doi.org/10.1016/j.media.2015.04.003
Finally, note that the computational cost of the hierarchical ap-

roaches, GEMA (�5 min.), and HASM (�7 min.), is slightly higher

han the cost of the classical ASM (�3 min.), due to the additional

perations associated with the wavelet-based multi-resolution de-

omposition (all implementations were in Matlab R©R2014a 64-bits,

sing a 2.80 GHz Intel R©Xeon R©with 16GB or RAM).

.4. Anatomical variability of organs

Another interesting application of the hierarchical decomposition

ntroduced in Section 4 is the study of anatomical variability of or-

ans, and of inter-organs relations. According to the original works

resented by Reyes et al. (2010); 2009), the analysis of deforma-

ion fields showed correlation with existing anatomical landmarks

nd known anatomical deformations of abdominal organs. The sub-

ivision of organs into anatomically significant components defined

y clusters may be of great utility in the study and analysis of the

natomical variability of organs and inter-organs relations, an impor-

ant research tool for diagnosis, modeling, and soft tissue interven-

ion. In particular, Reyes et al. focused their interest in the study of
shape modeling of multi-organ structures, Medical Image Analysis
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abdominal structures, though from a single-organ or local perspec-

tive. Here, the new general landmark clustering framework intro-

duced in Section 4 allows us to address the problem from a more

global perspective. Thanks to the energy minimization process de-

fined by Eqs. (6) and (8), the clusterization process allows us to

identify those groups of landmarks with similar anatomical and me-

chanical characteristics (e.g., similar deformation fields, or spatial

proximity). Thus, as it was discussed in Section 6.1, broader inter-

organ relations are considered at coarser resolutions, creating smaller

groups as we move toward finer resolutions (see Fig. 3). For instance,

it is possible to appreciate how the two groups created at r = 3 are

composed of organs with known anatomical relations between them,

such as the liver, gallbladder and right kidney, or the left kidney,

spleen and pancreas (Fig. 4(c)). These organ relations or correlations

were also observed by Okada et al. (2013).

In Fig. 6 we go one step further and show how it is possible to

establish a direct relation between the clusters obtained at finest res-

olutions, and known anatomical and functional sections of the organs.

At this stage of our work, these intra-organ clusters were evaluated

qualitatively by an expert radiologist. The intra-organ analysis is not

a focus of this manuscript and these preliminary results are shown

for exemplification only.

Fig. 6(a) shows the correspondence between the clusters of the

spleen with the superior and inferior poles, and the renal, gastric,

and left colic impressions. Fig. 6(b) identifies the three parts in which

the pancreas can be divided, the head, the body and the tail. Fig. 6(c)

shows how the clusterization process divides the left lateral ven-

tricle into three different regions, which can be identified with the

anterior horn, the body, and the posterior and inferior horn. It can

be observed how the posterior and inferior horns of the left lateral

ventricle are included within the same clusters, in spite of being two

different anatomical regions. A possible explanation is the absence of

the posterior horn in many instances. The posterior horns are very

thin structures barely detectable in MRI, due to partial volume effects

(Rajamani et al., 2007). As a consequence, the manual segmentations

provided by the IBSR database are not always consistent, and the

posterior horn is missing in many cases. This issue suggests an in-

teresting possible extension of our framework: the multi-structure

methodology could be adapted to deal with missing structures.

7. Discussion and conclusions

In this paper, we presented a general multi-resolution framework

for the statistical modeling of multi-object structures. Unlike the clas-

sical single-object modeling approach of PDM, the new GEM-PDM

creates different statistical shape models that characterize specific

inter-organs associations at each level of resolution. The goal of this

strategy is twofold: to reduce the HDLSS challenge, particularly rel-

evant in new medical imaging applications, where the number of

training images is often small, and to efficiently capture the interac-

tion between adjacent regions, in addition to the shape variation of

individual organs. This GEM-PDM also tackles the two main draw-

backs observed in previous hierarchical approaches: the difficulty of

manually defining the hierarchical configuration that provides opti-

mal performance, and the limitation of considering the single objects

as the simplest structure to model. Relaxing this latter condition, we

go one step further in the development of hierarchical PDMs, present-

ing a general framework where any possible grouping of landmarks

is considered. Finally, the hierarchical configuration of the algorithm

is completely automated thanks to the new agglomerative landmark

clustering approach, whose optimization is controlled by a tailored

definition of the Silhouette coefficient.

The performance of GEM-PDM was evaluated in terms of shape

modeling accuracy and noise robustness, and compared with two

popular alternatives: the classical PDM and HPDM. The results show

how the new general framework significantly outperformed both al-
Please cite this article as: J.J. Cerrolaza et al., Automatic multi-resolution

(2015), http://dx.doi.org/10.1016/j.media.2015.04.003
ernative approaches for two different tested databases: the set of six

rain subcortical structures and the set of seven abdominal organs.

Finally, the new shape modeling framework was integrated into a

eal segmentation algorithm, GEMA, providing a better overall perfor-

ance than the other two algorithms tested, ASM and HASM, when

pplied to the segmentation of subcortical structures.

In the near future, we will continue exploring the capability of

EM-PDM to automatically model comprehensive anatomical struc-

ures, from the multi-organ level to the inter- and intra-object reso-

ution, and formalize the anatomic and functional relations between

rgans, which can be of great interest in the context of full body

omputational anatomy.
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