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Abstract. Consistent longitudinal segmentation of brain tumor images
is a critical issue in treatment monitoring and in clinical trials. Fully auto-
matic segmentation methods are a good candidate for reliably detecting
changes of tumor volume over time. We propose an integrated 4D spatio-
temporal brain tumor segmentation method, which combines supervised
classification with conditional random field regularization in an energy
minimization scheme. Promising results and improvements over clas-
sic 3D methods for monitoring the temporal volumetric evolution of
necrotic, active and edema tumor compartments are demonstrated on
a longitudinal dataset of glioma patient images from a multi-center clin-
ical trial. Thanks to its speed and simplicity the approach is a good
candidate for standard clinical use.
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1 Introduction

The segmentation of brain tumor images is an important clinical problem. It is
necessary for patient monitoring and treatment planning, but it also has appli-
cations in clinical drug trials [9], where tumor response to therapy needs to be
assessed. Many different automatic or semi-automatic segmentation algorithms
have been proposed [5] and while their performance might be still debatable, it
is well-accepted that manual segmentations are subject to high intra- and inter-
rater variability [12]. This variability is even more influential when analysing
longitudinal patient studies where tumor progression or regression should be
monitored. In this case, it is more important to have an objective tumor seg-
mentation, which can correctly identify changes over time, than having a very
high accuracy at single time points. The RANO (response assessment in neuro-
oncology) working group has pointed out, that in addition to the currently
applied 2D manual diameter measurements for monitoring tumor growth, in
the future it would be desirable to have reliable 3D measurements of volumetric
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tumor change [15]. Fully automatic segmentation algorithms are ideally suited
for this scenario because they allow for an objective longitudinal assessment of
tumor development. Furthermore they allow for an efficient handling of the large
multi-modal datasets that are generated in longitudinal studies.

Despite the suitability of automatic methods for longitudinal studies, so far
most algorithms for brain tumor segmentation have only been applied to images
taken at single time points. Obviously, a standard segmentation algorithm for
brain tumor images at single time points (e.g. [4,6,8,16]) could be applied for
longitudinal studies, however this would not make use of the full temporal infor-
mation, thus possibly decreasing robustness. There are only few methods, specif-
ically designed for assessing temporal changes in brain tumor images, which
mostly target slowly evolving low-grade gliomas. Konukoglu et al. [11] used a
semi-automatic approach based on image registration for change detection. Pohl
et al. [13] followed a similar idea, performing semi-automatic segmentation in
combination with registration, after which they analyzed local intensity patterns
to detect tumor growth. Angelini et al. [2] implemented a histogram mapping,
which allowed them to compare intensity difference maps directly after affine
registration.

Due to the irregular appearance and fast evolution of high-grade gliomas,
registration methods are not well suited for this scenario. We chose a different
approach for longitudinal brain tumor segmentation, which is based on super-
vised classification with integrated 4D spatio-temporal regularization for lon-
gitudinal brain tumor segmentation. It offers the possibility to segment tumor
and healthy tissues including their subcompartments (necrotic, active, edema
region and cerebrospinal fluid (CSF), gray matter (GM), white matter (WM)
respectively).

2 Methods

The task is modeled as an energy minimization problem in a spatio-temporal
conditional random field (CRF) formulation, where the random field contains
cliques with both spatial and temporal links. The integration of spatial and
temporal links was conceptually inspired by a work on video segmentation [14].
The energy consists of the sum of singleton potentials and pairwise potentials,
which can be seen in the first and second term of Eq. (1), where i and j determine
the voxel position in space and time. The optimization problem is solved to yield
a segmentation result based on fast linear programming strategies [10].

E =
∑

i

V (yi,xi) +
∑

ij

W (yi, yj ,xi,xj) (1)

The singleton potentials V (yi,xi) are computed according to Eq. (2), where
yi is the final label output, ỹi is the probability function learned from a dis-
criminative classifier, xi is the feature vector and δ is the Kronecker-δ function.
For the classifier, a 40-dimensional feature vector xi is used. It combines the
normalized multi-modal intensities with first order textures (mean, variance,
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Fig. 1. The regularization is based on 4D spatio-temporal cliques for each voxel. The
clique contains information from the local neighborhood of all image modalities at one
time point, plus the previous and the subsequent time point.

skewness, kurtosis, energy, entropy) from local patches and statistics of gradient-
based intensity differences in a local neighborhood.

V (yi,xi) = p(ỹi|xi) · (1 − δ(ỹi, yi)) (2)

A decision forest classifier is employed because it can efficiently handle multi-
label problems and provide posterior probabilities p(ỹi|xi) as an output [7]. This
probabilistic output can be used as a weighting factor in Eq. (2), which allows
us to control the degree of regularization depending on the confidence of the
classification output.

The pairwise potentials W (yi, yj ,xi,xj) described in Eq. (3) account for the
spatio-temporal regularization. In contrast to standard random field approaches,
the cliques do not only model 3D spatial relationships, but 4D spatio-temporal
relationships between image voxels, where each time frame is connected to the
previous and the subsequent frame as illustrated in Fig. 1.

W (yi, yj ,xi,xj) = ws(i, j) · (1− δ(yi, yj)) · exp
(−PCD(xi,xj)

2 · x̄
)
·D(yi, yj) (3)

In Eq. (3), ws(i, j) is a weighting function that depends on the “spacing” in
each dimension. This means the spatial resolution is taken into account, whereas
for the temporal dimension a uniform spacing is chosen because depending on
the treatment plan, changes in tumor volume do not necessarily depend on the
imaging interval. Different labels of adjacent voxels are penalized by the term
(1 − δ(yi, yj)), whereas the degree of smoothing is regulated based on the local

intensity variation, computed as exp
(−PCD(xi,xj)

2·x̄
)

with PCD(xi,xj) being a
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pseudo-Chebyshev distance and x̄ being the respective generalized mean inten-
sity of the relevant modalities. The use of pseudo-Chebyshev distance is moti-
vated by the fact that some modalities better describe certain tissues. In this
case the T1contrast and Flair modalities are the most discriminative to distin-
guish the borders of individual tumor compartments and we make use of these
two modalities only in the PCD term. Prior knowledge for penalizing different
tissue adjacencies individually is taken into account by the D(yi, yj) term in an
empirical way. This allows us to stronger penalize adjacencies of tissues which
are less likely to occur (e.g. necrotic and healthy tissue adjacencies).

3 Results

The method has been applied on an image dataset of 6 patients from a multi-
center phase 1 clinical drug trial with a well-defined clinical image acquisition and
drug administration protocol (part of the patients also had surgical resections).
For each patient, there are 6 multi-modal MRI scans available at specific time
points over a two-month period before and after drug ingestion (36 multi-modal
images in total). This contains two baseline scans and four follow-up scans after
treatment with anti-angiogenic therapies. Following the current clinical proto-
col, we operated only on the structural T1, T1contrast, T2 and Flair MR images.
The images of each patient were rigidly registered in order to ensure voxel-to-
voxel correspondence and automatically skull-stripped in a pre-processing step.
In our case, rigid registration was mandatory because we just aimed at align-
ing the brains to ensure general correspondence, internal tissue deformations
caused by tumor growth or shrinkage were handled by the segmentation algo-
rithm itself. Therefore they did not have to be considered by the registration
method, otherwise the results of the volume measurements would be compro-
mised. Additionally, bias-field correction, intensity normalization and denoising
with an edge-preserving smoothing filter were performed.

We conducted two different experiments to evaluate the performance of the
algorithm. First, we compared the proposed integrated 4D spatio-temporal seg-
mentation to an enhanced version of the standard 3D segmentation from [3] (this
was among the best performing methods at the MICCAI BraTS 2012 challenge
and is basically the same as the approach presented here without considering
temporal links in the regularization). The results were analyzed quantitatively
by the overlap of the automatic segmentation result with a manually defined
ground-truth using the Dice similarity coefficient and the mean surface distance.
The Dice coefficient can range from 0 to 1 with 0 indicating no overlap and
1 indicating perfect overlap. The results are presented in Table 1. The average
Dice coefficient increased when the spatio-temporal regularization was used. The
increase was statistically significant for the active tumor region and partially also
for the edema region (see Table 1). The added benefit of the 4D regularization
is even more clear when considering the mean surface distance of the individual
tumor compartments to the groundtruth. In almost all cases a clear significant
improvement could be observed (see Table 1). The 3D segmentation tended to
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Fig. 2. Segmentation results for patient 2,3,5,6 from top to bottom (color code:
red=CSF, green=GM, blue=WM, yellow=necrotic tumor, turquoise=active tumor,
pink=edema). Each column shows one time point, starting from the first baseline scan,
until the final scan 55 days after the first drug ingestion. (Results for patient 1 and 4
can be found in Figs. 4 and 5.)

produce strong outliers for the segmented volume at some time points. These
could be effectively eliminated by the 4D regularization as can also be seen
in Fig. 3, where the tumor volume evolution curves are more consistent with
the clinical diagnosis for the 4D segmentation than the 3D segmentation. More
details about some of the outliers generated by the 3D method in Fig. 3 are
shown and further discussed in Figs. 4 and 5

Then, we evaluated the effect of different training datasets for the decision
forest. Our standard training data were the training images of high-grade gliomas
from the MICCAI 2012 BraTS challenge1. This is a dataset with a completely
different image acquisition protocol than the one used for the longitudinal testing
images. We wanted to see if the results improve when training is performed
on a rough outline of the tumor on the first baseline image of each patient
instead. As expected, it can be observed from Table 1 that the Dice coefficients
are always higher when training is performed on the first baseline image of the
same patient, but still the algorithm seems to generalize sufficiently well, so that
even with training on the completely different BraTS dataset, acceptable results
in terms of Dice overlap can be achieved. The rather low Dice coefficients for
necrotic tissue can be explained by the fact that the necrotic region is often small
1 http://www2.imm.dtu.dk/projects/BRATS2012/

http://www2.imm.dtu.dk/projects/BRATS2012/
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Table 1. Average and standard deviation for overlap and surface distance of individual
tumor compartments. Four different cases have been considered: training on BraTS
with 3D segmentation, training on BraTS with 4D segmentation, training on the first
baseline scan of the same patient with 3D segmentation, training on the first baseline
scan of the same patient with 4D segmentation. Cases, where the 4D segmentation
yielded a statistically significant improvement (p < 0.05) over the 3D segmentation
have been marked with an asterisk

3D BraTS 4D BraTS 3D baseline1 4D baseline1

Dice coefficient
necrotic 0.18±0.22 0.18±0.21 0.45±0.35 0.45±0.35
active 0.54±0.2 0.58±0.18∗ 0.59±0.26 0.62±0.24∗

edema 0.65±0.1 0.66±0.09 0.69±0.13 0.73±0.08∗

Mean surface distance [mm]
necrotic 15.6±14.9 10.5±9.4 5.5±6.7 2.1±2.1∗

active 4.2±3.2 2.6±1.4∗∗∗ 2.9±3.8 1.8±2.9∗∗

edema 4.7±3.2 3.5±1.9∗∗ 4.6±3.7 2.4±1.2∗∗∗

Fig. 3. Trend of the tumor volumes (in mm3) for necrotic (left), active (center) and
edema (right) compartments of all 6 patients. Results are shown with dashed lines
for the pure 3D spatial segmentation and with solid lines for the proposed 4D spatio-
temporal segmentation. The most prominent outliers of the 3D method are highlighted
by black ellipses. Patient 4 showed progressive disease, which could be reliably identified
from the computed active tumor region (purple line).

and the Dice coefficient is sensitive to the size of the region. Figure 2 illustrates
the segmentation results on an axial slice of four patient images for all time
points.

Finally, we compared the trend of the combined necrotic and active tumor
volume, which was predicted by the algorithm, to the trend of the gross tumor
volume, which had been manually outlined by an expert radiologist on the
dynamic contrast enhanced (DCE) images of the same patient (these images were
not used for the automatic segmentation method). The trend of the automati-
cally segmented tumor volume is in general agreement with the tumor volumes
manually defined on the DCE images, while the absolute values were still show-
ing significant differences (see Fig. 6). The difference in absolute volume could
be partially attributed to the fact that the resolution of our structural images
was 4 times higher than the resolution of the DCE images, another explanation
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Fig. 4. Illustration of outlier (d) in Fig. 3 (edema region of patient 1). The upper row
shows results of the 3D segmentation on one axial slice, the bottom row shows results
of the 4D segmentation on the same axial slice. It can be seen that the pink edema
region is changing location at every time point if the 3D segmentation method is used.
This is not very likely and probably caused by acquisition artefacts. These artefacts
are successfully suppressed by using the 4D segmentation method, leading to an edema
volume which has a similar trend, but is generally lower than the volume given by the
3D segmentation method, as can be seen from Fig. 3.

Fig. 5. Illustration of outlier (a) in Fig. 3 (necrotic region of patient 4). The upper
row shows results of the 3D segmentation on one axial slice, the bottom row shows
results of the 4D segmentation on the same axial slice. It can be seen that due to
artefacts during image acquisition, a large fluid filled cavity is wrongly classified as
being a necrotic tumor region (yellow) at the last two acquisition time points if the 3D
segmentation method is used.

could be that structural images and functional DCE images contain different
information.

Computation time on a multi-core CPU with 2.67 GHz was approximately
30 min for a 4-dimensional patient dataset, which translates to 5 min per single
time point. This is in the range of the fastest state-of-the art algorithms for brain
tumor segmentation.
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Fig. 6. Trend of the combined necrotic and active tumor volume, which was determined
manually on the DCE images (blue line), and which was determined automatically from
the four structural modalities, either with training on the BraTS data (red line) or with
training on a rough manual tumor outline on the first baseline scan of each patient
(green line). Results are shown in mm3 for all 6 patients. Disease progression in patient
4 could be reliably identified.

4 Discussion and Conclusion

We presented a fully automatic method for integrated spatio-temporal segmen-
tation of longitudinal brain tumor studies. The method is clinically oriented and
can be easily used on the standard structural MRI modalities. To the best of
our knowledge, this is the first automatic segmentation method, which is dedi-
cated to longitudinal assessment of tumor progression or regression in high-grade
glioma patients. It has many potential applications in radiology, oncology and
clinical trials because it can eliminate the problem of non-objectiveness and user
bias during evaluation and diagnosis.

We have demonstrated that a spatio-temporal segmentation has advantages
over an independent treatment of all time points, exhibiting an increased robust-
ness. This is specifically important for cases, where a large number of outliers
occur at one time point due to either imaging artefacts or differences in image
appearance. Such problems can be effectively handled by the temporal links of
the cliques, yielding smoother and more informative curves for the volume trend.
We acknowledge that this might lead to some bias by temporal smoothing, but
that is outweighted by the improved robustness against outliers as shown qual-
itatively in Figs. 4, 5 and quantitatively by Dice scores and surface distances
in Table 1. The presented method has the potential to allow for a more reliable
diagnosis and assessment of tumor progression or regression. We have also shown
that the trends of tumor volume evolution over time can be well captured by
both intra- and inter-patient training, but obviously the results for intra-patient
training are still more accurate.

Finally, we have been able to show that the automatic results for the longi-
tudinal trend of the gross tumor volume, obtained from four structural imaging
modalities only, correlated well with the longitudinal trend of the volumes, man-
ually determined based on the DCE images. Additionally, the patient who clearly
showed progressing disease could be reliably identified (see patient 4 in Fig. 3 cen-
ter and in Fig. 6). The results obtained for the longitudinal tumor evolution were
also in general agreement with clinical results reported by Ananthnarayan et al.
[1] for patients exposed to treatment with an anti-angiogenic compound. Regard-
ing the recommendations of the RANO group for assessing tumor evolution, the
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proposed approach aligns well with the vision to consider automatically detected
volumetric changes over time for an effective assessment of brain tumor reponse
to therapy in the future.
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